Analysis of the Zeroconf Protocol Using UPPAAL

Biniam Gebremichael, Frits Vaandrager, Miaomiao Zhang
Radboud Universiteit Nijmegen

IPA Herfstdagen, Bergen, 29 November 2006

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Contents

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Case Study: Address Configuration in Zeroconf

Protocol for dynamic configuration of IPv4 link-local addresses.
Standardized by IETF in RFC 3927.

Philosophy: internet should be like electricity, i.e., work when you
plug in a cable.

Several implementations available, notably Bonjour from Apple.

See www.zeroconf.org.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Mutual Exclusion

Zeroconf can be viewed as a distributed mutual exclusion
algorithm in which the resources are IP addresses.

Zeroconf is similar to Fisher's mutual exclusion algorithm and
makes essential use of timing. But whereas Fischer uses a shared
variable for communication, Zeroconf uses broadcast
communication.

Within Zeroconf, hosts do not aim at acquiring access to a specific
CS; but just to one out of 65024 available CSs.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



A Simple Stochastic Model

Bohnenkamp, Van der Stok, Hermanns and Vaandrager (IPDS03)
develop simple stochastic cost model of Zeroconf.

Analytical expression is derived for user penalty, and used to derive
optimal configuration parameters of the network.

Is this model correct? Or do real Zeroconf implementations behave
differently?

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Our society increasingly depends on correct functioning of
(implementations of) communication protocols.

Standards that define these protocol are written in informal
language, with frequent ambiguities, omissions and inconsistencies.

We can blame the engineers (for not using formal methods), the
companies (for playing political games), but also ourselves, i.e., the
formal methods researchers.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Formal Methods

There is ample evidence that formal (mathematical) techniques
may help to improve quality of protocol standards. Still, they are
rarely used in (the authorative part of) protocol standards:

» Engineers have difficulties with formal notations
(they do like FSMs and C).

» Relationship between formal models and protocols often
unclear (“model hacking”)

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Uppaal

Recently, the timed automata model checker Uppaal has been
extended with C-like functions, and the verification engine has
become much more powerful (e.g. due to symmetry reduction).

Can we use Uppaal for building a model of (a fragment of) a
protocol standard that

(a) is easy to understand by engineers,

(b) comes as close as possible to informal text,

(c) may serve as basis for automatic verification?

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Assumptions about Underlying Network

“This specification applies to all IEEE 802 Local Area
Networks (LANs) [802], including Ethernet [802.3],
Token-Ring [802.5] and IEEE 802.11 wireless LANs
[802.11], as well as to other link-layer technologies that
operate at data rates of at least 1 Mbps, have a
round-trip latency of at most one second, and support
ARP [RF(C826].”

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Address Resolution Protocol (ARP)

Widely used method for converting protocol addresses (e.g., IP) to
local network (“hardware”) addresses (e.g., Ethernet).
Within Zeroconf all messages are ARP packets.

typedef struct{

HAType senderHA; // sender hardware address

IPType senderIP; // sender IP address

IPType targetIP; // target IP address

bool request; // is the packet a Request or a Reply
}ARP_packet ;

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Network Model

Host Host

receive_msg answer

send_req receive_msg

Several identical network automata in model. Each of these
automata takes care of broadcasting single message (and reply)
and has a clock to ensure roundtrip delay of 1sec.

We assume hosts handle incoming messages instantaneously.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Model Architecture

For each host j there are three automata (“process based
decomposition”):

1. An automaton that models address configuration.

2. An automaton that handles incoming messages.

3. An automaton that models the other processes running on the
host (which may send regular ARP packets).

In addition we have a collection of Network automata.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Zeroconf Address Configuration

WAIT
x<=PROBE_WAIT

address:int[1,m]
IP[j]:=address,
x:=0

INIT

counter<PROBE_NUM &&
x>=PROBE_MIN

send_req!

P,
packet.request:=true,
counter++,
x:=0

x==ANNOUNCE_WAIT

counter < ANNOUNCE_NUM &&
x== ANNOUNCE_INTERVAL
send_req!

packet.senderHA:=j,
packet.senderl
packet targetIP:=IP[j],
packet.request:=true,
counter++,

x:=0,
UselP[j]:=true

counter:=0,
counter:=0. counter==PROBE_NUM B0 S UNGE INTERVAL
x=PROBE_MAX urg!
x:=0 () e
T\
P PRE_CLAIM USE

'ROBE
x <= PROBE_MAX

reset[j]?
1P[j]:=0.
x:=0

reset[j]?
1P[j]:=0.
x:=0

reset[j]?
1P[j]:=0.
x:=0

ConflictNum < MAX_CONFLICTS
urg!
ConflictNum-++

COLLISION

x<=ANNOUNCE_WAIT

x<=RATE_LIMIT_INTERVAL

ConflictNum >= MAX_CONFLICTS &&
x==RATE_LIMIT_INTERVAL

counter < ANNOUNCE_NUM imply
x<=ANNOUNCE_INTERVAL

reset[j]?

IP[j]:=0,
UselP[j]:=false

Gebremichael, Vaandrager and Zhang

nalys

of the Zeroconf Protocol U

ng UPPAA



Close Correspondence Between Model and Standard

Example text from RFC [page 11, section 2.2.1]:

“When ready to begin probing, the host should then
wait for a random time interval selected uniformly in the
range zero to PROBE_WAIT seconds, and should then
send PROBE_NUM probe packets, each of these probe
packets spaced randomly, PROBE_MIN to PROBE_MAX

seconds apart.”

