Uniting Academic Achievements on
Performance Analysis with Industrial Needs*

Bart Theelen! and Jozef Hooman®2

! Embedded Systems Innovation by TNO, Eindhoven, The Netherlands
2 Radboud University, Nijmegen, The Netherlands

Abstract. In our mission to advance innovation by industrial adoption
of academic results, we perform many projects with high-tech industries.
Favoring formal methods, we observe a gap between industrial needs in
performance modeling and the analysis capabilities of formal methods
for this goal. After clarifying this gap, we highlight some relevant defi-
ciencies for state-of-the-art quantitative analysis techniques (focusing on
model checking and simulation). As an ingredient to bridging the gap, we
propose to unite domain-specific industrial contexts with academic per-
formance approaches through Domain Specific Languages (DSLs). We
illustrate our vision with examples from different high-tech industries
and discuss lessons learned from the migration process of adopting it.

Keywords: Performance Modeling, Performance Analysis, Quantita-
tive Analysis, Domain Specific Languages, Model Checking, Simulation

1 Introduction

Quantitative qualities of high-tech (embedded or cyber-physical) systems are
often key selling factors second to the ability to perform certain functionality.
As opposed to functionality, quantitative qualities can often be balanced against
each other, possibly across multiple technologies or engineering disciplines. One
may for example realize a better performance by either changing the software
algorithms that implement the functionality, by changing the configuration of
the resources executing the algorithms or by some combination of both, where
the trade-off can have an effect on other quantitative qualities such as physical
size of the system. The diversity in possible design trade-offs that can be made
for quantitative qualities has resulted in a plethora of academic results on how to
design high-tech systems effectively and efficiently. Despite these achievements,
which are commonly based on the use of abstract models to predict the qualities
of a design proposal or even construct an appropriate design, high-tech industry
still relies mostly on traditional approaches leading to a reactive way of working
in resolving unexpected issues during integration and test or even later.

* This work was supported by the ARTEMIS Joint Undertaking through the Crystal
project on Critical System Engineering Acceleration and the Dutch program COM-
MIT through the Allegio project on Composable Embedded Systems for Healthcare.

Application Constraints
Business Optimization
(strategy) Criteria

Technology Bottlenecks

(multiple disciplines)

L J L J
T T

Design Context System Architecture Trade-Offs Analysis Context

Fig. 1. Performance in an industrial context.

Figure 1 illustrates that achieving appropriate quantitative qualities during
industrial design processes requires system architects to make trade-offs subject
to a complex design context. This design context is characterized by the applica-
tion functionality demanded by (multiple) markets and the business strategy to-
wards serving the diverse and sometimes conflicting market demands. The design
context also covers combining technologies from multiple engineering disciplines
that may be subject to business strategy-depend restrictions on availability or
that may be developed as part of the business’ innovation processes. A related
aspect is that most designs in industry increment from a long-standing legacy for
which the rationale behind certain trade-offs may no longer be known or valid.

In trading off design alternatives, the center part of Figure 1 expresses that
system architects have to consider the impact on the user-perceived system qual-
ities (i.e., the qualities listed in a product catalogue for which users pay) and the
qualities that are relevant from a business and design perspective (like cost and
physical size). Examples of user-perceived qualities include the throughput of a
printer system in terms of pages printed per minute or the quality of a picture
on a TV display. Notice that such qualities are sometimes difficult to express in
measurable objective metrics. An important difficulty to deal with is the unclear
or complex relation between user-perceived system qualities and the measurable
objective metrics used for evaluating design alternatives. How does the load of
a processor for example impact the quality of the picture on the TV display?

Evaluating alternative designs involves exploiting analysis techniques for dif-
ferent kinds of quantitative qualities. The right-hand side of Fig. 1 categorizes
qualities as constraints, optimization criteria or bottlenecks. The difference be-
tween constraints and optimization criteria is visible from whether the require-
ment specification includes a concrete target quantitative value that must be
satisfied. For example, the printer throughput must be at least 80 pages per
minute (constraint) at a minimal cost (optimization criterion). Bottlenecks re-
late to design considerations causing a difficulty in satisfying constraints under
specific, often unforeseen, usage conditions. Bottlenecks often arise due to legacy.

Application

(market)

Business

(strategy) .

Technology

Focus of Academic Achievements

Design Considerations on
== Resource Utilization & Reliability <> Cost Bottlenecks

(embedded performance)

L J L J
T T

Design Context System Architecture Trade-Offs Analysis Context

Fig. 2. Focus of academic achievements in relation to industrial needs.

