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Abstract

A unique color space segmentation method is introduced. It is founded on features
of human cognition, where 11 color categories are used in processing color. In two
experiments, human subjects were asked to categorize color stimuli into these 11
color categories, which resulted in markers for a Color LookUp Table (CLUT).
These CLUT markers are projected on two 2D projections of the HSI color space.
By applying the newly developed Fast Exact Euclidean Distance (FEED) transform
on the projections, a complete and efficient segmentation of color space is achieved.
With that, a human-based color space segmentation is generated, which is invariant
for intensity changes. Moreover, the efficiency of the procedure facilitates the gen-
eration of adaptable, application-centered, color quantization schemes. It is shown
to work excellently for color analysis, texture analysis, and for Color-Based Image
Retrieval purposes.

Key words: 11 color categories, human color categorization, color space
segmentation, Fast Exact Euclidean Distance (FEED) transform

1 Introduction

Digital imaging technology is more and more embedded in a broad domain.
As a consequence, digital image collections are booming, which creates the
need for efficient data-mining in such collections [10]. An adequate model of
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human visual perception would facilitate data-mining [10,15]. Our approach,
hereby, is to utilize human cognitive and perceptual characteristics.

For a broad range of data-mining applications (e.g., the cultural domain [3,15]),
various image processing techniques have been adopted. However, the current
paper focuses on a generic image processing technique: a color quantization
scheme based on human perception. This unique color space segmentation is
both relevant and suitable for the development and study of Content-Based
Image Retrieval (CBIR) in its variety of contexts [11,14,15].

In general, we argue that color should be analyzed from the perspective of
human color categories. Both to relate to the way people think, speak, and
remember color and to reduce the data from 16 million or more colors to the
limited number of 11 color categories: black, white, red, green, yellow, blue,
brown, purple, pink, orange, and gray. Research from diverse fields of science
emphasize their importance for human color perception [2,6,8]. The use of
this knowledge can possibly provide a solution for problems concerning the
accessibility and the availability of knowledge, where color analysis is applied
in data-mining. In addition, such a human-centered approach can tackle the
computational burden of traditional (real-time) color analysis [3,6,7].

The 11 color categories are applicable for a broad range of CBIR domains [14],
where in specific domains, other sets of colors might be more appropriate. In
this paper, we regard the 11 color categories as they are used in daily life. These
color categories are constructed and handled by methods that are presented
in this paper. However, in the same way, it is possible to incorporate another
set of colors, which is user, task, or application specific.

This paper presents a line of research starting with psychophysical experiments
in Section 2. This provided us with color markers for a Color LookUp Table
(CLUT) in the RGB color space. The boundaries between the color categories
in the RGB space are expected to be too complex to be determined, using
the limited number of CLUT markers. Therefore, we describe in Section 3
how the RGB space is transformed into two 2D projections of the HSI color
space in which the boundaries are less complex. In Section 4, we present the
newly developed Fast and Exact Euclidean Distance (FEED) transformation,
adapted such that it can handle multi class data; in our case: the 11 color
categories. Section 5 describes how the CLUT markers are fed to FEED to
find the boundaries and how this is used to segment the complete color space.
In Section 6, the segmented color space is validated through a comparison
with human color categorization. We finish the paper with a discussion on the
work presented in Section 7.
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Fig. 1. Screendump of the user interface of (a) the color memory experiment (gray
buttons, labeled with a color name) and (b) the color discrimination experiment
(colored buttons without a label). The stimulus did have a size of 9.5 x 6.0 cm, the
buttons measured 1.8 x 1.2 cm with 0.6 cm between them.

2 Validation of the 11 color categories

Twenty-six subjects with normal or corrected-to-normal vision and no color
deficiencies participated voluntary in two tasks. The first task was to write
down the first 10 colors that came to mind. This task was embedded in the
research because the 11 color categories are still a topic of debate; e.g., see [6,8].
It enabled us to verify its validity for our research. The second task consisted
of both a color memory experiment and a color discrimination experiment.

