

Gossip-based Peer Sampling

Maarten van Steen

Introduction

- **Epidemic-based protocols** are popular for communication in large-scale distributed systems:
 - reliable in the presence of high churn and network failures
 - efficient when it comes to management
 - often local-only solutions
- **Applications:**
 - Information dissemination
 - Topology/overlay construction
 - Resource management (node allocation, replica mgt.)
 - Decentralized computations (aggregation, data fusion)

Basics

Assume there are no write–write conflicts:

Anti-entropy: Each replica regularly chooses another replica at random, and **exchanges state differences**, leading to identical states at both afterwards.

Gossiping: A replica which has just been updated (i.e., has been **contaminated**), tells a number of other replicas about its update (contaminating them as well).

System Model

- Consider N nodes, each storing a number of objects
- Each object O has a **primary** node at which updates for O are always initiated.
- An update of object O at node S is always timestamped; the **value** of O at S is denoted $val(O, N)$
- $T(O, N)$ denotes the **timestamp** of the value of object O at node S

Anti-Entropy

Basic issue: When a node S contacts another node S^* to exchange state information, three different strategies can be followed:

Push: $T(O, S^*) < T(O, N) \Rightarrow val(O, S^*) \leftarrow val(O, N)$

Pull: $T(O, S^*) > T(O, N) \Rightarrow val(O, N) \leftarrow val(O, S^*)$

Push-Pull: S and S^* exchange their updates

Observation: if each node periodically randomly chooses another node for exchanging updates, an update is propagated in $O(\log(N))$ cycles.

Analysis

Consider a single source, propagating its update. Let p_i be the probability that a node has **not received the update** after the i -th cycle.

- With **pull**, $p_{i+1} = (p_i)^2$: the node was not updated during the i -th cycle and should contact another ignorant node during the next cycle.
- With **push**, $p_{i+1} = p_i(1 - \frac{1}{N})^{N(1-p_i)} \approx p_i e^{-1}$ (for small p_i and large N): the node was ignorant during the i -th cycle and no updated node chooses to contact it during the next cycle.

Gossiping

Basic model: A node P with an update contacts other node Q . If Q already knows the update, P stops contacting other nodes with probability $1/k$.

k	s
1	0.203188
2	0.059520
3	0.019827
4	0.006977
5	0.002516

Fraction of ignorant nodes:

$$s = e^{-(k+1)(1-s)}$$

Observation: If we have to ensure that all nodes are eventually updated, gossiping alone is not enough.

Observation

So far: Models assume a peer P selects node Q uniformly at random \Rightarrow generally not realistic for large distributed systems:

- Systems can easily consist of 10,000+ nodes
- Nodes join and leave regularly: **churn** can easily be $> 1\%$
- special case: nodes fail and recover

Question: What does it take to build a decent peer-sampling service?

Observation: The service can be built entirely with epidemic-based techniques.

A bit of history...

Note: Nodes will maintain a (changing) list of neighbors, inducing a (directed) communication graph.

- Márk Jelasity and I developed the **Newscast** protocol (2002)
- Patrick Eugster, Rachid Guerraoui and Anne-Marie Kermarrec developed **Ipbcast** (2001–2003)
- Eugster et al. assumed communication graph to be random, developed a nice **theoretical framework** and got results published in **ACM TOCS**

A bit of history...

- We had already discovered that the Ipbcast (as well as the Newscast) graph was **far from being random**
- We got a bit frustrated (having only our **tech report**)...

■

Issue: If you can't beat 'em, join 'em...

Collaborators

- Márk Jelasity, University of Szeged (Hungary)
- Spyros Voulgaris, ETH, Zürich
- Rachid Guerraoui, EPFL, Lausanne
- Anne-Marie Kermarrec, INRIA, Rennes
- Maarten van Steen, VU, Amsterdam

■

BTW: By now, we finally understand why assuming a random graph is **never obvious**, and should be **explicitly validated**.

Talk - outline

- Present framework for peer sampling that captures many different protocols
- Evaluation of local randomness (or: why assuming uniformity is correct)
- Evaluation of global randomness (or: why assuming uniformity is not correct)
- Conclusions

Framework - overview

Active thread

```
selectPeer(&Q);  
selectToSend(&refs_s);  
sendTo(Q, {me, refs_s});  
  
receiveFrom(Q, &refs_r);  
selectToKeep(p_view, refs_r);
```

Passive thread

```
receiveFromAny(&P, &refs_r);  
selectToSend(&refs_s);  
sendTo(P, {me, refs_s});  
selectToKeep(p_view, refs_r);
```

selectPeer	Select a current neighbor (from partial view).
selectToSend	Select $c/2$ entries from partial view.
selectToKeep	Add received entries to partial view. Remove repeated items. Then keep c entries.