In this paper, we investigate the difficulty of getting academic approaches
adopted by industry. We start with highlighting a mismatch in focus of the
academic achievements in relation to the industrial needs as shown in Fig. 2.

It is natural for academic work to disregard most business and market as-
pects. Trade-off analysis is commonly limited to a single engineering discipline or
just to the technologies of embedded systems (i.e., computer electronics and soft-
ware). The industrial practice may however also cover for instance mechanical or
optical technologies combined with choices for different materials. A well-known
example from the past is the CD-player tray where the original choice was for
expensive stiff materials to give support to CDs in order to realize accurate
reading by laser (requiring simple control software) as opposed to the cheaper
plastic trace developed later which is too flexible from a mechanical viewpoint
and therefore requires more complex control software to read the CD accurately.

Due to the diversity of applications, academic approaches rarely cover the
relation between embedded performance and system performance unless the rela-
tion is reasonably straightforward. Although for example the quality of a picture
on a TV display and the accuracy of overlaying ink by a printer may depend
on the same embedded performance metrics, the relation between them is very
different and therefore hampers the typical generalization pursued by academia.

With respect to the analysis context, academia concentrate on constraints
and optimization criteria. A mismatch we observe here is that industry often
only cares about getting approximate results for a large variety of quantitative
qualities very fast whereas academia promote the use of formal methods be-
cause they give high quality results, while suffering from limited scalability. An
additional issue with formal methods is that they are commonly perceived as not
being very intuitive. Moreover, industry struggles mostly with identifying bottle-
necks. This shows from the need to evaluate the concrete value for a wide range
of quantitative qualities under certain conditions instead of/next to pursuing
satisfaction of a certain bound or an optimization. Many academic approaches
(in particular formal methods) do not support such analysis (straightforwardly).

A primary difficulty is in fact the question of what approach or tool to apply
for which purpose. Academic approaches claim their capabilities on small case
studies with assumptions that rarely hold in practice. As a consequence, devel-
oping, calibrating and validating performance models at a suitable abstraction
level to make academic approaches work often turns out to be very difficult. In
this paper, we propose to unite (multiple) academic approaches with industrial
needs by means of domain specific languages (DSLs) [29]. This allows providing
an intuitive front-end to industrial users, while exploiting the rigidness of aca-
demic approaches for their envisioned purposes in any specific industrial context.

The remainder of this paper is organized as follows. The next section presents
the main ingredients of our approach. Section 3 describes several lessons that
we learned on getting our approach adopted by industry. Section 4 illustrates
application of our approach in three different industrial domains. After reflecting
on related work in Sect. 5, we summarize our conclusions in Sect. 6.

2 Approach

Industrial design processes are commonly reactive when it comes to performance
qualities, i.e., performance is realized/optimized as an ’afterthought’ when the
design is already fixed. This is often due to the (business) needs of exploiting
certain legacy or reducing costs while extending the functionality to support
(market). As a consequence, performance is only considered when substantial
bottlenecks arise during test and integration (i.e., the right-hand side of the V-
model [8]) or even later. To counter this, we promote taking performance aspects
into account right from the start of the design and system architecting phases
(i.e., the left-hand side of the V-model). Academia proposed many predictive
and some constructive approaches to support this vision. Following primarily
an analysis strategy, predictive approaches exploit performance models to allow
iterative evaluation of design alternatives devised by system architects before
selecting the most appropriate one that is eventually realized by certain imple-
mentation technologies. A step further are constructive approaches, which follow
an automated synthesis strategy in realizing ’'performance-by-construction’.

As ingredient to introducing 'performance-by-construction’ into industry, we
propose the approach in Fig. 3. Crux is exploitation of a reference architecture
or architecture template that describes what components a system may consist
of and how these components can be combined into systems®. Such a reference
architecture is available as design knowledge from the legacy in existing products
or product families. Reconstructing the design knowledge and rationale on how
components can be combined and configured ezactly and how different concepts
in the reference architecture interrelate is a very difficult process since this in-
formation is commonly ill-documented. We propose the use of DSLs to formalize
this knowledge such that it can be processed automatically for the purposes of

3 Notice that the terms component and system are relative to the level of detail at
which the design takes place where the highest level denotes complete products and
the lowest level comprises automatically synthesizable or bought off-the-shelf parts.

