
Gossip-based Peer Sampling

Maarten van Steen

Introduction

• Epidemic-based protocols are popular for
communication in large-scale distributed systems:

– reliable in the presence of high churn and network failures
– efficient when it comes to management
– often local-only solutions

• Applications:

– Information dissemination
– Topology/overlay construction
– Resource management (node allocation, replica mgt.)
– Decentralized computations (aggregation, data fusion)

Basics

Assume there are no write–write conflicts:

Anti-entropy: Each replica regularly chooses another
replica at random, and exchanges state differences,
leading to identical states at both afterwards.

Gossiping: A replica which has just been updated
(i.e., has been contaminated), tells a number of
other replicas about its update (contaminating them
as well).

System Model

• Consider N nodes, each storing a number of objects

• Each object O has a primary node at which updates
for O are always initiated.

• An update of object O at node S is always
timestamped; the value of O at S is denoted
val(O,N)

• T (O,N) denotes the timestamp of the value of object
O at node S

Anti-Entropy

Basic issue: When a node S contacts another node S∗

to exchange state information, three different
strategies can be followed:

Push: T (O,S∗) < T (O,N)⇒ val(O,S∗)← val(O,N)
Pull: T (O,S∗) > T (O,N)⇒ val(O,N)← val(O,S∗)
Push-Pull: S and S∗ exchange their updates

Observation: if each node periodically randomly
chooses another node for exchanging updates, an
update is propagated in O(log(N)) cycles.

Analysis

Consider a single source, propagating its update. Let
pi be the probability that a node has not received the
update after the i-th cycle.

• With pull, pi+1 = (pi)2: the node was not updated during the i-th
cycle and should contact another ignorant node during the
next cycle.

• With push, pi+1 = pi(1− 1
N)N(1−pi) ≈ pie−1 (for small pi and large

N): the node was ignorant during the i-th cycle and no updated
node chooses to contact it during the next cycle.

Gossiping

Basic model: A node P with an update contacts other
node Q. If Q already knows the update, P stops
contacting other nodes with probability 1/k.

Fraction of ignorant nodes:
s = e−(k+1)(1−s)

k s
1 0.203188
2 0.059520
3 0.019827
4 0.006977
5 0.002516

Observation: If we have to ensure that all nodes are
eventually updated, gossiping alone is not enough.

Observation

So far: Models assume a peer P selects node Q
uniformly at random⇒ generally not realistic for large
distributed systems:

• Systems can easily consist of 10,000+ nodes
• Nodes join and leave regularly: churn can easily be > 1%
• special case: nodes fail and recover

Question: What does it take to build a decent
peer-sampling service?

Observation: The service can be built entirely with
epidemic-based techniques.

A bit of history...

Note: Nodes will maintain a (changing) list of
neighbors, inducing a (directed) communication
graph.

• Márk Jelasity and I developed the Newscast protocol (2002)

• Patrick Eugster, Rachid Guerraoui and Anne-Marie Kermarrec
developed lpbcast (2001–2003)

• Eugster et al. assumed communication graph to be random,
developed a nice theoretical framework and got results
published in ACM TOCS

A bit of history...

• We had already discovered that the lpbcast (as well as the
Newscast) graph was far from being random

• We got a bit frustrated (having only our tech report)...

Issue: If you can’t beat ’em, join ’em...

Collaborators

• Márk Jelasity, University of Szeged (Hungary)

• Spyros Voulgaris, ETH, Zürich

• Rachid Guerraoui, EPFL, Lausanne

• Anne-Marie Kermarrec, INRIA, Rennes

• Maarten van Steen, VU, Amsterdam

BTW: By now, we finally understand why assuming a
random graph is never obvious, and should be
explicitly validated.

Talk - outline

• Present framework for peer sampling that captures
many different protocols

• Evaluation of local randomness
(or: why assuming uniformity is correct)

• Evaluation of global randomness
(or: why assuming uniformity is not correct)

• Conclusions

Framework - overview
Active thread Passive thread
selectPeer(&Q);
selectToSend(&refs s);
sendTo(Q,{me,refs s});

receiveFrom(Q, &refs r);
selectToKeep(p view,refs r);

receiveFromAny(&P, &refs r);
selectToSend(&refs s);
sendTo(P,{me,refs s});
selectToKeep(p view,refs r);

selectPeer Select a current neighbor (from partial view).
selectToSend Select c/2 entries from partial view.
selectToKeep Add received entries to partial view. Remove

repeated items. Then keep c entries.