Note: We can also exchange data items, or combination of data and references

Framework - for real

- N nodes, each having an address
- Every node has a **partial view**: a local list of c **node descriptors**
- Node descriptor = $\langle \text{address}, \text{age} \rangle$ pair
- Operations on partial view:

selectPeer()	return an item
permute()	randomly shuffle items
increaseAge()	forall items add 1 to age
append(...)	append a number of items
removeDuplicates()	remove duplicates (on same address), keep youngest
removeOldItems(n)	remove n descriptors with highest age
removeHead(n)	remove n first descriptors
removeRandom(n)	remove n random descriptors

Active thread (one per node)

do forever

 wait(T time units) // T is called the *cycle length*

$p \leftarrow \text{view.selectPeer}()$ // Sample a *live* peer from the current view

if push then // Take initiative in exchanging partial views

 buffer $\leftarrow (\langle \text{MyAddress}, 0 \rangle)$ // Construct a temporary list

 view.permute() // Shuffle the items in the view

 move oldest H items to end of view // Necessary to get rid of dead links

 buffer.append(view.head($c/2$)) // Copy first half of all items to temp. list

 send buffer to p

else // empty view to trigger response

 send (null) to p

if pull then // Pick up the response from your peer

 receive buffer $_p$ from p

 view.select(c, H, S, buffer_p) // Core of framework – to be explained

 view.increaseAge()

Passive thread (one per node)

do forever

receive buffer_p from p // *Wait for any initiated exchange*

if pull **then** // *Executed if you're supposed to react to initiatives*

 buffer ← (⟨ MyAddress,0 ⟩) // *Construct a temporary list*

 view.permute() // *Shuffle the items in the view*

 move oldest H items to end of view // *Necessary to get rid of dead links*

 buffer.append(view.head(c/2)) // *Copy first half of all items to temp. list*

 send buffer to p

view.select(c,H,S,buffer_p) // *Core of framework – to be explained*

view.increaseAge()

View selection

Parameters:

c: length of partial view

H: number of items moved to end of list (**healing**)

S: number of items that are **swapped** with a peer

buffer_p: received list from peer

method view.select(**c, H, S, buffer_p**)

view.append(buffer_p) // *expand the current view*

view.removeDuplicates() // *Remove by duplicate address, keeping youngest*

view.removeOldItems(min(H,view.size-c)) // *Drop oldest, but keep c items*

view.removeHead(min(S,view.size-c)) // *Drop the ones you sent to peer*

view.removeAtRandom(view.size-c) // *Keep c items (if still necessary)*

Design space – peer selection

selectPeer() returns a **live** peer from the current **view**.
Essentially, there are three possibilities:

head: pick the address of the **youngest** descriptor (i.e., with low age) – bad choice, since this is the neighbor the node most recently communicated with \Rightarrow offers little opportunities for selecting unknown nodes (confirmed by experiments)

rand: pick the address of a **randomly selected** descriptor

tail: pick the address of the **oldest** descriptor (i.e., with high age)

Design space – view propagation

push: Node sends descriptors to selected peer

pull: Node only pulls in descriptors from selected peer

pushpull: Node and selected peer exchange descriptors

Note: pulling alone is pretty bad: a node has no opportunity to insert information on itself. Loss of all incoming connections will throw a node out of the network (may actually happen).

Design space – view selection

Note: Critical parameters are H and S in method `select(c, H, S, buffer)`. Assume c is even.

- $[H > c/2] \equiv [H = c/2]$, as minimum view size is always c
- Likewise, $[S > c/2 - H] \equiv [S = c/2 - H]$
- Do random removal (last step) only if $S < c/2 - H$
- **Conclusion:** consider only $0 \leq H \leq c/2$ and $0 \leq S \leq c/2 - H$

blind: `remove($H = 0, S = 0$)` — select blindly a random subset

healer: `remove($H = c/2, S = 0$)` — select freshest items

swapper: `remove($H = 0, S = c/2$)` — min. loss of descriptors

Local evaluations

- **Essence**: each node is allocated a unique ID from $[0, N - 1]$
- Consider the series of selected IDs by a specific peer
- Series is tested by the “**diehard battery of randomness tests**.”
(see www.stat.fsu.edu/pub/diehard)
- Examined **blind,healer,swapper**, fixing to tail and **pushpull**

Conclusion: it is difficult to observe nonrandom local behavior. The **functional** properties of peer sampling are barely affected by the choice of implementation.■

Applications will often not see the difference

Global randomness

Issue: Deciding on **global randomness** is a bit tricky
⇒ focus on structural properties by comparing to
random graph (= partial view consists of c uniform randomly
chosen peers).

Indegree distribution: has a serious effect on **load balancing**:
hot spots, bottlenecks, but also on the spreading of
information.

Fault tolerance: to what extent can the service withstand
catastrophic failures and high churn?

Note: concentrate on $N = 10,000$ and $c = 30$. Results
are based on **simulations** and **emulations**.

Convergence behavior

Consider three **starting situations**:

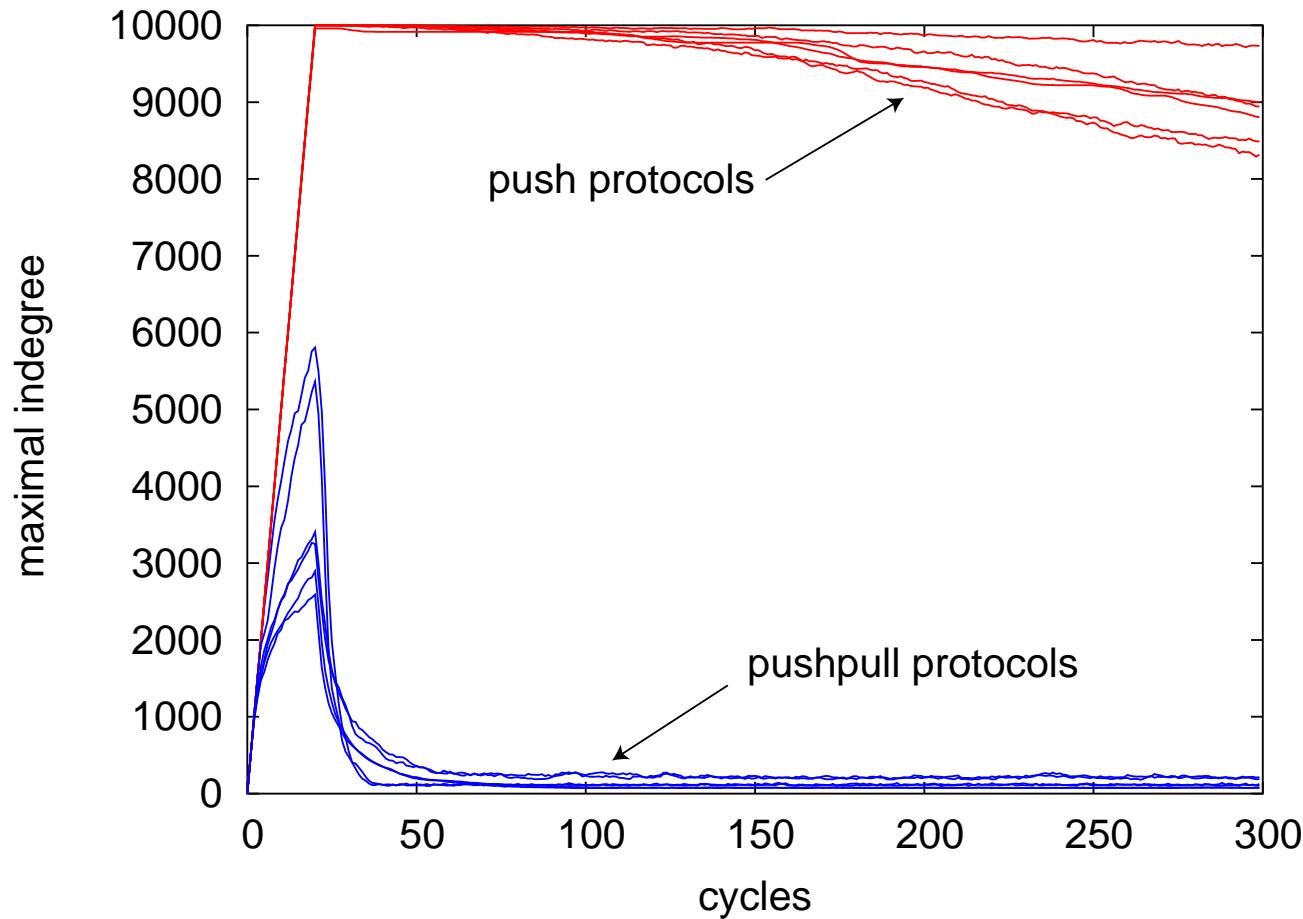
Growing: Start with one node X . Before starting a next cycle, add 500 nodes. Each new node knows only about X .

Lattice: Organize all nodes in a ring. Add descriptors of nearest nodes in the ring.

Random: Every view is filled with a uniform random sample of all nodes.

