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Computing probabilities
Let γ be a small constant < 1
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PRISM

Let’s see, what PRISM says for γ = 10−6:

probabilistic

const double gamma = 0.000001;

module sys

s: [1..6] init 1;

[] s=1 -> 1.0: (s’=2);

[] s=2 -> 0.5: (s’=3) + gamma: (s’=5) + (0.5-gamma): (s’=4);

[] s=3 -> 1.0: (s’=3);

[] s=4 -> 1.0: (s’=4);

[] s=5 -> gamma: (s’=6) + (1-gamma): (s’=4);

[] s=6 -> gamma: (s’=3) + (1-gamma): (s’=4);

endmodule

Result:

yes = 5, no = 1, maybe = 0

Time for model checking: 0.022 seconds.

Result: 1.0



MRMC

What does MRMC say (for γ = 10−6)?
Transitions:

STATES 6

TRANSITIONS 10

1 2 1.0

2 3 0.5

2 4 0.499999

2 5 0.000001

3 3 1.0

4 4 1.0

5 4 0.999999

5 6 0.000001

6 3 0.000001

6 4 0.999999

Labels:

#DECLARATION

a b c

#END

1 a

2 a

3 b

5 a

6 a

Result:

$RESULT: ( 1.0000000, 1.0000000, 0.0000000, 1.0000000, 1.0000000, 1.0000000 )

$STATE: { 1, 2, 4, 5, 6 }



The origin of the problem

I The model checker has to represent the value 1
2 + γ3 such

that it is larger than 0.5.

I For γ = 10−6 this value is

1

2
+ 10−18 = 0.500000000000000001

I Floating-point arithmetic with 64 bit can represent numbers
with an accuracy of about 15 decimal digits.

I The number is rounded downwards to 0.5.

I Changing the value of 1
2 + γ3 to 0.5 flips the truth value of

P≤0.5(a U b) in s1 and s2 from “no” to “yes”.
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Computing probabilities – inexact arithmetic
Let γ be a small constant < 1
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How to solve this problem?

I Using exact arithmetic?
I Slow and memory consuming

I Using interval arithmetic with save rounding?
I Result is sometimes (often?) “unknown”.

I Computing certificates testifying that the result is correct?
I Not always applicable . . .



We are not alone . . .

Reliable results are also a hot topic in other communities:

I SAT-Solvers:
I Certificates for unsatisfiability (resolution trees)

I QBF-Solvers:
I Certificates for SAT and UNSAT (??)

I Linear Programming:
I Certificates for UNSAT (Farkas-Lemma)
I Exact computation with inexact arithmetic?



Literature (1)

Conrado Daws.
Symbolic and Parametric Model Checking of Discrete-time
Markov Chains
ICTAC 2004 (LNCS Vol. 3407)

Reduce model checking for DTMCs to the evaluation of regular
expressions.

+ Probabilities can be adjusted after the construction of the
regular expression

+ Easy to use exact arithmetic (only addition and multiplication
needed)

− No nested PCTL-formulae

− Scalability?? (exprensive computation of regular expressions)



Literature (2)

Tingting Han, Jost-Pieter Katoen.
Counterexamples in Probabilistic Model Checking
TACAS 2007 (LNCS Vol. 4424)

Compute counterexamples for PCTL-formulae P≤p(a U b) using a
shortest path algorithm.

+ Optimal counterexamples (minimal number of paths + most
probable paths)

− Scalability?? (Explicit representation!)


