ieke Massink schrieb:
A general approach to defining behavioural relations over
processes as the maximal pre--congruences induced by basic observables
can be summarised as follows:
Given a language equipped with a reduction relation:
1. Define a set of observables (values, normal forms, \ldots)

to which a program can evaluate by means of successive reductions.
2. Define a basic preorder over terms by stating that

a term is less defined than another if it exhibits

a smaller set of basic observables.
3. Consider the largest pre--congruence over the

language induced by the basic preorder.

In the non-probabilistic setting this very general approach has lead to
alternative formalisations of well-known pre-congruences such as the
testing pre-congruence of De Nicola and Hennessy, but has also lead

to new interesting pre-congruences such as the safe-must pre-order.
Essentially, in this approach basic observables

are used to provide information about the initial communication
capabilities of processes and the preorders were obtained by

observing processes within all possible contexts.

Given the success in the non-probabilistic setting, we are currently
adapting the approach to study models of probabilistic concurrent systems
and their equivalences. The basic observables that we will use for our
probabilistic setting will instead provide information on the probability
that a process communicates along specific channels (the probability of
observing a specific action depends on the sequence of non-deterministic
choices between several outgoing transitions).

For the approach outlined above, the choice of the language and the choice
of the basic observables are crucial ones. As base language for defining
context and processes, we so far considered a simple variant of CCS,

the probabilistic process calculus PCCS as introduced by

Baier with an operational semantics based on the

probabilistic automaton model. PCCS is a probabilistic extension of a
significant subset of CCS.

So far, we defined a probabilistic basic observation pre-order over
PCCS terms and we showed that the induced congruence coincides with a
probabilistic extension of the weak may testing preorder of De Nicola
and Hennessy. Of course, there are many more open questions:

1) Can the approach be extended to probabilistic must testing as well?
2) What would be the most suitable base language to base the theory on?
3) What are in fact the most suitable and realistic probabilistic

basic observables? I.e. what can be really observed of a probabilistic
system in practice?

4) Can similar approaches be used also in a stochastic setting?
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aria Mateescu schrieb:
1. Are there any interesting properties that can not be expressed in PCTL?

2. Given a labelled Markov chain $A$, with 3 states, which would be the
labelled Markov chain $B$, with only 2 states, such that $A$ and $B$ are
as '"'close™ as possible from an observable point of view.

By a labelled MC we refer to a MC where the states are labelled with
obervables.

VVVVVVVVZ

Joel Ouaknine schrieb:
1) The Skolem Problem.

An instance of the Skolem problem is the following: given a linear recurrence
relation (of the form a _{n+k} = f(a_{n}, a_{n+1}, ..., a_{n+k-1}), where T is
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linear function) together with initial values a 0, a 1, ..., a {k-1},



determine
if the sequence <a_i> ever hits O.

It is not known in general if this problem is decidable. (It is decidable for
recurrence depths of up to 5, but even this is highly non-trivial.)

This (the question of decidability) is a long-standing problem, dating back
possibly 70 years. See Vesa Halava, Tero Harju, Mika Hirvensalo and Juhani
Karhumki, "Skolem"s Problem - On the Border between Decidability and
Undecidability', Technical Report 683, TUCS, Apr 2005, for a comprehensive
survey.

VVVVVVVVVVVYV

This problem is very interesting in its own right, and has several connections

to various parts of mathematics (e.g. number theory, dynamical systems) and
computer science (e.g. termination of linear programs). There are also strong
connections to probabilistic systems; for example, an open model-checking
problem raised by D. Beauquier, A. Rabinovich and A. Slissenko in "A logic of
probability with decidable model-checking', CSL 2002, reduces to a special
ase

of the Skolem problem.

2) The Probabilistic Contextual Equivalence Problem.