2.1 Method

For the color memory experiment, the subjects were instructed to categorize
the stimulus into one of the color categories, represented by buttons with
their names (task 2a; see Figure 1a). In the color discrimination experiment,
the subjects were asked to press one of the 11 focal-color buttons (i.e., a
typical color for a color category) that best resembled the stimulus (task 2b;
see Figure 1b). Both experiments consist of four blocks of repetitions of all
stimuli (in a randomized order).

The experiments ran in an average office environment on a PC with an Intel
Pentium IT 450 MHz processor, 128mb RAM, a Matrox Millennium G200 AGP
card, and with a Logitech 3-button Mouseman (model: M-S43) as pointing-
device. The experiments were conducted in a browser-environment with In-
ternet Explorer 6.0 as browser and Windows 98SE as operating system, using
16-bit colors, where respectively 5, 6, and 5 bits are assigned to the red, green,
and blue channel.



Color name freq. (min.-max.) Color name freq. (min.-max.)

red, green, blue, yellow 26 (84.4%-100.0%) violet 06 (10.8%- 42.5%)
purple 24 (74.5%- 98.8%) beige 04 ( 5.7%- 34.3%)
orange 22 (65.7%- 94.3%) ocher 03 ( 3.3%- 30.0%)
black, white, brown 20 (57.5%- 89.2%) turquoise, magenta, 02 ( 1.1%- 25.5%)
gray 15 (38.9%- 74.4%) indigo, cyan

pink 11 (25.6%- 61.1%) silver, gold, bordeaux-red 01 ( 0.7%- 20.7%)
Table 1

Frequency and confidence-intervals (p at 99%) of color names mentioned.

The stimuli were the full set of 216 web-safe colors [16]. These are defined
as follows: The R, G, and B dimensions (coordinates) range from 0 to 255
and are treated equally. For each dimension, six values are chosen: 0 (0%), 51
(20%), 102 (40%), 153 (60%), 204 (80%), and 255 (100%). Each of these six
values is combined with each of the six values of the two other dimensions.
This results in 63(= 216) triple of coordinates in the RGB-space. These RGB-
values result for both Internet Explorer and Netscape under both the Windows
and the Mac operating system, in the same (non-dithered) colors, under the
prerequisite that the operating system uses at least 8-bit (256) colors.

2.2  Results

the main results, which confirm the existence of the 11 color categories, as
is illustrated in Table 1. Noteworthy is that all 26 participants wrote down
the colors red, green, blue, and yellow; all belong to the 11 focal colors or
color categories [2,6,8]. With 11 occurrences, pink was the least mentioned
focal color. Followed by the most frequently mentioned non-focal color: violet,
which was mentioned by six of the participants. The complete results of task
1 are presented in Table 1.

In the classification of the web-safe colors by the subjects, three sets of color
markers can be distinguished: i) non-fuzzy color markers: web-safe colors cat-
egorized by a magnitude of at least 10 subjects to one color category; ii) fuzzy
color markers: web-safe colors that are assigned to two different color cate-
gories by at least 10 subjects; iii) colors of which the subjects did not agree to
what color category they belong. The set of non-fuzzy color markers are used
in further processing since the color category they belong to is undisputed.
The fuzzy color markers will be used in a later stage to validate the final color
segmentation, based on the non-fuzzy color markers. The third and remaining
category is excluded as data for further research.

In general, color matching using a Color LookUp Table (CLUT), based on
the color markers derived from the experimental results, could enhance the



color matching process significantly and may yield more intuitive values for
users [2,6]. In addition, such a coarse color space quantization of 11 color
categories reduces the computational complexity of color analysis drastically,
compared to existing matching algorithms of image retrieval engines that use
color quantization schemes (c.f. PicHunter [1]: HSV 4 x 4 x 4 and QBIC [3]:
RGB 16 x 16 x 16). The coarse 11 color categories quantization makes it also
relatively invariant with respect to intensity changes [6]. For more detailed
discussions concerning color quantization, we refer to Schettini, Coicca, and

Zufti [11].

3 The segmentation framework

The experiments presented in Section 2 provided us with categorized color
markers for a Color LookUp Table (CLUT). These color markers are consid-
ered scarce data for segmenting a color space into 11 categories. Therefore, a
framework is needed to that provides means to maximize the efficiency. In this
section, we explain the framework that is used for the segmentation process.