] ExpressedinDoman 1 _
"1 specific Languages (DSLs) | ~*7==--

Architecture-Level
Specification +
Design Criteria

Design-Level
Specification or
Implementation

Performance Modelling & Validation

Performance Models of Performance Prediction
Components of Individual Design
Calibration Information Performance Bl el
for Component Models | | Analysis & Design- Trade;Offs between = :
; Space Exploration Design Criteria ;

Fig. 3. An approach towards achieving 'performance-by-construction’.

both (system & embedded) performance analysis and synthesis. Exploiting DSLs
allows specifying designs and any qualitative quantity of interest in a way that
is close to the intuition of the system architects by using their domain specific
terminology and way of describing things [16], while hiding the complicated de-
tails of applying the (formal) analysis techniques from them. We experienced
that deducting the knowledge underlying a reference architecture by formalizing
it in DSLs usually reveals already many ambiguities and inconsistencies in what
different system architects (often of different departments) understand about
their designs, particularly at the level of detail necessary to automate validation
of such possible ambiguities and inconsistencies in design specifications and to
automate performance analysis and synthesis from valid design specifications.
The approach of Fig. 3 exploits the architecture-level specification of a de-
sign in terms of a DSL instance of the reference architecture to automatically
generate (an) adequate performance model(s) for the quantitative qualities of
interest. This is enabled by a collection of appropriately calibrated performance
models for the individual components that conform to the reference architec-
ture. Calibration of such model components is commonly a very difficult aspect
in industrial practice. Although techniques like static code analysis can aid ob-
taining the required calibration data, one often has to rely on (extrapolation of)
measurements of existing products (if measurements are possible at all). Never-
theless, isolating the contribution of individual components to specific measure-
ment results, which is often needed for appropriate calibration, is in many cases
infeasible and we observe a lack of academic approaches to improve on this.
Given the diversity of quantitative qualities an industry may be interested
in, our approach supports the use of different analysis technologies. From the
very same DSL instance, we may for example generate complementary analy-
sis models ranging from basic formula-based computations to simulation models

and models for model checking tools depending, amongst others, on the metric of
interest, desired accuracy and analysis speed. Notice that this requires appropri-
ately calibrated component models for each of these analysis technologies and a
proper understanding of the (behavioral) semantics underlying the components
in the reference architecture. This (behavioral) semantics is not captured by the
(static) semantics focused definition of DSLs, but it is captured as part of the
generation algorithms. Since these are specific to each different target, a clear
consistency challenge arises when developing design tools that realize Fig. 3.

Despite the ability to support complementary analysis techniques, we expe-
rienced that formal methods tend to lack applicability in terms of flexibility and
scalability for addressing real-life industrial problems. We therefore often resort
to simulation, which is in fact a commonly used approach by industry. However,
the difference is that we promote the use of simulation tools that are based on
formal methods and that provide some information on the accuracy of the results
as far as possible (e.g., by using confidence intervals). Formal tools that we have
successfully applied include POOSL [25], UpPAAL [5] and MODEST [10, 11].

Executing the appropriate analysis techniques for an individual design yields
a performance prediction that serves as input for an overall trade-off analysis
when comparing alternative designs. The analysis results for individual designs
and the comparison of alternatives are again to be presented to system architects
in an intuitive form. Hence, some post-processing is usually required in the de-
sign tooling to represent the raw quantitative results produced by an exploited
analysis tool as they are not made available in the domain specific terminol-
ogy. For this purpose, we created the TRACE visualization tool [13] that can be
configured to show quantitative results conform the domain specific terminology.

When a design alternative is selected for realizing the system, the DSL in-
stance of the corresponding architecture-level specification is used as starting
point for generating a design-level specification DSL instance or synthesizing an
implementation. If no suitable design alternative is identified, the exploration
process iterates. Notice that such iteration may request for (re-)designing com-
ponents for which calibrated performance models must be provided in order to
complete the process. We therefore stimulate developing and calibrating perfor-
mance models as an integral part of the design process (see also Sect. 3).

A final ingredient to the approach in Fig. 3 is to structure the DSLs conform
the organization of an industry in terms of groups or departments. Hence, we
have not one but a coherent collection of inter-dependent DSLs to capture a
single design specification. The dependencies cover in fact the cross-department
relations between their individual responsibilities. By the ability of DSL technol-
ogy to automate validation of possible ambiguities and inconsistencies in design
specifications, communication between system architects from different depart-
ments (often covering different engineering disciplines) improves substantially.