VVVVVVVQOVVYVVYV

Much work has been done in modelling and model checking probabilistic programs

> by deriving and analysing associated Markov chains obtained straightforwardly
> through an operational semantics, or more generally through a probabilistic

> state-transformer semantics. Certain problems, however, are more suitable to
be

> handled via equivalence checking than via model checking; a key example is
that

> of anonymity, In which most interpretations in the literature require an

> observer not to be able to distinguish between several versions of a given

> process.
>
>

The (meta) problem we ask is this: given a probabilistic programming language,

an instance of the contextual equivalence problem for this language consists
T

two programs P1 and P2 potentially having free identifiers. The question is:
are P1 and P2 are contextually equivalent? In other words is it the case that
for all programming contexts C[-] (that have a "hole® in it), C[P1] and C[P2]
are observationally undistinguishable?

We believe the probabilistic contextual equivalence problem (in particular,
ts

decidability) is potentially very interesting for a range of probabilistic
programming languages.

3) Minimisation of Probabilistic Automata.

Given a (Rabin) probabilistic automaton A, are there good notions of the
minimal automaton A" that is equivalent to A? If so, iIs it computable? What of

VVVVVVVVVlVVVVVYVOYV

the complexity of this procedure? And if the latter is high, are there
relatively cheap ~“good approximations®?

4) Approximation of Probabilistic Automata.

VVVVVVYVYV

Define good distance metrics between (Rabin) probabilistic automata. Are these

\Y

computable/decidable? Do relatively cheap “good approximations® to such
metrics
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5) Randomised Algorithms in Verification.

Verification has traditionally relied almost exclusively on deterministic (as
opposed to probabilistic) algorithms. Is there scope for randomised algorithms

> in verification?

>

S

>

> 6) Decidability via Probability.

>

> The theory of infinite-state systems abounds with undecidable problems. There
> are several instances, however, in which a “probabilistic” version of an

> infinite-state problem becomes decidable -- see, e.g.,

>

> a) Eugene Asarin, Pieter Collins: Noisy Turing Machines. ICALP 2005:
1031-1042,

>

> b) P. A. Abdulla, N. Bertrand, A. Rabinovich and Ph. Schnoebelen. Verification
> of Probabilistic Systems with Faulty Communication. Information and
Computation

> 202(2), pages 141-165, 2005.

>

> c¢) C. Baier, N. Bertrand and Ph. Schnoebelen. Verifying nondeterministic

> probabilistic channel systems against omega-regular linear-time properties.

> ACM Transactions on Computational Logic 9(1), 2007. To appear.

>

> Are there other interesting classes of such instances, or general underlying
> principles at work? More speculatively: given an undecidable problem, are
there

> systematic ways to obtain a decidable “probabilised® version of this problem?

>

Sergio Giro schrieb:
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Abstracts:
A formalism being suitable to restrict interleavings

Distributed schedulers have been introduced in order to develop
techniques for compositional reasoning for Markov Decision Processes.
In the formalisms in which distributed schedulers have been introduced
so far, there are no nondeterministic choices concerning the
interleaving explicitly (for instance, in the Switched Probabilistic
1/0 Automata, the next to component to perform an output is decided
using a token-based

mechanism). Distributed schedulers are used to restrict the behaviours
of the MDPs in order to discard unrealistic behaviours. The challenge
is to develop a formalism having explicit interleaving choices, being
as simple and powerful as possible, in order to restrict behaviours
arising from unrealistic interleavings.

Randomization in restricted interleavings

Distributed schedulers have been introduced in order to develop
techniques for compositional reasoning for Markov Decision Processes.
In the formalisms iIn which distributed schedulers have been introduced
so far, there are no nondeterministic choices concerning the
interleaving explicitly (for instance, in the Switched Probabilistic
1/0 Automata, the next to component to perform an output is decided
using a token-based mechanism). Distributed schedulers are used to
restrict the behaviours of the MDPs in order to discard unrealistic
behaviours. If there are nondeterministic choices concerning
interleaving, schedulers in which interleavings are also restricted
can be defined. We called this schedulers "'Strongly distributed
schedulers™ (SDS). An interesting property to prove about SDS is
whether randomization gives extra power to SDS or not. The proof for
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distributed schedulers cannot be extended to the strongly distributed
case. After explaining intuitively the proof for distributed
schedulers, and why this proof cannot be extended, we will look for
intuitions for the proof for SDS. A preliminar draft illustrating the
problem can be found at

www . Famaf.unc.edu.ar/~sgiro/VOSSpuzzle.pdf

Dominik Wojtczak schrieb:
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Gi
>
>
>
>
>
>
>
>