3.1 HSI: segmentation color space for scarce data

The color markers are RGB coordinates; however, the RGB color space is not
perceptually intuitive. Hence, the position and shape of the color categories
within the RGB color space are complex. Therefore, for the full color space
categorization, the HSI color space is used, which is (i) perceptually intuitive,
(ii) performs as good as or better than perceptual uniform color spaces such
as CIE LUV [9], and (iii) the shape and position of the color categories are
less complex functions of location and orientation than with the RGB color
space. See Figure 2 for a visualization of the RGB and HSI color spaces as
well as their relation.

Prosperously, the 216 web-safe colors are clearly distinct for human perception.
As a consequence, in a perceptual intuitive color space some distance is present
between them. Moreover, the perceptual intuitive character of the HSI color
space results in an orientation of adjacent colors such that the web-safe colors
are spatially arranged by color category.

Let us now briefly discuss the HSI color space, an intuitive color space that
proved to work good under varying circumstances [9,11]. The axes of the HSI
space represent hue (i.e., basic color index), saturation (i.e., colorfulness or
chromatic purity), and intensity (i.e., amount of white present in the color).
The shape of HSI color space can be displayed as a cylinder: intensity is the
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Fig. 2. Left: The relation between the RGB and the HSI color space, from the
perspective of the RGB color space. Right: The cylinder shaped representation of
the HSI (Hue, Saturation, and Intensity) color space, as used in this research.

central rod, hue is the angle around that rod, and saturation is the distance
perpendicular to that rod; see also Figures 2 and 3. The color categories’
orientation is as follows: Around the intensity axis, the achromatic categories
are located, as is shown in Figure 3. The achromatic region has a conical shape
and is described with small saturation values, the complete range of intensity,
and the complete range of hue values. Around this achromatic region, the
chromatic categories are located. Chromatic categories have high saturation
values and occupy a part of both the total hue and the total intensity range.

3.2 From 3D HSI color space to two 2D representations

Since the HSI color space is a 3D space, the boundaries between color cate-
gories consist of 3D functions. However, the amount of HSI CLUT markers
is too limited to determine the exact boundaries through a 3D segmentation,
which would evolve in very weak estimations of the shape of color categories
in color space. However, the perceptually intuitive axes of the HSI color space
do allow a reduction in the complexity of boundary functions without loosing
essential features of the boundaries. The intuitive values that the axes rep-
resent facilitate the separation of chromatic and achromatic categories, using
two 2D projections. Thereby, we use three assumptions:

(1) The boundaries between achromatic categories and chromatic categories
do not excessively change over the hue range; see also [6].

(2) The boundaries between chromatic categories do not excessively change
over the saturation axis and can be approximated by a linear function
toward the central rod of the color space; i.e., the intensity axis [6]. The
intuitive features of the HSI space provide strong arguments for the latter
assumption: Consider a chromatic point of the outer boundaries of the
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Fig. 3. Separation of the various regions in the hue-saturation plane with intensity
value 300. Shown is both the separation between chromatic and achromatic regions
and the separation between different hues (or colors), within the chromatic region.

HSI space (with maximum saturation). When the saturation value is
lowered, the perceived color becomes ‘decolorized’” or pale. Nevertheless,
in general the color is perceived as belonging to the same color category.

(3) The two boundaries between achromatic categories can each be expressed
with a single intensity value.

Given the latter assumptions, segmentation can be done in three steps. First,
the separation of achromatic categories and chromatic categories through a 2D
plane leaving out the hue axis resulting in a saturation-intensity plane. Second,
the segmentation of the chromatic colors by leaving out the saturation axis:
the hue-intensity plane. Third, the segmentation of the individual achromatic
categories is performed in a saturation-intensity plane.

4 Feeding the color markers to a distance transform

The previous section presented a framework that utilized two HSI 2D planes.
In these 2D planes, the categorized color data will occur as grouped clouds of
data points. However, the information that is available about humans’ color
categorization through the experiments (see Section 2) does only assign a lim-
ited number of points in these planes. Therefore, we applied distance mapping,
where each point gets a distance measure to the set of categorized points by
humans.