Starting from a performance modeling perspective, we have observed that
the Y-chart modeling paradigm [14] shown in Fig. 4 fits very well to most in-
dustrial organizations. The Y-chart modeling paradigm follows the separation
of concerns from [20] by isolating modeling the application functionality from

Application Model Platform Model Application Model Platform Model

Existing System Existing System

extract >

Mapping Model

Step 1: Extracting Application Functionality from Platform Resources into Separate Models

Application Model
Existing System) =

Platform Model

New System -y

(33

Mapping Model % T Mapping Model ?

essommens g & Vot o
: | se=2 S I ¢

Y 1 TN { A

calibrate__ oe=="" A 1 1

........... \ = K
Perft Anal oA oA oS
ﬁ \ Perfol is 155 ," 24

1
1
\
\
A y ¥ 7
N, NI
N-et Nzl

Step 3: Calibration and Validation to ‘Predict the Past” Step 4: Evaluate Alternatives to ‘Explore the Future’ for a New System

Fig. 4. Introducing the Y-chart modeling paradigm into industry.

modeling the platform resources that execute this functionality. The platform
model covers the raw resources (time, space, bandwidth and energy) and the
scheduling and arbitration mechanisms used to allow sharing them by multiple
parts of the application. The mapping part of the Y-chart modeling paradigm
covers the deployment of application functionality onto platform resources and
the corresponding configuration of the scheduling and arbitration mechanisms
in the platform. The crux of the Y-chart is to ease design-space exploration
without the need to change the complete design specification when evaluating
alternative mappings or platform configurations or when changing the applica-
tion functionality for product variants. Moreover, the ingredients of application,
platform and mapping are often addressed in industry by different departments
as we exemplify in Sect. 4, while system architects (often organized in yet another
department) are responsible for the quantitative qualities of their combination.

3 Lessons Learned

Industrial adoption of model-based engineering in general and formal methods
in particular does not happen over night. We experienced that such adoption
entails a migration process covering a cultural change in the way of working (and
possibly also an organizational change), which takes about 2—4 years. Figure 5
identifies the phases we observed in this migration process, which we will classify
in this section onto 'performance-by-construction’ maturity levels 0-5.

<Reactlve Predictive Constructiv%

Manual development and DSL-based generation of
validation of component performance models with ‘automatic’
models to ‘predict the past’ design-space exploration
Traditional design \ DSL-based generation of / Mode! Fjr|\<en design
\ | process with ‘performance
process \ performance models to

manually ‘explore the future’ by construction

time

Fig. 5. Migration from a reactive to a predictive or even constructive design process.

Starting from a traditional design process (maturity level 0) where perfor-
mance modeling and design-space exploration are processes during integration
and test, the introduction of the Y-chart modeling paradigm in Fig. 4 provides
some important added values to industry. The first is that the performance mod-
els extracted from an existing system are often a first-time formalization of design
specifications, which thereby provides an aid in resolving inconsistencies in the
design. The second (and possibly more important) value is the fact that the de-
veloped performance models give appropriate insight in existing bottlenecks as
an aid to suggest better designs. A third added value comes from executing the
last step in Fig. 4, which allows to predict the performance of any such design
proposal. We classify this situation, where the exploration of design alternatives
is performed based on manually constructed performance models (i.e., not gen-
erated from DSLs), as maturity level 1. The performance models are in this
phase made by modeling experts who will however need to learn the industrial
domain. To accelerate this and to allow the industry observing the added values,
it is of utmost importance to perform real-life case studies without compromises
and which are reasonably ’hot’ in the sense that the observed issues may ac-
tually imply a loss in profit. These case studies must be performed on-site to
really understand the design context (see Fig. 1) and to have close contact with
the system architects and their managers responsible for solving the "hot’ issue.
It also accelerates obtaining information to calibrate and validate performance
models. We therefore advocate the ’industry-as-laboratory’ approach [19].

When model-based engineering has shown (substantial) measurable successes
by resolving performance issues effectively and efficiently, system designers may

either become eager to learn how it works or show resistance due to feeling
threatened in no longer being the one expert capable of solving those issues (with
traditional approaches). Although most academic work stops after successfully
performing a case study, this is actually the moment where the cultural change
in the way of working starts. Supported by their management, system architects
should be able to adopt the new way of working in terms of applying the aca-
demic approaches themselves: the domain experts also need to become experts
on performance modeling their own systems. Next to some minimal form of edu-
cating system architects on the new techniques and tools, introducing DSLs is a
crucial aspect of this phase. The ability to automatically generate performance
models from reverse-engineered DSLs as described in Sect.2, where design al-
ternatives are mostly still explored manually defines maturity level 2. Maturity
level 3 supersedes level 2 when proper embedding of performance prediction in
the industrial design process is realized such that performance are indeed taken
into account right from the start of the design and system architecting phases.