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



“Mistakes” in Standard

» It does not specify upper and lower bounds on time that may
elapse between sending last ARP Probe and sending first ARP
Announcement.

» It does not specify whether a host may immediately start
using a newly claimed address or whether it should first send
out all ARP Announcements.

» |t does not specify tolerance on timing of ARP
Announcements.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Input Handling

response==true response==true
answer!
packet.senderHA:=j,

answer!
packet.targetIP:=packet.senderIP,
packet.senderHA:
packet.senderlP:=IP|
packet.request: —false

y:=DEFEND_INTERVAL + 1

V—O

response==false
no_answer!

response==false
reset(j]! f\/ no_answer!
©

&

y>DEFEND_INTERVAL
receive_msg[j]?
ihandler(true)

receive_msg[j]?
ihandler(false)

conflict==false conflict==true

Gebremichael, Vaandrager and Zhang alysis of the Zeroconf Protocol Using UPPAAL



Input Handling (cnt)

Input handling described at various places in standard.
Conceptually it is natural to group everything together in one
module.

Function ihandler distinguishes between 9 scenarios, each of which
is described explicitly or implicitly in the standard.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Example Scenario as Described in RFC

“In addition, if during this period [from the beginning of
the probing process until ANNOUNCE_WAIT seconds
after the last probe packet is sent] the host receives any
ARP Probe where the packet’s ‘target IP address’ is the
address being probed for, and the packet’s 'sender
hardware address’ is not the hardware address of the
interface the host is attempting to configure, then the
host MUST similarly treat this as an address conflict and
select a new address as above. This can occur if two (or
more) hosts attempt to configure the same IPv4
Link-Local address at the same time.”

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Further “Mistakes” in Standard

» Although standard states that Zeroconf requires an underlying
network that supports ARP (RFC 826), we identified some
cases where Zeroconf does not conform to RFC 826.

» It is not exactly clear in which situations a host may defend its
address.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Network Automaton

answer?
answer_buffer:=packet

send_req?
send_buffer:=packet,
z:=

S

IDLE DELIVER hostHAType

2<=1 sent[host]==false
receive_msg[host]!
sent[host]:=true,
packet:=send_buffer

urg!
all_sent()
init_vars()
host:HAType

answer_buffer.senderIP!=0 && replied[host]==false
receive_msg[host]!

replied[host]:=true,

packet:=answer_buffer

no_answer?

alysis of the Zeroconf Protocol Using UPPAAL

Gebremichael, Vaandrager and Zhang



Model Checking

Model checking Zeroconf is difficult!

Using latest version of Uppaal, we managed to prove mutual
exclusion and absence of deadlock for model with 2 hosts, 1 IP

address and 2 network automata.

Model checking failed for larger models.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Abstractions

1. Dead variable elimination

2. Over approximation: elimination of counter ConflictNum

3. Over approximation: elimination of clock y
Using these abstractions (on top of those implemented in Uppaal)
we can prove mutual exclusion for models with

3 hosts, 1 IP address and 3 network automata, or
2 hosts, x |IP addresses and 2 network automata.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



A Manual Proof

It is pretty obvious that Zeroconf satisfies mutual exclusion.

Large number of messages in the protocol “obscures” key
correctness argument for model checker.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Manual Proof of Mutual Exclusion

Suppose two hosts i and j enter CS. Assume wlog that j enters
first. Case 1: last probe from i arrives at j before j enters CS.

Host i Host j

I I ul
tl
: u
e
u0

Then j must be in trying region since
u>t=t0—-2>u0—-2>u0—6> ul.
Hence probe will cause reset at j. Contradiction.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Mutual Exclusion (cnt)

Case 2: last probe from i arrives at j after j enters CS.
Then j will send reply message to i.

Host i Host j

ul
tl

When reply arrives, i is still in trying region.
Hence reply will cause reset at i. Contradiction.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Jasper’s Abstraction

Idea: Replace hosts 3 to n by a Chaos automaton, which can
generate any message at any time.

Manual correctness proof of this abstraction is easy.
(Compositional proof more involved)

For system with two hosts and Chaos, Uppaal can prove ME for
the two hosts.

General ME follows by symmetry!

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



Summary of Results

1. Simple Uppaal model of critical part of Zeroconf, almost good
enough for inclusion in standard.

2. Very close correspondence between model and standard; only
probabilistic aspects cannot be handled.

3. Several mistakes/ambiguities found in standard.

4. Model checking of system with n hosts using manual
abstraction proof.

5. Manual proof of ME easy.

6. Several suggestions for further improving TA technology.

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



1. Better support for computing abstractions (or proving their
correctness) essential: only abstractions can bridge gap
between realistic and tractable models

2. Study host failure, message loss and joining of networks

3. Challenge: Can we prove (approximate) correctness of
IPDS'03 model?

4. Combine functionality Uppaal and PRISM!!!

Gebremichael, Vaandrager and Zhang Analysis of the Zeroconf Protocol Using UPPAAL



	Contents
	Introduction
	The Zeroconf Protocol