Note: We can also exchange data items, or
combination of data and references

Framework - for real

• N nodes, each having an address

• Every node has a partial view: a local list of c node descriptors

• Node descriptor = 〈 address, age 〉 pair

• Operations on partial view:
selectPeer() return an item
permute() randomly shuffle items
increaseAge() forall items add 1 to age
append(...) append a number of items
removeDuplicates() remove duplicates (on same address), keep youngest
removeOldItems(n) remove n descriptors with highest age
removeHead(n) remove n first descriptors
removeRandom(n) remove n random descriptors

Active thread (one per node)
do forever

wait(T time units) // T is called the cycle length
p← view.selectPeer() // Sample a live peer from the current view
if push then // Take initiative in exchanging partial views

buffer← (〈 MyAddress,0 〉) // Construct a temporary list
view.permute() // Shuffle the items in the view
move oldest H items to end of view // Necessary to get rid of dead links
buffer.append(view.head(c/2)) // Copy first half of all items to temp. list
send buffer to p

else // empty view to trigger response
send (null) to p

if pull then // Pick up the response from your peer
receive bufferp from p
view.select(c,H,S,bufferp) // Core of framework – to be explained

view.increaseAge()

Passive thread (one per node)

do forever
receive bufferp from p // Wait for any initiated exchange
if pull then // Executed if you’re supposed to react to initiatives

buffer← (〈 MyAddress,0 〉) // Construct a temporary list
view.permute() // Shuffle the items in the view
move oldest H items to end of view // Necessary to get rid of dead links
buffer.append(view.head(c/2)) // Copy first half of all items to temp. list
send buffer to p

view.select(c,H,S,bufferp) // Core of framework – to be explained
view.increaseAge()

View selection

Parameters:

c: length of partial view
H: number of items moved to end of list (healing)
S: number of items that are swapped with a peer
bufferp: received list from peer

method view.select(c, H, S, bufferp)
view.append(bufferp) // expand the current view
view.removeDuplicates() // Remove by duplicate address, keeping youngest
view.removeOldItems(min(H,view.size-c)) // Drop oldest, but keep c items
view.removeHead(min(S,view.size-c)) // Drop the ones you sent to peer
view.removeAtRandom(view.size-c) // Keep c items (if still necessary)

Design space – peer selection

selectPeer() returns a live peer from the current view.
Essentially, there are three possibilities:

head: pick the address of the youngest descriptor (i.e., with low
age) – bad choice, since this is the neighbor the node most
recently communicated with⇒ offers little opportunities for
selecting unknown nodes (confirmed by experiments)

rand: pick the address of a randomly selected descriptor

tail: pick the address of the oldest descriptor (i.e., with high age)

Design space – view propagation

push: Node sends descriptors to selected peer

pull: Node only pulls in descriptors from selected peer

pushpull: Node and selected peer exchange descriptors

Note: pulling alone is pretty bad: a node has no
opportunity to insert information on itself. Loss of all
incoming connections will throw a node out of the
network (may actually happen).

Design space – view selection
Note: Critical parameters are H and S in method
select(c, H, S, buffer). Assume c is even.

• [H > c/2]≡ [H = c/2], as minimum view size is always c
• Likewise, [S > c/2−H]≡ [S = c/2−H]
• Do random removal (last step) only if S < c/2−H
• Conclusion: consider only 0≤ H ≤ c/2 and 0≤ S≤ c/2−H

blind: remove(H = 0,S = 0) — select blindly a random subset

healer: remove(H = c/2,S = 0) — select freshest items

swapper: remove(H = 0,S = c/2) — min. loss of descriptors

Local evaluations

• Essence: each node is allocated a unique ID from [0,N−1]

• Consider the series of selected IDs by a specific peer

• Series is tested by the “diehard battery of randomness tests.”
(see www.stat.fsu.edu/pub/diehard)

• Examined blind,healer,swapper, fixing to tail and pushpull

Conclusion: it is difficult to observe nonrandom local
behavior. The functional properties of peer sampling
are barely affected by the choice of implementation.

