Gossip-based Peer Sampling

he

Maarten van Steen

vrije Universiteit amsterdam

Introduction

e Epidemic-based protocols are popular for
communication in large-scale distributed systems:

— reliable in the presence of high churn and network failures
— efficient when it comes to management
— often local-only solutions

e Applications:

— Information dissemination

— Topology/overlay construction

— Resource management (node allocation, replica mgt.)
— Decentralized computations (aggregation, data fusion)

Basics
Assume there are no write—write conflicts:

Anti-entropy: Each replica regularly chooses another
replica at random, and exchanges state differences,
leading to identical states at both afterwards.

Gossiping: A replica which has just been updated
(i.e., has been contaminated), tells a number of
other replicas about its update (contaminating them
as well).

System Model

e Consider N nodes, each storing a number of objects

e Each object O has a primary node at which updates
for O are always initiated.

¢ An update of object O at node S is always
timestamped; the value of O at S is denoted
val(O,N)

e 7(0O,N) denotes the timestamp of the value of object
O at node §

Anti-Entropy

Basic issue: When a node S contacts another node S*
to exchange state information, three different
strategies can be followed:

Push: T(0,8) <T(O,N)=val(O,S*) «—val(O,N)
Pull: T(0,8)>T(O,N)=val(O,N) «—val(O,S")
Push-Pull: S and S* exchange their updates

Observation: if each node periodically randomly
chooses another node for exchanging updates, an
update is propagated in O(log(N)) cycles.

Analysis

Consider a single source, propagating its update. Let

p; be the probability that a node has not received the
update after the i-th cycle.

o With pull, p;s1 = (p;)*: the node was not updated during the i-th
cycle and should contact another ignorant node during the
next cycle.

e With push, piy1 = pi(1 — 1)V = pie™! (for small p; and large
N): the node was ignorant during the i-th cycle and no updated
node chooses to contact it during the next cycle.

Gossiping

Basic model: A node P with an update contacts other
node Q. If O already knows the update, P stops
contacting other nodes with probability 1/«.

k)
0.203188
0.059520
0.019827
0.006977
0.002516

Fraction of ignorant nodes:

= e_(k"H)(l_S)

Dn = W N =

Observation: If we have to ensure that all nodes are
eventually updated, gossiping alone is not enough.

Observation

So far: Models assume a peer P selects node Q
uniformly at random =- generally not realistic for large
distributed systems:

e Systems can easily consist of 10,000+ nodes
e Nodes join and leave regularly: churn can easily be > 1%
e special case: nodes fail and recover

Question: What does it take to build a decent
peer-sampling service?

Observation: The service can be built entirely with
epidemic-based techniques.

A bit of history...

Note: Nodes will maintain a (changing) list of
neighbors, inducing a (directed) communication
graph.

e Mark Jelasity and | developed the Newscast protocol (2002)

e Patrick Eugster, Rachid Guerraoui and Anne-Marie Kermarrec
developed Ipbcast (2001-2003)

e Eugster et al. assumed communication graph to be random,
developed a nice theoretical framework and got results
published in ACM TOCS

A bit of history...

e We had already discovered that the Ipbcast (as well as the
Newscast) graph was far from being random

e We got a bit frustrated (having only our tech report)...

Issue: If you can’'t beat ‘'em, join ‘em...

Collaborators

e Mark Jelasity, University of Szeged (Hungary)
e Spyros Voulgaris, ETH, Zlrich

e Rachid Guerraoui, EPFL, Lausanne

e Anne-Marie Kermarrec, INRIA, Rennes

e Maarten van Steen, VU, Amsterdam

BTW: By now, we finally understand why assuming a
random graph is never obvious, and should be
explicitly validated.

Talk - outline

e Present framework for peer sampling that captures
many different protocols

e Evaluation of local randomness
(or: why assuming uniformity is correct)

e Evaluation of global randomness
(or: why assuming uniformity is not correct)

e Conclusions

Framework - overview

Active thread Passive thread
selectPeer (&Q) ;

selectToSend (&refs_s) ;

sendTo (Q, {me, refs_s}); receiveFromAny (&P, &refs_r);
selectToSend (&refs_s) ;
receiveFrom(Q, &refs_r); sendTo (P, {me, refs_s});

selectToKeep (p-view, refs_ r); | selectToKeep (p_-view, refs_r);

selectPeer Select a current neighbor (from partial view).
selectToSend | Select ¢/2 entries from partial view.
selectToKeep | Add received entries to partial view. Remove
repeated items. Then keep ¢ entries.