Maturity level 3 marks a predictive attitude towards performance instead of a
reactive one. It may also be the highest achievable maturity level when state-of-
the-art academic approaches do not (yet) provide solutions to further automate
the design process. In some cases, especially when the intrinsic complexity?* of
the domain (most prominently determined by the amount of dynamism in sys-
tems) is relatively low, academic work does provide some approaches suitable for
adoption by industry. An example is the static-order scheduling of loop-control
functionality on (multi-core) processors in the lithography systems of ASML
(see Sect. 4). Maturity level 4 is achieved when the exploration of alternative
designs is supported with (semi-)automatic tooling. Maturity level 5 classifies
the situation where the creative insights of system architects have been com-
pletely captured in a fully automated design process that realizes 'performance-
by-construction’.

As mentioned above, some form of education is required in order to achieve
adoption by industry. We experienced that it is important to distinguish the roles
of a user of the new approach and of those who will maintain the correspond-
ing design tooling with any relevant support. Such maintenance and support is
crucial in an industrial setting. Where users shift to applying performance mod-
eling and analysis, educating the developers of design tools in understanding
the exploitation of the formal methods hidden behind the user-friendly DSLs
and the DSL-based infrastructure is an even bigger challenge. We observe that
different industries address this challenge differently, ranging from outsourcing
to (small-scale) in-house education programs that focus on how to make perfor-
mance models for the specific domain and to maintain the design tooling (DSLs
with their generation algorithms) instead of ’coding implementations’.

4 The sheer size of systems (in the number of parts) is a different kind of complexity.

4 Industrial Applications

We briefly report on three different application domains, where the approach
described in Fig. 3 has been or is being introduced into industry.

4.1 Lithography Systems (ASML)

ASML develops lithography systems for the semiconductor industry. To achieve
the required nanometer precision in combination with high throughput, these
systems consist of hundreds of sensors and actuators which are controlled by
thousands of control tasks. The development of such a system requires multi-
disciplinary trade-offs involving mechatronic engineers, electronic engineers and
software engineers. An early system-wide insight in timing bottlenecks is crucial
to avoid costly redesigns and to meet time-to-market and quality constraints.
The loop-control systems are developed using a reference architecture that is
captured by a coherent collection of inter-dependent DSLs [21]. These DSLs are
used to specify the system according to the Y-chart modeling paradigm, where
the origin of the application, platform and mapping lies in different departments.

— The application defines the mechatronic control logic, including networks of
so-called servo groups and transducer groups.

— The platform level is captured by DSLs to describe electronic hardware and
their physical architecture consisting of high performance multi-core proces-
sors, 10 boards, and switched interconnection networks. Also physical limi-
tations, such as the maximal frequency of an IO board, can be expressed.

— The mapping describes static deployment of application elements onto the
platform resources. In addition, it also configures certain timing synchro-
nization aspects of the platform.

The approach relies on a constructive scheduling algorithm to compute a
static order schedule for each processor core such that the latency requirements of
the loop-control systems are met [3]. To able to compute these schedules, a num-
ber of decisions have to be taken about the platform configuration, such as the
number of processors, the topology of the switched interconnects and the setting
of synchronization timers. To support these decisions, the DSLs are transformed
into an executable POOSL model which is also structured according to the Y-
chart paradigm. It formalizes the total system in terms of stochastically-timed
communicating parallel processes. During simulation of the POOSL model, per-
formance requirements of the applications are checked automatically. Moreover,
the user obtains information about jitter, timing averages, and the load of pro-
cessors and communication switches.

As reported in [30], the performance of the POOSL simulator easily deals
with 4000 control tasks. The POOSL models were calibrated using an existing
embedded control system. For a new system release, various significant perfor-
mance improvements were identified. Important for the industrial adoption of
the performance analysis techniques is the automatic generation of analysis mod-
els. Moreover, there is a strong coupling with synthesis, because the DSLs are
also used for the generation of schedulers and code.

4.2 Multi-functional high-end printer (Océ)

In projects with the company Océ the performance of high-end printers has
been addressed. An important performance measurement is the throughput as
perceived by the user, i.e., the number of pages printed per minute. Part of the
throughput is determined by the data processing part which has to deal with
different types of jobs, such as scan jobs and copy jobs. Each job has a number of
characteristics which determine the processing steps to be taken. For instance,
the paper size (A3, A4, ...), the number of images per paper sheet, and the export
format for scan jobs (pdf, jpeg, ...). Since this involves large size bit maps, there
are also compression and decompression steps.