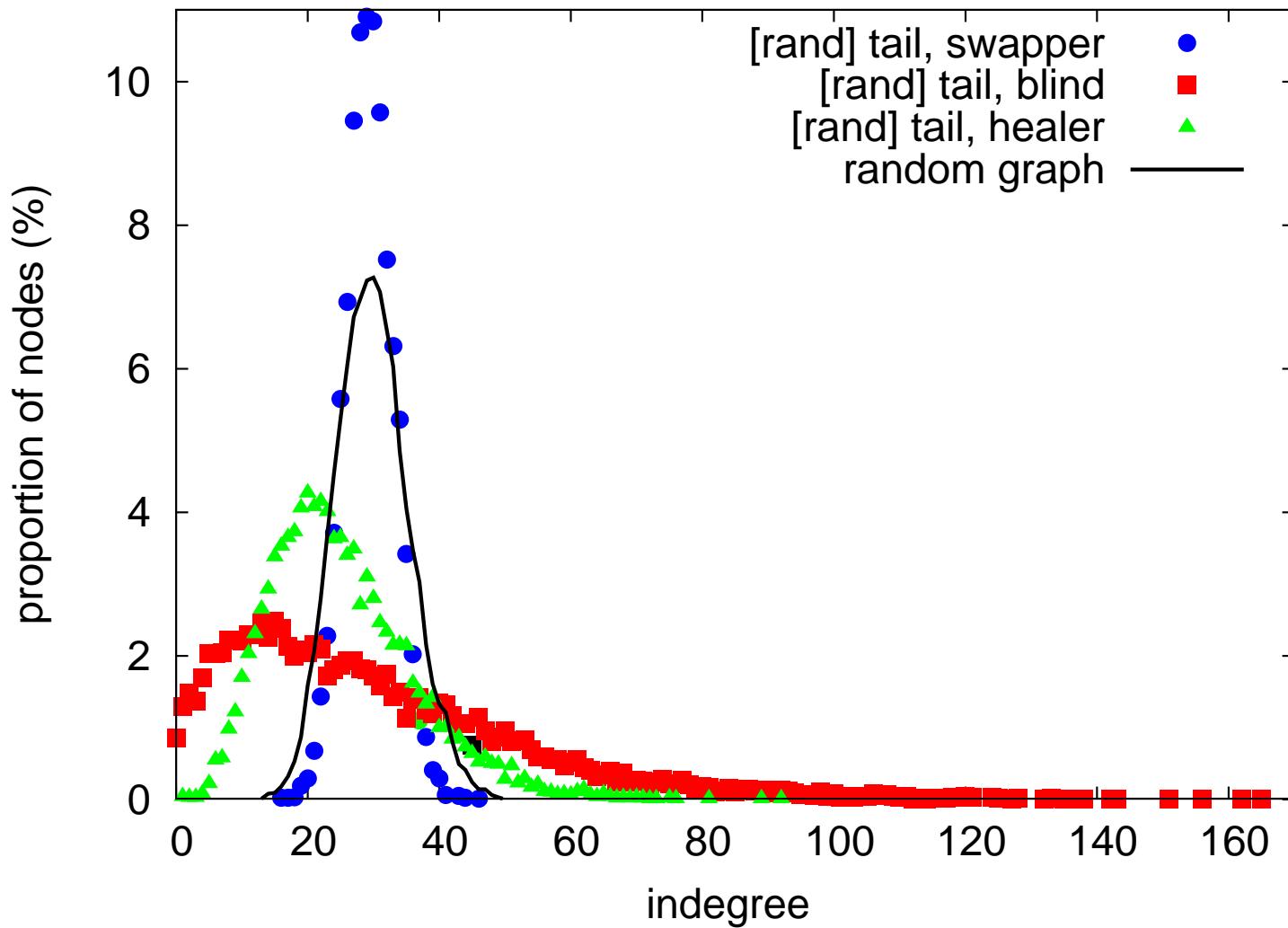
Observation: Pure pushing converges poorly and often leads to partitioned overlays in growing scenario.

Maximal indegree growing scenario



Note: From now on consider only pushpull protocols

Converged indegree distribution



Fluctuation of degree distribution (1/2)

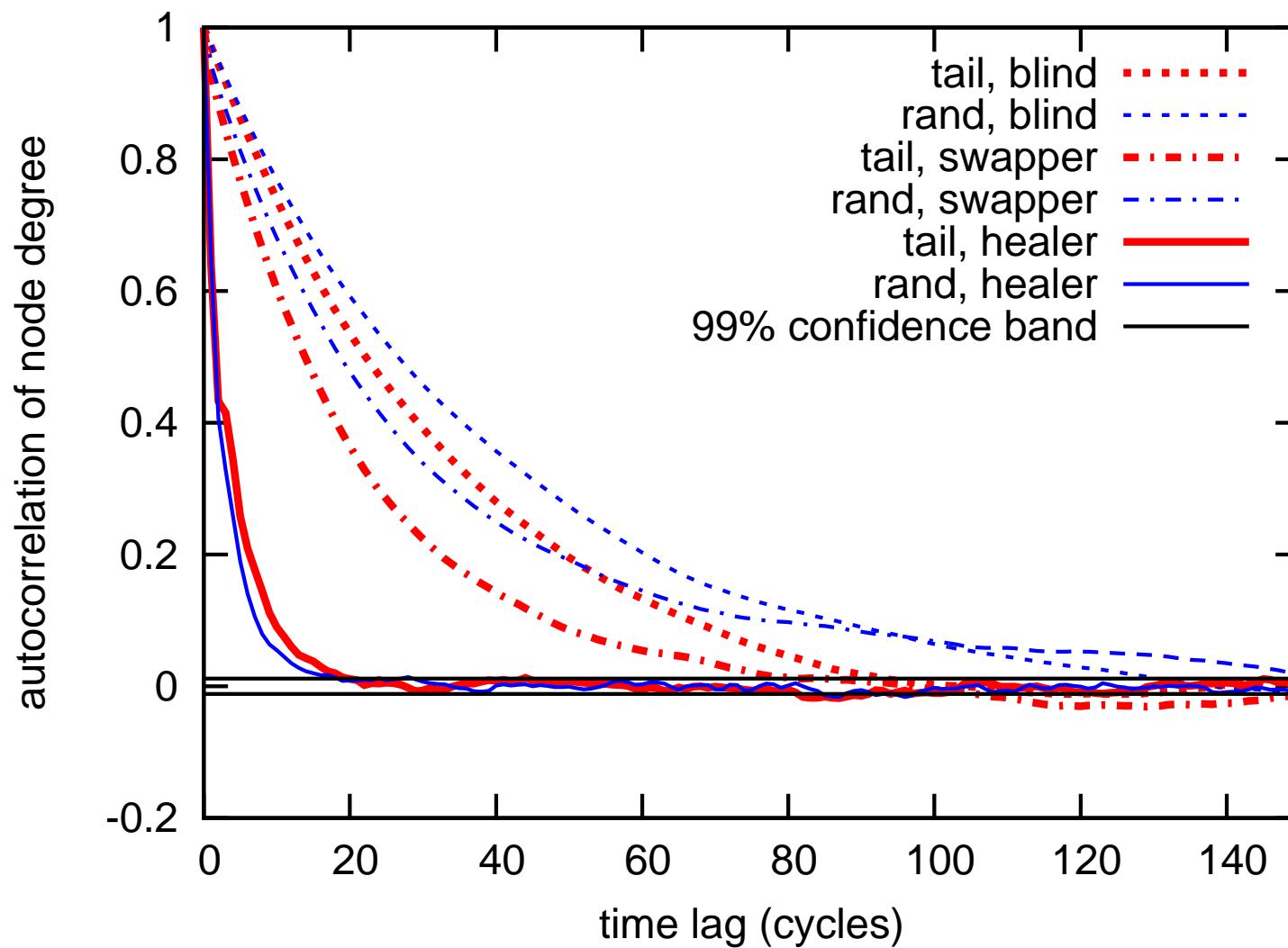
Observation: it turns out that the in-degree for each node changes over time. The question is how quickly.