Note: We can also exchange data items, or
combination of data and references

Framework - for real

e N nodes, each having an address
e Every node has a partial view: a local list of ¢ node descriptors
e Node descriptor = (address, age) pair

e Operations on partial view:

selectPeer() return an item

permute() randomly shuffle items
increaseAge() forall items add 1 to age
append(...) append a number of items

removeDuplicates() remove duplicates (on same address), keep youngest
removeOldltems(n) remove n descriptors with highest age
removeHead(n) remove n first descriptors

removeRandom(n) remove n random descriptors

Active thread (one per node)

do forever

wait(T time units) // T is called the cycle length

p <+ view.selectPeer() // Sample a live peer from the current view

if push then // Take initiative in exchanging partial views
buffer — ((MyAddress,0)) // Construct a temporary list
view.permute() // Shuffle the items in the view
move oldest H items to end of view // Necessary to get rid of dead links
buffer.append(view.head(c/2)) // Copy first half of all items to temp. list
send buffer to p

else // empty view to trigger response
send (null) to p

if pull then // Pick up the response from your peer
receive buffer, from p
view.select(c,H,S,buffer,) // Core of framework — to be explained

view.increaseAge()

Passive thread (one per node)

do forever

receive buffer, from p // Wait for any initiated exchange

if pull then // Executed if you're supposed to react to initiatives
buffer — ({ MyAddress,0)) // Construct a temporary list
view.permute() // Shuffle the items in the view
move oldest H items to end of view // Necessary to get rid of dead links
buffer.append(view.head(c/2)) // Copy first half of all items to temp. list
send buffer to p

view.select(c,H,S,buffer,) // Core of framework — to be explained

view.increaseAge()

View selection

Parameters:

c: length of partial view

H: number of items moved to end of list (healing)
S: number of items that are swapped with a peer
buffer,: received list from peer

method view.select(c, H, S, buffer,)
view.append(buffer,) // expand the current view
view.removeDuplicates() // Remove by duplicate address, keeping youngest
view.removeOldltems(min(H,view.size-c)) // Drop oldest, but keep ¢ items
view.removeHead(min(S,view.size-c)) // Drop the ones you sent to peer
view.removeAtRandom(view.size-c) // Keep c items (if still necessary)

Design space — peer selection

selectPeer() returns a live peer from the current view.
Essentially, there are three possibilities:

head: pick the address of the youngest descriptor (i.e., with low
age) — bad choice, since this is the neighbor the node most
recently communicated with =- offers little opportunities for
selecting unknown nodes (confirmed by experiments)

rand: pick the address of a randomly selected descriptor

tail: pick the address of the oldest descriptor (i.e., with high age)

Design space — view propagation

push: Node sends descriptors to selected peer
pull: Node only pulls in descriptors from selected peer

pushpull: Node and selected peer exchange descriptors

Note: pulling alone is pretty bad: a node has no
opportunity to insert information on itself. Loss of all
incoming connections will throw a node out of the
network (may actually happen).

Design space — view selection

Note: Critical parameters are H and S in method
select(¢, H, S, buffer). Assume c is even.

H > c¢/2] = [H = c¢/2], as minimum view size is always c
_ikewise, [S>c¢/2—H|=[S=c¢/2—H]

Do random removal (last step) only if S<c¢/2—H
Conclusion: consideronly 0 < H <c¢/2and0<S<c¢/2—H

blind: remove(H = 0,5 = 0) — select blindly a random subset
healer: remove(H = ¢/2,5 = 0) — select freshest items
swapper: remove(H = 0,5 = ¢/2) — min. loss of descriptors

Local evaluations

e Essence: each node is allocated a unique ID from [0, N — 1]
e Consider the series of selected IDs by a specific peer

e Series is tested by the “diehard battery of randomness tests.”
(see www.stat.fsu.edu/pub/diehard)

e Examined blind,healer,swapper, fixing to tail and pushpull

Conclusion: it is difficult to observe nonrandom local
behavior. The functional properties of peer sampling
are barely affected by the choice of implementation.

Applications will often not see the difference

Global randomness

Issue: Deciding on global randomness is a bit tricky
= focus on structural properties by comparing to
random graph (= partial view consists of ¢ uniform randomly
chosen peers).

Indegree distribution: has a serious effect on load balancing:

hot spots, bottlenecks, but also on the spreading of
information.

Fault tolerance: to what extent can the service withstand
catastrophic failures and high churn?

Note: concentrate on N = 10,000 and ¢ = 30. Results
are based on simulations and emulations.

Convergence behavior

Consider three starting situations:

Growing: Start with one node X. Before starting a next cycle,
add 500 nodes. Each new node knows only about X.