Designers of the data processing part have to make a large number of de-
cisions about the processing units to use (CPUs, FPGAs, ..) and the type and
size of memory. Many questions have to be answered, e.g., whether certain jobs
are allowed to execute in parallel or whether certain steps may share a cer-
tain resource. Since costs are an important aspect, designers have to investigate
whether the required performance can be achieved with reduced hardware and
which performance can be achieved on a certain hardware platform.

To address these performance questions, a DSL for data processing archi-
tectures has been devised [24]. To achieve a separation of concerns, the DSL is
structured in the three levels of the Y-chart paradigm.

— The application level contains a number of use cases, such as scanning a
stack of pages and printing it three times double-sided. A use case consists
of a number of atomic steps and a partial order on these steps.

— The platform level uses three types of resources: memory (with a certain ca-
pacity), bus (with a maximum bandwidth), and executor (with a processing
speed). Connections between these resources limit the data flow.

— The mapping level specifies which steps run on which executors and which
data is stored where.

Having the data processing architecture represented in a DSL allows an easy
translation to various analysis tools with different capabilities. For instance Up-
PAAL [5] has been used, because it allows exhaustive model checking of timed
automata. However, for large models the time needed for the analysis became too
large. Hence, a dedicated simulator, tuned to this particular domain, has been
built to perform large scale simulations [12]. This allows numerous simulation
runs over multiple design, for a fast identification of bottlenecks and promising
designs.

4.3 Interventional X-ray Systems (Philips)

Performance aspects of interventional X-ray systems are addressed in a project
with Philips. These systems are used for minimally invasive treatments. The
number of medical procedures is quickly increasing and includes cardiovascular
applications, e.g., placing a stent via a catheter, neurology and oncology. In these
procedures, the surgeon is guided by X-ray images which have been processed

extensively to obtain a clear image of the essential medical structures using a
minimal amount of X-ray.

For the eye-hand coordination of the surgeon, there are clear upper bounds
on the latency and the jitter of the image processing chain. However, experiments
with surgeons show that a small percentage of deadline misses is allowed.

For every new release, the designers have to make a careful trade off between
the required X-ray dose, the hardware configuration (typically PFGAs and multi-
core PCs), the algorithms to use, the order and the allocation of processing steps,
the image quality, and the supported image resolutions. For instance, to reduce
costs and maintenance there is a wish to reduce the number of PCs in the system,
but it is very difficult to reason about the impact on the performance.

To support the designers of the image chain, the iDSL approach has been de-
veloped [27], consisting of a DSL for service systems, a mapping to the MODEST
toolset [10,11], and visualization tools. The iDSL approach supports a high level
description of the image processing chain, with the three levels of the Y-chart
paradigm. Moreover, three additional aspects can be specified:

— A scenario which restricts the performance analysis to a particular set of
service requests. E.g., for the image processing, we can specify assumptions
about the arrival rate of raw images from the detector.

— A measure defines the required performance observations and how to obtain
them. E.g., a cumulative distribution function (CDF) obtained via model
checking or average response times by means of simulation.

— A study allows the definition of a number of design instances that have to
be evaluated.

The iDSL tools translate the DSL specification to a number of models in MOD-
EST. Next the iDSL tools call the MODEST tools iteratively to obtain a particular
performance observation. For instance, a number of simulation runs or repeated
calls to a model checker to construct a CDF. There is a high degree of automa-
tion which makes it easy to switch between model checking and simulation.

Performance also plays a crucial role in the movement control part of an inter-
ventional X-ray system. This concerns, for instance, movements of patient table
and the C-arm on which generator and detector are mounted. In our project we
have addressed the redesign of the collision prevention component [17]. A DSL
has been developed to express the rules of collision prevention at a high level of
abstraction. Next a number of transformations have been defined to models for
simulation, formal verification and performance analysis. The performance anal-
ysis of collision prevention concentrates on the computations needed to compute
distances between objects [28]. It uses a generated POOSL model to perform
simulations and to obtain statistics about expected execution times. The model
uses performance profiles of the basic computation steps. Moreover, it has been
calibrated using performance measurements on an existing legacy component.
Finally, code has been generated from the same DSL, which was an important
factor for the industrial adoption of the approach.

5 Related Work

An extensive overview of research that aims at the integration of performance
analysis in the software development process can be found in [4]. This sur-
vey discusses methodologies based on queueing networks, process algebra, Petri
nets, simulation methods, and stochastic processes. To achieve integration, many
methods are connected to existing notations which describe software designs, of-
ten based on UML. More recently, [7] reported on the design of an ultra-modern
satellite platform using the AADL notation in combination with several formal
modeling and analysis techniques, including performance analysis. In our work,
we do not start from these general purpose modeling languages, because usually
such models are not available at the right level of abstraction. Instead, we use
DSLs and transformations to suitable performance models.