Let d_1, \dots, d_K denote in-degree for a fixed node for K consecutive cycles, and \bar{d} the average in-degree. Let

$$r_k = \frac{\sum_{j=1}^{K-k} (d_j - \bar{d})(d_{j+k} - \bar{d})}{\sum_{j=1}^K (d_j - \bar{d})^2}$$

be the correlation between pairs of in-degree separated by k cycles.

Fluctuation of degree distribution (2/2)



Clustering coefficient (1/2)

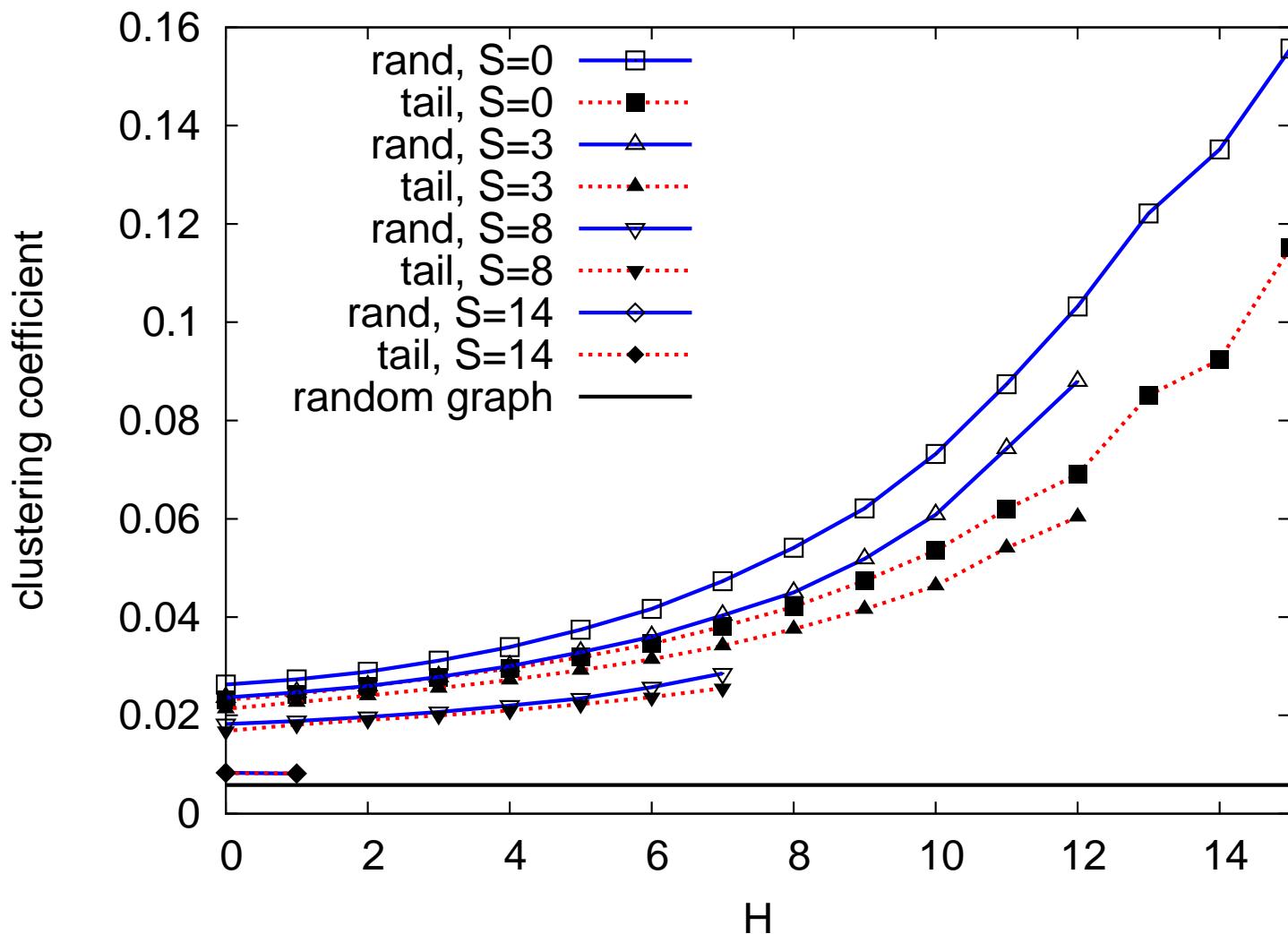
Note: Consider the **undirected graph** by dropping the direction.