Lattice: Organize all nodes in a ring. Add descriptors of nearest
nodes in the ring.

Random: Every view is filled with a uniform random sample of
all nodes.

Observation: Pure pushing converges poorly and
often leads to partitioned overlays in growing
scenario.

Maximal indegree growing scenario

10000 i
o000 | %‘/\
8000 r push protocols .
o 7000 r
o
D 6000 r
©
= 5000 |
©
£ 4000
X
c
S 3000 r
2000 pushpull protocols
1000
0 i ; E—— . ;
0 50 100 150 200 250 300
cycles

Note: From now on consider only pushpull protocols

Converged mdegree dlstrlbutlon

& [rand] tail, swapper °
10 [rand] tail, blind = T
[rand] tail, healer

random graph ———

proportion of nodes (%)

0 20 40 60 80 100 120 140 160
indegree

Fluctuation of degree distribution (1/2)

Observation: it turns out that the in-degree for each
node changes over time. The question is how quickly.

Let d,,...,dx denote in-degree for a fixed node for K
consecutive cycles, and d the average in-degree. Let

Y (dj—d)(djr—d)
Yii(dj—d)?

be the correlation between pairs of in-degree
separated by k cycles.

Vi —

Fluctuation of degree distribution (2/2)

autocorrelation of node degree

[[
tail, blind
rand, blind
tail, swapper
rand, swapper
tail, healer
rand, healer
99% confidence band

100
time lag (cycles)

Clustering coefficient (1/2)

Note: Consider the undirected graph by dropping the
direction.

Clustering coefficient indicates to what extent the
neighbors of a node X are each other’s neighbors. Let
['x denote the graph induced by the neighbors of node

. E(Ty)
L X

Y(X) = (V0

For a graph: take the average over all nodes.

clustering coefficient

Clustering coefflment (2/2)

0.16
rand S=0 —e—
tall S=0 - [
0-14 1 rand, S=3 —a—
tail, S=3 - A
0.12 v rand, S=8 ——
tail, S=8 - S
0.1} rand, S=14 ——
ta”, 8214 ----- oS .
0.08 random graph -
cost AL w
0.04
0.02 W0 o
0 | | . |
0 2 4 6 8 10 12 14

Catastrophic failure

% '] [[|

= 100 | "ttt [rand] tail, blind

° I [rand] tail, healer

@ - [rand] tail, swapper

=X - random graph]
<

o) 10 -
E B -
(<))

9 B -
12

S 1 -
O i -
O]

©

O B -
c

“'6 0.1 — ‘.’ —
1 [. :
O] o

(@) K

© - . .
2 L o

> 0.01

65 70 75
removed nodes (%)

Scenario: After 300 cycles, remove large fraction of nodes.

Dead links (1/2)

50 E:_'_;_l_-: kg . 1 1 1 LI I 1 1 LI I 1
- -...I:'L:E\!gg..
45 h\.-.;;i.tltt. —
§~\~.\ t"it
,0\5\ 40 ~.\s’\ .*«]
~ A 3N e
N, tt
£ 35 MRS -
c AT
= pRN e
- 30 NS _
o ISR
= 25 “\‘ “‘“ —_
° LS A
. . $ ‘e
c 20 tail, blind =+==+-- RN =
= rand, blind ------- o
g 15 tail, swapper ====-= S -
o rand, swapper ------ o
s 10 tail, healer S, T
rand, healer AR
S S T
3y
O 1 L1l I 1 1 1 1 1 L1l I I:‘&;ﬂ
1 10 100
cycles

Scenario: After 300 cycles, remove 50% of nodes.

number of cycles to remove all dead links

Dead links (2/2)

rand, H=14 —o—
tal!’ H=14 ---- PO

2 4 6 8 10 12 14

Handling churn: Gnutella traces

6 - —
%
Z 4 .
O
vl

2 - —

NN A T

O Foyptshomteane il
(n A
< 2} -
>
@)
o o4 -
o

6 | -

l l l l l

8 T T T T
R H=0 (blind)
2 7 —— from top down: H=1, H=3, H=15 (healer) -
8 6| : _
2
£ 5 -
-% RN g L
3 4r
S 3t
(]
o]
E 2r
c
o 1 [
s

0 1

2300 2400 2500 2600 2700
cycles

Conclusions

e Push-pull gossip protocols perform better than only push or
pull

e Discarding old references is good for fault tolerance (but may
also be “too” good)

e Swapping references is good for maintaining well-balanced
graphs (in-degree =~ out-degree)

e Differences between protocols mainly affect the nonfunctional
properties of applications

Challenge: Can we develop models that capture
these nonfunctional properties?