Traditionally, DSLs have been developed for the construction and mainte-
nance of software systems [29, 16]. The construction of DSLs has been facilitated
by new technology such as the Eclipse Modeling Framework (EMF) [23] which
is supported by a large collection of open source tools, including EMFText [22],
Xtext [2], and Acceleo [1]. With such tools, it becomes relatively easy to generate
different artefacts from a DSL. Relevant for our approach is the possibility to
generate analysis models and code from the same DSL instance [6]. This turns
out to be an important factor for industrial adoption. Note, however, that our
focus is not on software only, but we consider a broader multi-disciplinary system
scope.

Methodologies based on the Y-chart paradigm [14] can be found in [15] which
compares a number of models of computation and three methodologies: Metropo-
lis, Modular Performance Analysis (MPA), and Software/Hardware Engineering
(SHE) supported by POOSL. An application of MPA with the Real-Time Cal-
culus [26] to a distributed in-car radio navigation system has been described
n [31]. Related tool support for this approach is provided by SYmMTA/S [9].
A comparison of these techniques with, e.g., analysis based on timed automata
using UPPAAL [5], can be found in [18].

6 Concluding remarks

Projects with industry on performance analysis revealed a number of needs:

— Support for system-wide trade-offs that involve multiple disciplines and takes
business and market aspects into account.

— Tools that allow the fast generation of a large number of approximate re-
sults for large-scale systems. These results should correspond to industrially
relevant questions.

— Convenient calibration of analysis results based on measurements of existing
systems.

— Light-weight modeling where it is easy to change software design, hardware,
and deployment.

— Guidelines about which analysis method to use for which purpose. It should
be easy to switch between methods.

Our approach is based on DSLs to capture the essential domain knowledge in
a concise and readable way. By defining appropriate transformations, formal
analysis models can be generated automatically. Together with the use of the
Y-chart paradigm this leads to a clear separation of concerns and a framework
which allows changes easily and supports design space exploration. Adding a
new analysis method is relatively easy by defining an additional generator. To
get fast results for large-scale systems, we often use simulation tools that are
based on formal methods. Visualization tools present the results in terms of the
domain.

This approach is most effective when the performance models are generated
from DSLs which are also used for the functional design. A close connection
with the reference architecture and models from which code is generated stimu-
lates industrial acceptance and the incorporation into the industrial work flow.
Nevertheless, reaching a high level of maturity (see Sect. 3), such as achieved at
ASML, requires many years of close collaboration.

References

1. Acceleo. http://www.eclipse.org/acceleo/, 2015.
Xtext. http://www.eclipse.org/Xtext/, 2015.

3. S. Adyanthaya, M. Geilen, T. Basten, R. Schiffelers, B. Theelen, and J. Voeten.
Fast multiprocessor scheduling with fixed task binding of large scale industrial
cyber physical systems. In 2013 Euromicro Conference on Digital System Design,
DSD 2018, Los Alamitos, CA, USA, September /-6, 2013, pages 979-988, 2013.

4. S. Balsamo, A. di Marco, P. Inverardi, and M. Simeoni. Model-based performance
prediction in software development: a survey. Software Engineering, IEEE Trans-
actions on, 30(5):295-310, 2004.

5. G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In Formal
Methods for the Design of Real-time Systems, volume 3185 of LNCS, pages 200—
236. Springer, 2004.

6. G. Edwards, Y. Brun, and N. Medvidovic. Automated analysis and code genera-
tion for domain-specific models. In Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP
Conference on, pages 161-170, 2012.

7. M.-A. Esteve, J.-P. Katoen, V. Y. Nguyen, B. Postma, and Y. Yushtein. Formal
correctness, safety, dependability, and performance analysis of a satellite. In Pro-
ceedings of the 34th International Conference on Software Engineering, ICSE ’12,
pages 1022-1031. IEEE Press, 2012.

8. K. Forsberg and H. Mooz. The relationship of system engineering to the project
cycle. INCOSE International Symposium, 1(1):57-65, 1991.

9. A. Hamann, R. Henia, R. Racu, M. Jersak, K. Richter, and R. Ernst. SymTA/S -
Symbolic Timing Analysis for Systems. In Work In Progress session - Euromicro
Workshop on Real-time Systems, 2004.