Recursive Markov Chains are a natural abstract model of probabilistic
procedural programs and other systems involving recursion and
probability. They are formally equivalent to

probabilistic Pushdown Systems and they define a class of
infinite-state Markov chains.

Informally, an RMC consists of several component Markov Chains that
can call each other recursively. Each component consists of nodes and
boxes with possible probabilistic transitions between them. Each box
is mapped to a specific component so that every time we reach an entry
of this box, we jump to the corresponding entry of the component it is
mapped to. When/if we finally reach an exit node of that component, we
will jump back to a respective exit of the box that we have entered
this component from. This process models, in an obvious way, function
invocation in a probabilistic procedural program. Every potential
function call is represented by a box. Entry nodes represent
parameter values passed to the function, while exit nodes represent
returned values. Nodes within a component represent control states
inside the function.

We can extend RMCs to a model where some of the nodes are controlled
by a player. Whenever we reach such a node it is the player who
chooses which of the possible transitions from that node the process
will take. This controlled version of RMCs is called Recursive Markov
Decision Processes(RMDP) and it allows us to model nondeterministic
and interactive behavior. Unfortunately most of the interesting
problems, such as computing the probability of termination at a given
exit, for general RMDPs was proved to be undecidable by Etessami and
Yannakakis (ICALP"05). Nevertheless if we restrict our model to the
case where all of the components are allowed to have just one exit
(1-exit RMDPs) this problem becomes efficiently computable.

Among many interesting questions one can ask for l-exit RMDPs is a
question of computing the maximum probability of reaching a given node
in any context. It was shown in Brazdil, Kucera, et. al. (CONCUR"06),
building on 1-RMDP qualitative termination algorithm devised by
Etessami and Yannakakis (STACS"06), that we can decide in P-time if
there exists a strategy for the player such that the probability of
reaching that node is 1. However there are examples of 1-RMDPs such
that no optimal strategy exists, although for any probability p less
than 1 it is possible to construct a strategy for which the
probability of reaching that node is higher that p.

The quantitative version of this problem is still not known to be
decidable. Namely we do not know any algorithm that could decide
whether there exists a strategy under which the probability of
reaching a given node is higher than a given p \in (0,1). This is the
case although we have both numerical and decision algorithms for the
termination problem. If the reachability question is decidable what is
its complexity? Also we do not know any algorithm for deciding whether
we can achieve a probability arbitrary close to 1.

anfranco Ciardo schrieb:

When asked "What is today"s most important research challenge in
probabilistic verification?", my answer, probably biased by my own
research interests, is "Approximations!™.

Let me explain what I mean by that.

Clearly, in the strictly logical verification arena, enormous real-life
systems are being modeled and analyzed using techniques such as partial
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order reductions, symbolic representations, and abstractions. The result
is that important systems of practical interest are being tackled, even
when their size (measured in number of reachable states In their "exact"
representation) is much larger than the number of atoms in the universe,
or even infinite.

When we turn to probabilistic verification, however, the situation is much
worse. Even for the fairly simple class of models having an underlying
continuous-time Markov chain (CTMC), we can always define the model using

a compact high-level formalism, and we can often generate and store the
underlying CTMC using some symbolic representation (such as MTBDDs, EVBDDs,

or matrix diagrams). However, when we try to solve the CTMC to study its
transient or steady-state behavior, we are unable to go much beyond 1G states,
and even that requires a computer with very large amounts of RAM and
exceedingly long runtimes.

