Inexact Arithmetic in Model Checking of DTMCs

Two Decades of Probabilistic Verification
—Reflections and Perspectives—

Ralf Wimmer, Bernd Becker

Albert-Ludwigs-University Freiburg, Germany

November 14t 2007

i~
~
Y UNIVERSITAT
5. DES
/

ALBERT-LUDWIGS- SAARLANDES
UNIVERSITAT FREIBURG

A DTMC

Probability to compute:

P'(cU P_1(aUb))

Computing probabilities

Let v be a small constant < %

Uto

State | P’(aUb) P<%(a U b) satisfied?
S1 % + 'y3 no
S % + 73 no
S3 1 no
Sy 0 yes
Sg 2 yes
S6 ¥ yes

PRISM
Let's see, what PRISM says for v = 107°:

probabilistic
const double gamma = 0.000001;

module sys
s: [1..6] init 1;

[s=1 > 1.0: (s8’=2);
[1 s=2 -> 0.5: (s’=3) + gamma: (s’=5) + (0.5-gamma): (s’=4);
[s=3 -=> 1.0: (s’=3);
[1 s=4 -> 1.0: (s’=4);

[1 s=5 -> gamma: (s’=6) + (1-gamma): (s’=4);
[1 s=6 -> gamma: (s’=3) + (l1-gamma): (s’=4);
endmodule

Result:

yes = 5, no = 1, maybe = 0
Time for model checking: 0.022 seconds.
Result: 1.0

MRMC

What does MRMC say (for v = 1079)?

Transitions: Labels:
STATES 6 #DECLARATION
TRANSITIONS 10 abc
121.0 #END
230.5 1a

2 4 0.499999 2 a

2 5 0.000001 3b
331.0 5a
441.0 6 a

5 4 0.999999

5 6 0.000001

6 3 0.000001

6 4 0.999999

Result:

$RESULT: (1.0000000, 1.0000000, 0.0000000, 1.0000000, 1.0000000, 1.0000000)
$STATE: { 1, 2, 4, 5, 6 }

The origin of the problem

» The model checker has to represent the value % + 73 such
that it is larger than 0.5.

The origin of the problem

» The model checker has to represent the value % + 73 such
that it is larger than 0.5.

» For v = 107° this value is

1
>+ 10~ = 0.500000000000000001

The origin of the problem

» The model checker has to represent the value % + 73 such
that it is larger than 0.5.

» For v = 107° this value is

1
>+ 10~ = 0.500000000000000001

» Floating-point arithmetic with 64 bit can represent numbers
with an accuracy of about 15 decimal digits.

The origin of the problem

» The model checker has to represent the value % + 73 such
that it is larger than 0.5.

» For v = 107° this value is

1
>+ 10~ = 0.500000000000000001

» Floating-point arithmetic with 64 bit can represent numbers
with an accuracy of about 15 decimal digits.

» The number is rounded downwards to 0.5.

The origin of the problem

» The model checker has to represent the value % + 73 such
that it is larger than 0.5.

» For v = 107° this value is

1
>+ 10~ = 0.500000000000000001

» Floating-point arithmetic with 64 bit can represent numbers
with an accuracy of about 15 decimal digits.
» The number is rounded downwards to 0.5.

» Changing the value of % + 3 to 0.5 flips the truth value of
P<os5(aUDb) in s; and s, from “no” to “yes".

Computing probabilities — inexact arithmetic
Let v be a small constant < %

Uto

State | P’(aUb) PS%(a U b) satisfied?
s1 3+7° | yes
) % + 73 yes
S3 1 no
Sy 0 yes
S5 ¥? yes
S6 Y yes

How to solve this problem?

» Using exact arithmetic?
» Slow and memory consuming

» Using interval arithmetic with save rounding?
» Result is sometimes (often?) “unknown".

» Computing certificates testifying that the result is correct?
» Not always applicable . ..

We are not alone ...

Reliable results are also a hot topic in other communities:
» SAT-Solvers:

» Certificates for unsatisfiability (resolution trees)
» QBF-Solvers:

» Certificates for SAT and UNSAT (?77)
» Linear Programming:

» Certificates for UNSAT (Farkas-Lemma)
» Exact computation with inexact arithmetic?

Literature (1)

[1 Conrado Daws.
Symbolic and Parametric Model Checking of Discrete-time
Markov Chains
ICTAC 2004 (LNCS Vol. 3407)

Reduce model checking for DTMCs to the evaluation of regular
expressions.

+ Probabilities can be adjusted after the construction of the
regular expression

+ Easy to use exact arithmetic (only addition and multiplication
needed)

— No nested PCTL-formulae

— Scalability?? (exprensive computation of regular expressions)

Literature (2)

[§ Tingting Han, Jost-Pieter Katoen.
Counterexamples in Probabilistic Model Checking
TACAS 2007 (LNCS Vol. 4424)

Compute counterexamples for PCTL-formulae P<,(a U b) using a
shortest path algorithm.

+ Optimal counterexamples (minimal number of paths + most
probable paths)

— Scalability?? (Explicit representation!)