10. A. Hartmanns. MODEST - a unified language for quantitative models. In The 2012
Forum on Specification and Design Languages (FDL), pages 44-51. IEEE, 2012.

o

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A. Hartmanns and H. Hermanns. The MODEST toolset: an integrated environment
for quantitative modelling and verification. In Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 8413 of LNCS, pages 593-598. Springer
Berlin Heidelberg, 2014.

M. Hendriks, T. Basten, J. Verriet, M. Brassé, and L. Somers. A blueprint for
system-level performance modeling of software-intensive embedded systems. In-
ternational Journal on Software Tools for Technology Transfer, pages 1-20, 2014.
M. Hendriks, J. Verriet, T. Basten, B. Theelen, M. Brassé, and L. Somers. An-
alyzing execution traces — critical path analysis and distance analysis. Submitted
to: Software Tools for Technology Transfer, 2015.

B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An approach for
quantitative analysis of application-specific dataflow architectures. In ASAP ’97:
Proc. of the IEEE International Conference on Application-Specific Systems, Ar-
chitectures and Processors, page 338. IEEE Computer Society, 1997.

J. Lapalme, B. Theelen, N. Stoimenov, J. Voeten, L. Thiele, and E. M. Aboulhamid.
Y-chart based system design: a discussion on approaches. In Nouvelles approches
pour la conception d’outils CAO pour le domaine des systems embarqu’es, pages
23-56. Universite de Montreal, 2009.

M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-
specific languages. ACM Computing Surveys, 37(4):316-344, 2005.

A.J. Mooij, J. Hooman, and R. Albers. Early fault detection using design models
for collision prevention in medical equipment. In Foundations of Health Information
Engineering and Systems (FHIES 2013), volume 8315 of LNCS, pages 170 — 187.
Springer Berlin Heidelberg, 2014.

S. Perathoner, E. Wandeler, and L. Thiele. Evaluation and comparison of perfor-
mance analysis methods for distributed embedded systems. Technical report, ETH
Zurich, Switzerland, 2006.

C. Potts. Software-engineering research revisited. IEEE Softw., 10(5):19-28, 1993.
A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and software
design methodology for embedded systems. IEEE Des. Test, 18(6):23-33, 2001.
R. Schiffelers, W. Alberts, and J. Voeten. Model-based specification, analysis and
synthesis of servo controllers for lithoscanners. In Proceedings of the 6th Interna-
tional Workshop on Multi-Paradigm Modeling, MPM ’12, pages 55—60, New York,
NY, USA, 2012. ACM.

Software Technology Group, TU Dresden. EMFText. http://www.emftext.org/,
2015.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. Eclipse Modeling Frame-
work. Pearson Education, 2008.

E. Teeselink, L. Somers, T. Basten, N. Trcka, and M. Hendriks. A visual language
for modeling and analyzing printer data path architectures. Proc. ITSLE, 20, 2011.
B. Theelen, O. Florescu, M. Geilen, J. Huang, P. van der Putten, and J. Voeten.
Software/hardware engineering with the parallel object-oriented specification lan-
guage. In Proceedings of the 5th IEEE/ACM International Conference on Formal
Methods and Models for Codesign, MEMOCODE ’07, pages 139-148, Washington,
DC, USA, 2007. IEEE Computer Society.

L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling
hard real-time systems. In Proc. IEEE International Symposium on Circuits and
Systems, volume 4, pages 101-104, 2000.

F. van den Berg, A. Remke, and B. Haverkort. A domain specific language for per-
formance evaluation of medical imaging systems. In Proceedings of the 5th Work-
shop on Medical Cyber-Physical Systems, MCPS 2014, Berlin, Germany, volume 36

28.

29.

30.

31.

of OpenAccess Series in Informatics (OASIcs), pages 80-93, Dagstuhl, Germany,
2014. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

F. van den Berg, A. Remke, A. Mooij, and B. Haverkort. Performance evaluation for
collision prevention based on a domain specific language. In Computer Performance
Engineering, volume 8168 of LNCS, pages 276-287. Springer Berlin Heidelberg,
2013.

A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: an annotated
bibliography. SIGPLAN Notices, 35(6):26—-36, 2000.

J. Voeten, T. Hendriks, B. Theelen, J. Schuddemat, W.T. Suermondt, J. Gemei,
K. Kotterink, and C. van Huét. Predicting timing performance of advanced mecha-
tronics control systems. In Computer Software and Applications Conference Work-
shops (COMPSACW), 2011 IEEE 35th Annual, pages 206-210, 2011.

E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System architecture evalu-
ation using modular performance analysis: a case study. International Journal of
Software Tools for Technology Transfer (STTT), 8(6):649-667, 2006.