Clustering coefficient indicates to what extent the neighbors of a node X are each other's neighbors. Let Γ_X denote the graph induced by the neighbors of node X .

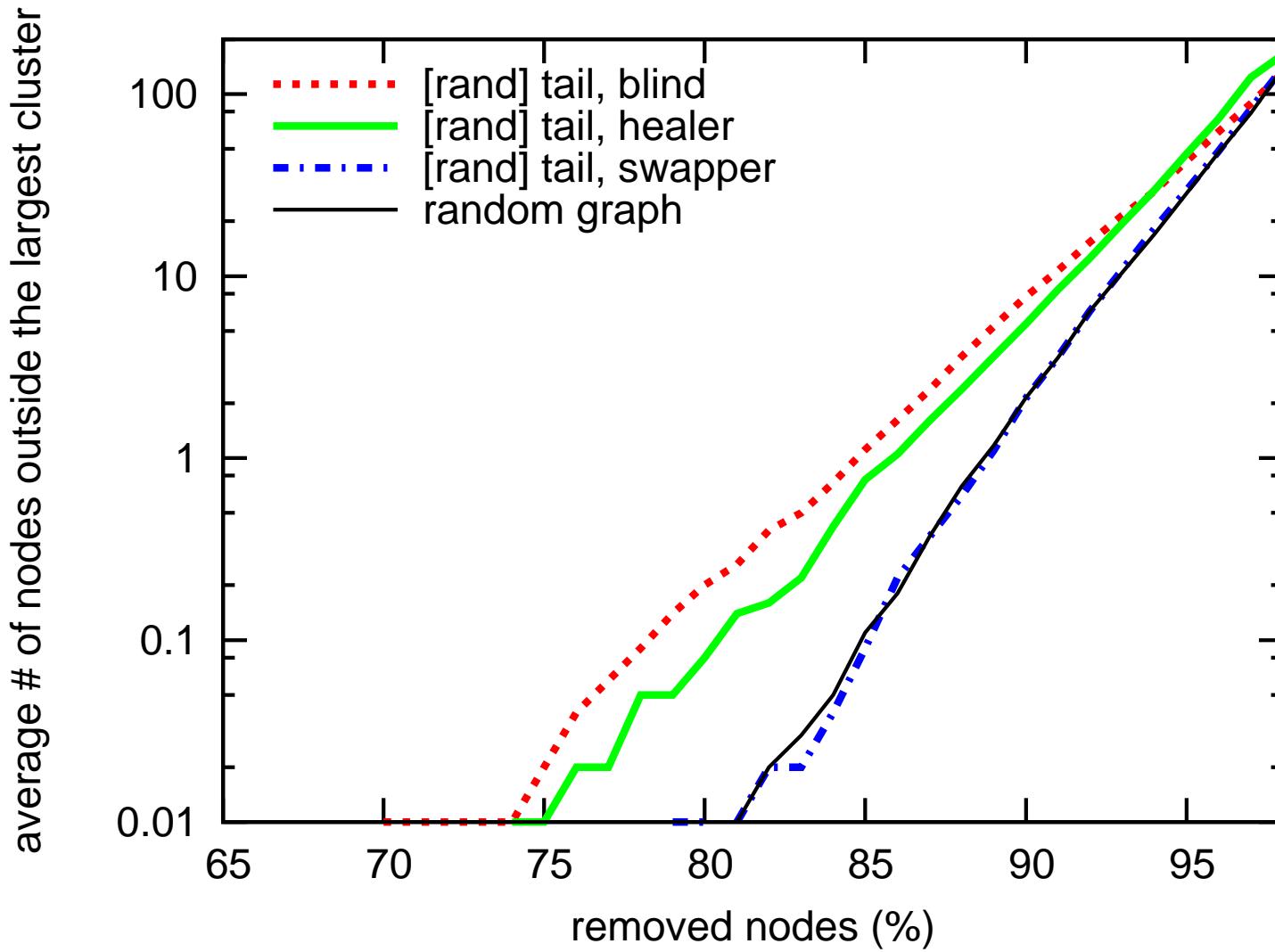
$$\gamma(X) = \frac{|E(\Gamma_X)|}{\binom{|V(\Gamma_X)|}{2}}$$

For a graph: take the average over all nodes.

Clustering coefficient (2/2)