Applications will often not see the difference

Global randomness

Issue: Deciding on global randomness is a bit tricky
⇒ focus on structural properties by comparing to
random graph (= partial view consists of c uniform randomly
chosen peers).
Indegree distribution: has a serious effect on load balancing:

hot spots, bottlenecks, but also on the spreading of
information.

Fault tolerance: to what extent can the service withstand
catastrophic failures and high churn?

Note: concentrate on N = 10,000 and c = 30. Results
are based on simulations and emulations.

Convergence behavior

Consider three starting situations:

Growing: Start with one node X . Before starting a next cycle,
add 500 nodes. Each new node knows only about X .

Lattice: Organize all nodes in a ring. Add descriptors of nearest
nodes in the ring.

Random: Every view is filled with a uniform random sample of
all nodes.

Observation: Pure pushing converges poorly and
often leads to partitioned overlays in growing
scenario.

Maximal indegree growing scenario

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 50 100 150 200 250 300

m
ax

im
al

 in
de

gr
ee

cycles

push protocols

pushpull protocols

Note: From now on consider only pushpull protocols

Converged indegree distribution

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160

pr
op

or
tio

n
of

 n
od

es
 (

%
)

indegree

[rand] tail, swapper
[rand] tail, blind

[rand] tail, healer
random graph

Fluctuation of degree distribution (1/2)

Observation: it turns out that the in-degree for each
node changes over time. The question is how quickly.

Let d1, . . . ,dK denote in-degree for a fixed node for K
consecutive cycles, and d̄ the average in-degree. Let

rk =
∑

K−k
j=1 (d j− d̄)(d j+k− d̄)

∑
K
j=1(d j− d̄)2

be the correlation between pairs of in-degree
separated by k cycles.

Fluctuation of degree distribution (2/2)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

au
to

co
rr

el
at

io
n

of
 n

od
e

de
gr

ee

time lag (cycles)

tail, blind
rand, blind

tail, swapper
rand, swapper

tail, healer
rand, healer

99% confidence band

Clustering coefficient (1/2)

Note: Consider the undirected graph by dropping the
direction.

Clustering coefficient indicates to what extent the
neighbors of a node X are each other’s neighbors. Let
ΓX denote the graph induced by the neighbors of node
X .

γ(X) =
|E(ΓX)|(|V (ΓX)|

2

)
For a graph: take the average over all nodes.

Clustering coefficient (2/2)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 2 4 6 8 10 12 14

cl
us

te
rin

g
co

ef
fic

ie
nt

H

rand, S=0
tail, S=0

rand, S=3
tail, S=3

rand, S=8
tail, S=8

rand, S=14
tail, S=14

random graph

Catastrophic failure

 0.01

 0.1

 1

 10

 100

 65 70 75 80 85 90 95av
er

ag
e

of

 n
od

es
 o

ut
si

de
 th

e
la

rg
es

t c
lu

st
er

removed nodes (%)

[rand] tail, blind
[rand] tail, healer
[rand] tail, swapper
random graph

Scenario: After 300 cycles, remove large fraction of nodes.

Dead links (1/2)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 10 100

pr
op

or
tio

n
of

 d
ea

d
lin

ks
 (

%
)

cycles

tail, blind
rand, blind

tail, swapper
rand, swapper

tail, healer
rand, healer

Scenario: After 300 cycles, remove 50% of nodes.

Dead links (2/2)

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14

nu
m

be
r

of
 c

yc
le

s
to

 r
em

ov
e

al
l d

ea
d

lin
ks

S

rand, H=1
tail, H=1

rand, H=3
tail, H=3

rand, H=8
tail, H=8

rand, H=14
tail, H=14

Handling churn: Gnutella traces

-6

-4

-2

 0

 2

 4

 6

R
E

M
O

V
A

LS

 J
O

IN
S

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2300 2400 2500 2600 2700

av
g.

 n
um

be
r

of
 d

ea
d

lin
ks

 p
er

 v
ie

w

cycles

H=0 (blind)
from top down: H=1, H=3, H=15 (healer)

Conclusions

• Push-pull gossip protocols perform better than only push or
pull

• Discarding old references is good for fault tolerance (but may
also be “too” good)

• Swapping references is good for maintaining well-balanced
graphs (in-degree ≈ out-degree)

• Differences between protocols mainly affect the nonfunctional
properties of applications

Challenge: Can we develop models that capture
these nonfunctional properties?