This is because, unlike the other steps of the analysis, the "exact”
numerical solution requires a vector (or more) of size equal to the number
of states in the state space. Exploitation of symmetries can sometimes
ease the burden, but only in the fairly rare case when the CTMC is lumpable,
while Courtois-style aggregation techniques can help convergence and

improve numerical stability, but, again, require a fairly strong structure
in the CTMC.

What is needed, at least as long as we strive to remain in the CTMC domain,
is not only (1) a set of general approximation techniques that can be applied
to the large underlying CTMCs arising in probabilistic verification

(we have done some substantial work in this direction already), but, also,
(2) a general theory of how to carry on probabilistic verification when the
results from the numerical computation are known to be approximate.

Indeed, once could argue that such general theory is needed in any case,
since, even when we perform an "exact"™ numerical solution, the iterative
methods employed are known to provide only a (hopefully good) approximation
of the desired exact probability vector. OFf course, however, the exact

and approximate numerical solution fundamentally differ, at least in theory,
in that the former converges to the exact probability vector, given "enough"
time, while the latter converges to a vector which is, at best, "close"

to the exact vector.

-- Gianfranco Ciardo

PS

An even more desirable goal than "approximations'™ is "bounds'". Unfortunately,
for bounds, problem (2), how to use bounds in probabilistic verification,
becomes easier, but very few practical results are known for (1), how to
obtain bounds in a general setting.

Dave Parker schrieb:
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Sorry for the belated response. My suggestion for a challenging
foundational question concerns verification of MDPs and, more
specifically, the types of adversaries (/schedulers/policies/etc.) that
are used. The basic algorithms for say PCTL model checking on MDPs
compute best-/worst-case behaviour over all adversaries. Often, this is
too strong and in practice you would want to restrict the power
(visibility) of the adversary (an obvious example is in the domain of
security protocols). There is a "99 de Alfaro paper which discusses
partial-information adversaries and there is some more recent work by
e.g. Nancy Lynch and co-authors. But I would say this remains an
important area with useful contributions to be made.

Lucia Cloth schrieb:

VVVVYVYV

Boudewi jn proposes to have a look at the Collatz Conjecture and to
tackle i1t with the methods and tools we have. What *1* really would like
to know is whether it is easier to compute the performability
distribution for an MRM iIn steady-state than for an arbitrary initial
distribution. However, 1 guess this question does not qualify as a
"theory puzzle® ;-).
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arielle Stoelinga schrieb:

1. There are various open issues in the area of Probabilistic Automata (PAs).
* Weak probabilistic forward simularity is a refinement relation that
relates states to distributions over states, but there is no symmetric
variant (corresponding to bisimilarity) of it. * Also decidability of

weak probabilistic forward simulation and of trace distribution

inclusion (and equivalence) is still open.

* The quest for a compositional trace distribution-like relation has

not ended yet

(dispite significant contributions in this direction.)

M

>

>
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>

>

>

> 2. IMCs + PA: Many applications ask for a model that combines features
> from IMCs and PAs. A comprehensive theory is of utmost importance in
> order for those applications to be analysed.
>
>
>
>
>
>
>
>
>
>
>
>
>

3. Stochastic Interface Automata. Interfaces are a framework that
allow one to propagate constraints on individual components to
constraints on a system. Interface theories have been proposed for
asynchronous, synchronous, reward-based and timed systems, but not for
stochastic systems.