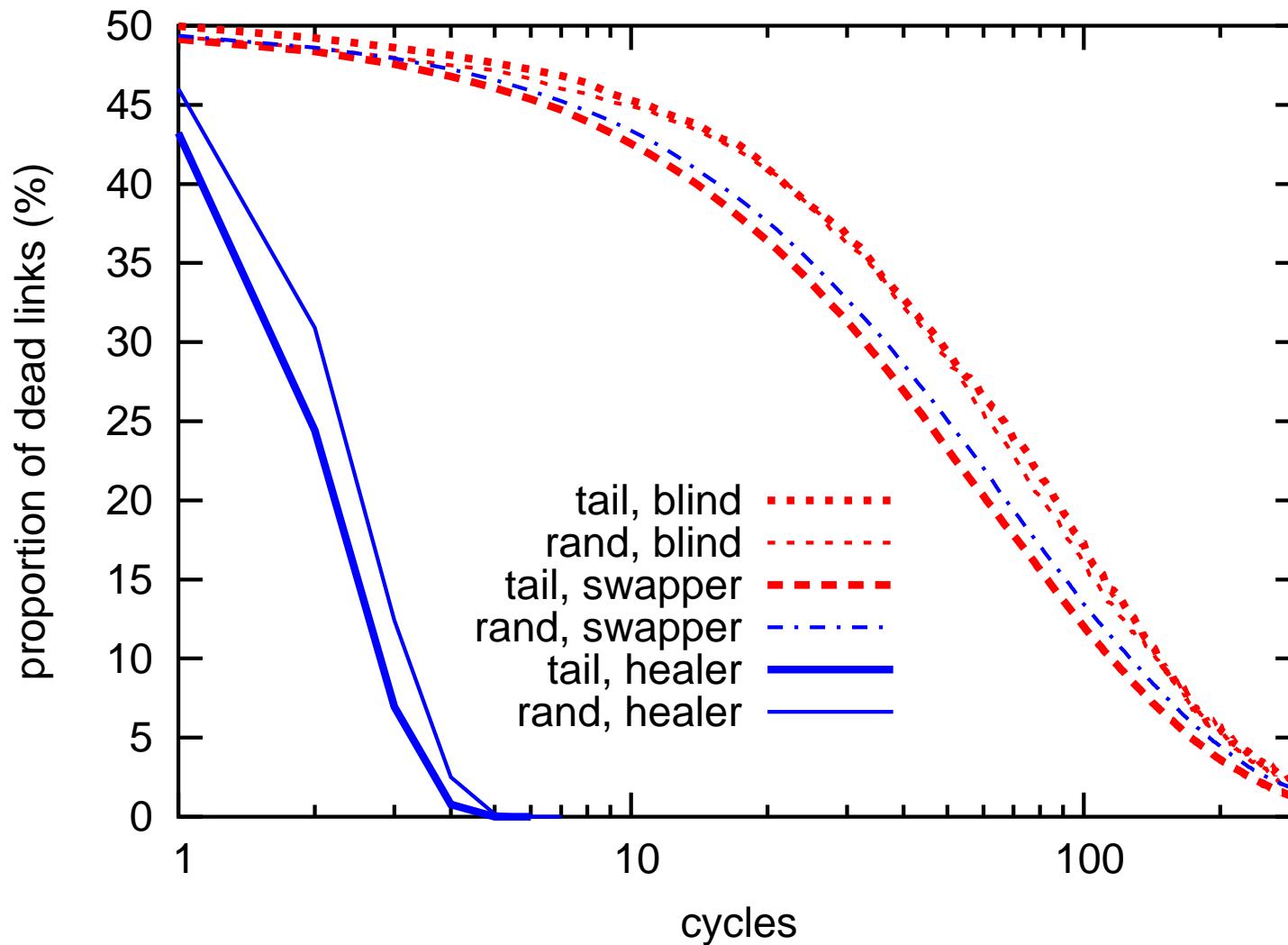


Catastrophic failure



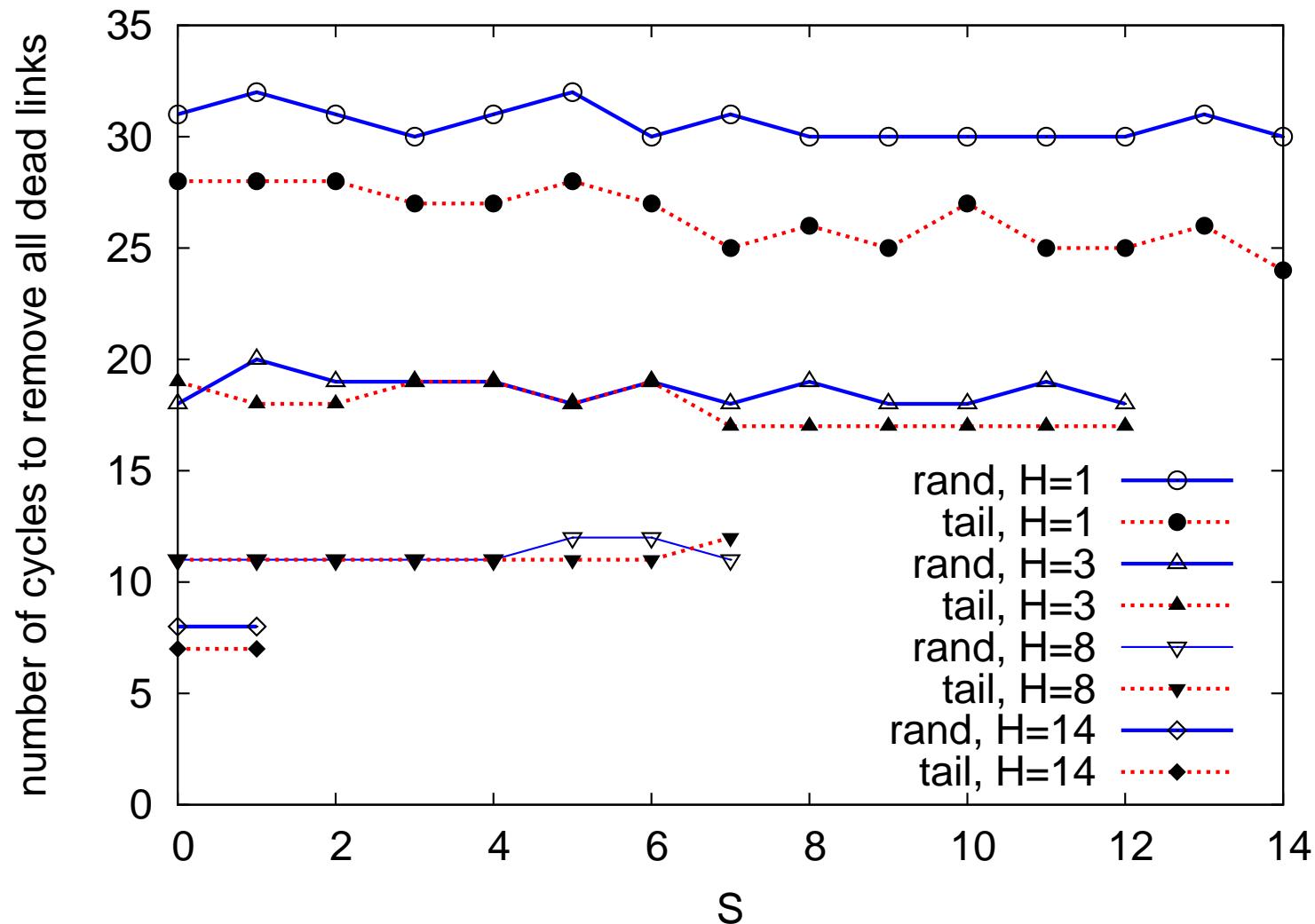
Scenario: After 300 cycles, remove large fraction of nodes.