The speed of distance transforms is determined by the precision needed. Im-
ages are a priori an approximation of reality due to various forms of noise. It
might be that introducing additional approximations in the image processing
chain to make it faster, has no effect on the final quality of the application. The



best way to test that is to compare with no additional approximations in the
chain. Therefore, we preferred an as accurate as possible distance transform,
preferably exact.

Distance transforms can be applied on all kinds of data. In this paper, we
discuss the 11 color categories, which are generally applicable. However, the
categories that are needed depend on the specific application; e.g., a catalog
of paintings or a stained cell tissue database. There might be the need to
adapt the color categories quickly to specifications based on a certain domain
or task. Moreover, the perception of individual users differs and systems are
needed that use user profiles, which would be in our case: a user specific (i.e.,
personalized) color space segmentation. The latter is of great importance since
users are in interaction with the systems, which use image analysis techniques,
and judge their results. Therefore, we wanted a fast color space segmentation
regarding computer and human resources.

The distance transform to be applied both needs to be fast enough and prefer-
ably exact. For this purpose, we developed the Fast Exact Euclidean Distance
(FEED) transform, which is introduced in the next section.

4.1 Fast Ezxact Fuclidean Distance (FEED)

In contrast with the state-of-the-art approaches such as Shih and Wu’s two
scan algorithm (EDT-2) [13], we have implemented the Euclidean Distance
(ED) transform starting directly from its definition. Or rather its inverse: each
object pixel ¢, in the set of object pixels (O), feeds its ED to all non-object
pixels p. The naive algorithm then becomes:

initialize D(p) = if (p € O) then 0, else co
foreach ¢ € O
foreach p

update : D(p) = min(D(p), ED(q, p))
This algorithm is extremely time consuming, but is speeded up by:

e restricting the number of object pixels ¢ that have to be considered, to the
border pixels of the objects

e pre-computation of ED(q, p)

e restricting the number of background pixels p that have to be updated for
each border pixel using bisection lines (see Figure 4)

The method used for searching for other object pixels, bookkeeping of the
bisection lines, and determining which background pixels to update is carefully
designed (see also Figure 4). This, to ensure that it takes much less time than



Fig. 4. (a) Principle of limiting the number of background pixels to update. Only
the pixels on and to the left of the bisection line b have to be updated. B is the
border pixel under consideration, p is an object pixel. (b) Bookkeeping of the sizes
(the “max”) of each quadrant. Updating process: On each scan line the bisection
lines b determine the range of pixels to update.

the time gained by not updating the other background pixels.

This resulted in an exact but computationally less expensive algorithm for
the ED transform: the Fast Exact Fuclidean Distance (FEED) transforma-
tion. It is recently introduced by Schouten and Van den Broek [12]. For both
algorithmic and implementation details we refer to this paper.

4.2  Benchmarking FEED

In the latest experiments, we have compared FEED with Shih and Wu’s EDT-
2 [13] and with the city-block (or Chamfer 1,1) distance, as baseline. In Table 2,
the timing results are provided for the city-block measure, for EDT-2, and for
FEED. As was expected, with a rough estimation of the ED, the city-block
distance outperformed the other two algorithms by far. More surprising is that
FEED is more than twice as fast as EDT-2 (see Table 2). The time complexity
of the city-block and EDT-2 methods is O(n) with n the number of pixels in
the image. FEED behaves over a large range of tested images as having a time
complexity of O(n); however, this could not be proved.

The aim of FEED is to utilize exact ED transforms. Hence, next to the timing
results, the percentage of errors made in obtaining the ED is of interest to us.
The city-block transform resulted for all images in an error-level of less than
5%; see Table 2. Shih and Wu claimed that their EDT-2 provided exact EDs.
However, in 1% of the cases errors occur in their algorithm, as reported in
Table 2. So, FEED is the only algorithm that provided the truly exact ED for
all instances.