Dead links (1/2)

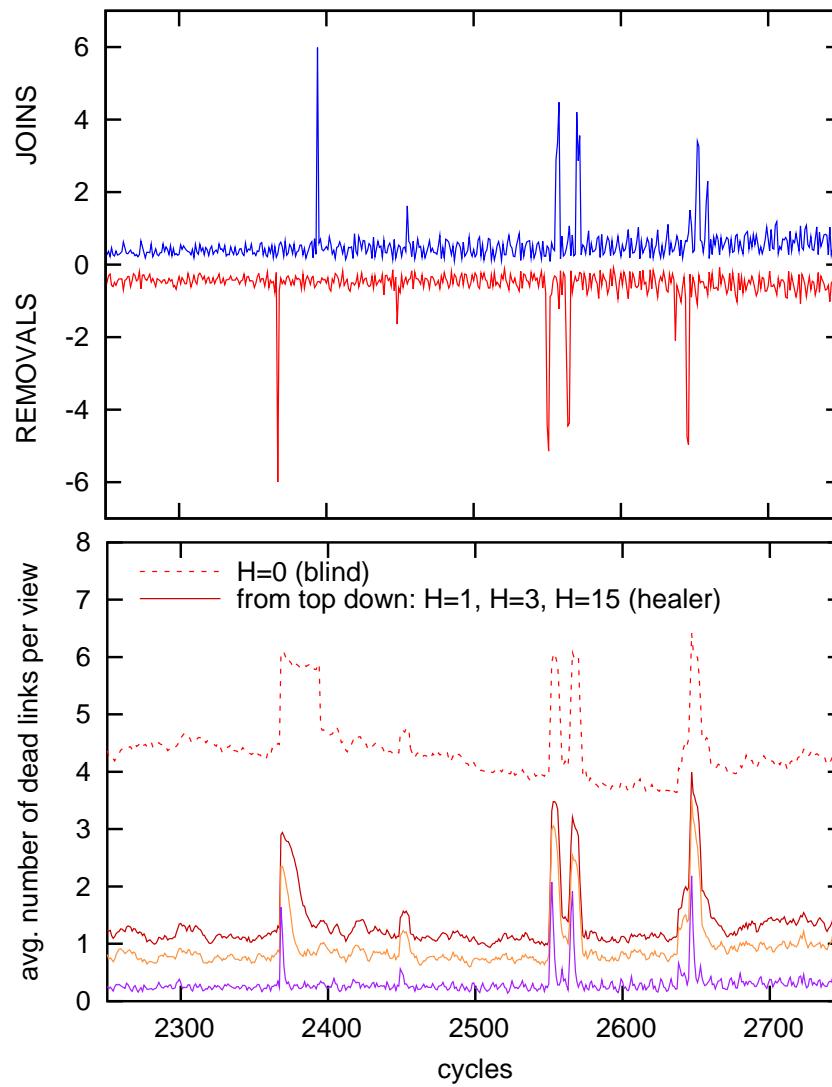


Scenario: After 300 cycles, remove 50% of nodes.

Dead links (2/2)



Handling churn: Gnutella traces



Conclusions

- Push-pull gossip protocols perform better than only push or pull
- Discarding old references is good for fault tolerance (but may also be “too” good)
- Swapping references is good for maintaining well-balanced graphs (in-degree \approx out-degree)
- Differences between protocols mainly affect the nonfunctional properties of applications

Challenge: Can we develop **models** that capture these **nonfunctional** properties?