Images Timing (errors) per distance transform

city-block EDT-2 FEED
standard 8.75 s (2.39%) 38.91 s (0.16%) 17.14 s
rotated 8.77 s (4.66%) 38.86 s (0.21%) 18.02 s
larger obj. 8.64 s (4.14%) 37.94 s (0.51%) 19.94 s

Table 2

Average timing results (in seconds) for three sets of images on the city-block trans-
form, Shih and Wu’s two scan method (EDT-2) [13], and for FEED [12]. Between
brackets the errors (in %) of the city-block (or Chamfer 1,1) and EDT-2 transform.
Note that no errors of FEED are mentioned since FEED provides truly exact EDs.

4.3 FEED for multi class data

Now, let us consider the case that multiple labeled classes of data points
(e.g., color markers assigned to color categories) are present and, subsequently,
FEED is applied for data space segmentation. In such a case, the class of the
input pixel that provides the minimum distance is placed in a second output
matrix. To achieve this, the update step of FEED is changed to:

update : if (ED(q,p) < D(p))
then ( D(p) = ED(q,p); C(p) = C(q))

where C' is a class matrix, in our case the colors assigned to one of the 11 color
categories.

Similar changes were applied to the city-block and EDT-2 methods; thus, three
distance transforms and classification methods are obtained. These methods
are then applied on a set of hue-intensity images as used in the remaining of
this paper. The results are shown in Table 3. The addition of the classification
increases the time for all three methods. As was expected FEED is faster than
EDT-2 and slower than the city-block approximation of the ED. But, only
FEED provides no misclassified pixels.

The minimum distance value then indicates the amount of probability (or
weight) that the pixel belongs to the class. This can be visualized by different
color ranges, for each class. By extracting the pixels that express minimum
probability, a Voronoi diagram can be generated. In our application this dia-
gram defines the borders between the color categories (see Figures 5¢ and 6¢).

5 The segmentation process

Sections 3 and 4 described the means to do color space segmentation with
scarce data. In this section, we describe the actual segmentation process of
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Method Timing and classification errors

DT Classification % wrong
city-block 23.3 ms 28.5 ms 1.9 %
EDT-2 64.4 ms 73.2 ms 0.12 %
FEED 32.7 ms 41.5 ms 0%

Table 3

Average timing results in milliseconds on an ADM Athlon XP 2100 machine for a
set of hue-intensity images of size 815 x 941 for the city-block transform, Shih and
Wu’s two scan method (EDT-2) [13], and for FEED [12]. The last colomn gives (in
%) the number of wrongly assigned pixels. FEED provides truly exact EDs.

the color space with as input the color markers from the experiment described
in Section 2. Result of this process is a fully segmented color space and, subse-
quently, a complete Color LookUp Table (CLUT) for the 11 color categories.

The first phase in preprocessing is the conversion of the RGB color markers
(see Section 2) to HSI color markers. The conversions as given by Gevers and
Smeulders [5] were adopted:

H@i%&zmdw( V3(G - B) )

(R—G)+ (R - B))

3-min(R, G, B)
R,G,B)=1— 2
(R, G, B) R+G+B @)

I(R,G,B)=R+G+B (3)

Please note that the original conversion was adapted by the use of a factor 3
instead of 1 in Equation 2. This changes the range of the saturation (S) from
2,1] to [0, 1].

The next phase in preprocessing is the generation of the 2D planes. The 11
color categories of the HSI CLUT were divided into two groups: the achromatic
categories (i.e., black, gray, and white) and the chromatic categories (i.e., blue,
yellow, green, purple, pink, red, brown, and orange). In this way, each group
could be processed in a separate 2D plane: the saturation-intensity and the
hue-intensity plane, as is described in Section 3.2 and illustrated in Figures 5
and 6.

As a last phase of preprocessing, the HSI color markers, were plotted in the
saturation-intensity and the hue-intensity planes. Next, for each color category,
a fully connected graph is generated, using a line generator (see Figures ba
and 6a). For each category, we can assume that all points within the boundaries
of the connected graphs belong to the color category to which all individual
data points were assigned. The graphs were filled resulting in convex hulls: an
initial estimation of the color categories within the HSI color space.

11



(a) (b) (c)

Fig. 5. The processing scheme of the separation of the chromatic from the achromatic
color categories, in the saturation-intensity plane, using human color categorization
data (see Section 2): (a) The fully connected graphs of the categorized CLUT mark-
ers. (b) The weighted distance map, created using Fast Exact Euclidean Distance
(FEED) transformations [12]. (¢) The resulting chromatic-achromatic border. Note
that saturation is presented on the horizontal axis and intensity on the vertical axis.

First, the saturation-intensity plane allows segmentation of the color space
between achromatic categories and chromatic categories. In this projection,
the achromatic categories are distinguished from the chromatic categories as
a line and a cloud of data points (see Figure 5a). Note that, when leaving out
the hue axis, the main color information is left out and thus all individual
chromatic categories are resembled in a single cloud of data points.

Second, the chromatic category data is projected in the hue-intensity plane.
The result is a plane with non-overlapping clouds of categorized points, as
illustrated in Figure 6a.

Third, the segmentation of the individual achromatic categories is performed.
Since these categories do not represent any basic color information, the hue
axis does not contain useful information for these categories. Thus, the segmen-
tation of these individual achromatic color categories is done in a saturation-
intensity plane (see Figure 5). A drawback for the differentiation between the
achromatic colors is the lack of achromatic color markers. Therefore, we take
two intensity values that describe the boundaries between individual achro-
matic categories in three sections of equal length.

The two 2D projections of the HSI color space with the filled convex hulls
were fed to FEED (see Section 4), two distance maps were generated (see Fig-
ures 5b and 6b). From these, distance maps Voronoi diagrams were generated,
as are shown in Figures 5¢ and 6¢. This resulted in a segmentation between the
achromatic and chromatic categories followed by a segmentation between in-
dividual chromatic categories. From the Voronoi diagrams, HSI values of the

12
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Fig. 6. The processing scheme of the separation of the chromatic color categories in
the hue-intensity plane, using human color categorization data (see Section 2) (note
that the hue-axis is circular): (a) The fully connected graphs of the categorized
CLUT markers. (b) The labeled weighted distance map created using Fast Exact
Euclidean Distance (FEED) transformations [12]. (¢) The resulting borders between
the chromatic color categories. Note that hue is presented on the horizontal axis and
intensity on the vertical axis.

Purple Pink Orange Red Brown Yellow Green Blue Black Gray White
Purple C N - N - _ - N - - -
Pink N C N - - - - - - -

N - - - - -

Orange - N
Red N -

z z Q Z

C
Brown - - N
Yellow - - - - - C
Green - - - - - N
Blue N - - - - - -
Black - - - - - - - -
N

C

Gray - - - - - - - -
White - - - - - - - - -
Table 4
Color categories (indicated by C) and their neighbor color categories (indicated by
N) in the segmented HSI color space, which resembles human color categorization
as unraveled through the experiments (see Section 2).

Z Q
Z Q =z

borders between color categories were deduced. From this representation, a
fast categorization mechanism is easily established; by storing the categorized
colors and convert them back to RGB values. This results in a 256 x 256 x 256
CLUT with categorized RGB values.

13



6 Validation of the color space categorization

The Color LookUp Table (CLUT) as described in the previous section, assigns
all possible colors to one of the 11 color categories. To verify the internal
validity of the color space categorization, a validation scheme was executed,
which comprised two tests: (i) categorization of non-fuzzy color markers and
(ii) categorization of fuzzy color markers. The segmented color space is valid if
and only if it assigns both types of color markers to the same color categories
as the subjects did.

As defined in Section 2, the non-fuzzy color markers are those colors cate-
gorized consequently to one color category by the participants of the exper-
iments. The fuzzy color markers are those colors categorized to two or more
categories, each by at least 10 subjects.

The assignment of the color markers can be influenced by a broad range
of factors; e.g., environmental factors, system settings, and personal prefer-
ences [6,8]. In particular, the latter is the case for the fuzzy color markers. De-
spite the complexity of the categorization of these color markers, the subset of
categories these markers are assigned to are perceptually closely related [2,6].
Since the segmented color space models human color categorization, these
color categories should be each others neighbors in the segmented HSI color
space.

The color space segmentation was founded on the non-fuzzy color markers.
Therefore, the correct classification of these markers functioned merely as an
additional check of the implementation. Not surprisingly, all non-fuzzy color
markers were classified correctly, indicated with Cs in Table 4. Subsequently,
all fuzzy color markers were classified using the color space segmentation. Each
of the fuzzy color markers was assigned to one of its possible color categories,
as is shown in Table 4 with Ns and Cs. Hence, the color space segmentation
mimics human color categorization and correctly classifies both more proto-
typical colors (i.e., the non-fuzzy color markers) and the colors over which no
consensus is among people (i.e., the fuzzy color markers).

7 Discussion

We have explained our approach toward color analysis, which exploits human
perception instead of mere image processing techniques. The importance of the
11 color categories (or focal colors) is discussed and sustained by a question
and answer and by two experiments. The resulting experimental data (i.e.,
color markers) is used as input for a coarse color space segmentation process.

14



The HSI color space is segmented, using two 2D projections of the HSI color
space on which the recently developed Fast Exact Euclidean Distance (FEED)
transform for multi class data is applied. The segmented HSI color space is
transformed to a Color LookUp Table (CLUT) for the 11 color categories. We
will now discuss its flexibility, a result of its modular implementation, followed
by other issues of concern.

The advantage of the color space segmentation method as proposed is three-
fold: (i) It is based on human color categorization (ii) segmentation can be
done on scarce data, and (iii) it is easily adapted to other, application, task,
and/or user dependent color categories. Using this segmented color space (or
better the CLUT) as a quantization scheme for image retrieval, two more ad-
vantages [7] can be mentioned: (i) it yields perceptually intuitive results for
humans and (ii) it has a low computational complexity.

Color categories, as used in the current research, have also proved to be very
useful in research toward color constancy [6]. Among other things, Hansen,
Walter, and Gegenfurtner [6] propose to “infer color constancy from the bound-
aries between color categories”. So, an executable model of human color cat-
egorization could aid research toward another intriguing features of human
color perception: color constancy.

The flexibility of the model is illustrated by the possibility to do a smooth
personalization of the generic color space segmentation through a quick cal-
ibration. This is easily done by utilizing personal judgments of fuzzy color
markers that can be used to redefine the boundaries between the color cate-
gories. Through the standard processing steps, this finally results in a tailored
CLUT. More generally, three other modifications of the processing scheme
can be applied easily: i) another set of colors can be incorporated, which is
user (e.g., in the case of color blindness), task, or application specific, ii) In-
stead of the HSI color space, each arbitrary color space can be used [2,6,11],
which can be achieved simply by incorporating another conversion scheme in
the process; and iii) The FEED transform can be replaced by an arbitrary
alternative transform; e.g., [4,13].

In general, the indirect segmentation of the 3D color space (by using 2D rep-
resentations) can be considered as an disadvantage of the current processing
scheme. Nevertheless it had two benefits for the segmentation process: (i) a
limited number of color markers is sufficient and (ii) its computational costs
are much lower. In our opinion this strategy, given the scarce categorization
data that was available, lead to the best possible result. In some other setting,
a 3D implementation of FEED could possibly limit the number of errors in the
end result. In general, the choice whether or not to adopt a direct 3D distance
transform is founded on the trade-off between the available color markers,
precision, and speed.
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The human color categorization model as described in the current paper has
been benchmarked with various color quantization schemes and distance mea-
sures [14]. Moreover, since 2005, the model of human color categorization
serves as the foundation of the online color-based image retrieval system
http://www.M4ART.org [15]. MAART contains over 30,000 photos, mainly of
pieces of art, provided by the Rijksmuseum (National museum of the Nether-
lands) and ArtStart.nl, which coordinates the Dutch art rental centra.

In general, it is our belief that the combination of human perception and sta-
tistical image processing will improve the performance of data-mining systems
that rely on color analysis. Moreover, such a combination enables us to even-
tually bridge the semantic gap present in automated color analysis. From this
perspective, an unique color space segmentation is proposed, which is generic,
computationally inexpensive, and easy to tune or to personalize.
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