4. Compositional quantitative reasoning.

[dAFS04] proposes trace distance/simulation distance as a quantitative
analogon of trace inclusion and similarity. These distances are not
compositional: it needs not be true that

dist(P,Q) <= dist(P]|IR,Q]IR). Some progress has been made in
[CdAMSO5], but a definitive answer is not given.

nne Remke schrieb:

Ich beschaeftige mich ja (noch immer) mit der "Bottleneck Analyse in
IEEE 802.11 Ad Hoc Networks®. Ueber die DCF wird ja in diesem Standard
geregelt, dass jede Station, die ein Packet verschicken moechte einen
Backoff zieht und die Station mit dem niedrigsten Backoff in jeder Runde
sein Packet verschicken darf. Stationen die nicht senden durften,
behalten den einmal gezogenen Backoff und zaehlen halt so lange mit
runter, bis sie dran sind. Die Station, die senden durfte, zieht fuer
die naechste Runde einen neuen Backoff.

Die Tatsache, dass Stationen sich ithre Backoffs merken, ist sehr
schwierig zu modelieren oder in eine einfache Formel zu packen. Bisher
konnte ich solche Formeln nur aufstellen unter der Annahme, dass in
jJeder Runde jeder einen neuen Backoff zieht...

A
>
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>
> Also waere mein Vorschlag fuer ein Puzzle, diesen Backoff Mechanismus

> (im Grunde ein einfaches Wuerfelspiel mit Gedaechtniss) zum Modelieren

> frei zu geben. Hinterher koennte man dann ja an einigen Parametern

> drehen und beobachten wie sich die Gewinnwahrscheinlichkeiten fuer die

> einzelenen Station veraendern.

Kostas Chatzikokolakis schrieb:

This issue arises when using formalisms which express both
nondeterministic and probabilistic behavior. In such formalisms

(process calculi, automata, ...) it is customary to introduce the

notion of scheduler to resolve the nondeterminism. It has been

observed that for certain applications, notably those in security, the
scheduler needs to be restricted so not to reveal the outcome of the
protocol®s random choices, or otherwise the model of adversary would

be too strong even for "obviously correct' protocols. There is some work
on models allowing to express restrictions on the power of

the scheduler, but so far the problem has not been addressed in its
generality and, to my knowledge, probabilistic model checking tools do
not provide a way to state such restrictions. Considering the
theoretical and practical interest of this issue I think it will be the
topic of more research in the near future.

VVVVVVVVVVVVVVYV

Bernd Becker und Ralf Wimmer schrieb:



VVVVVVVVVVYVVYV

Formal verification and thus also probabilistic verification strives for
formal PROOFS of correctness, properties, .... On the other hand, programs
(and also programs for formal verification) contain bugs and may produce
unreliable results.

Acitivities to circumvent these problems in classical domains include
"(DLP and numerical stability”, "Certificates in SAT and QBF". First
results show that also in "Probabilistic Verification” these concerns might
be of interest:

How to balance efficiency versus reliability in probabilistic verification?
How to efficiently compute certificates?

Martin NeuhauBer schrieb:
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as you know 1 am working in the field of continuous-time Markov
decision processes. Hence, in my opinion, the most striking puzzle
is to overcome the uniformization problems in model checking
(non-uniform) CTMDPs. Your timed-reachability paper would certainly
provide a good basis for a discussion in that respect.

Another, maybe less ambitious topic would be to think about how to
extend the exiting timed reachability algorithm for uniform CTMDPs
to CSL model checking (and here, especially to timed until formulas
with arbitrary time bounds [t,t"] where t > 0).

Markus Siegle schrieb:
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Es ware aus meiner Sicht interessant, die gewinnbringende Anwendung von
Bisimulation nochmals zu diskutieren (ich weil3, das ist nicht neu).
Aspekte dabei: Information aus dem high-level Modell (Symmetrien,
Regularitat, andere (welche?) strukturelle Eigenschaften) so weit
verfugbar ausnutzen. Sind auch Ansatze, die von einem Fflachen
Zustandsraum ausgehen, tatsachlich praktikabel? Implementierung auf
expliziten oder symbolischen Datenstrukturen? Was kostet die
Bisimulation? Wie geht man vor bei "near lumpability"? Approximative
Bisimulation, Schranken?

Vielleicht auch fur einige interessant: (Wie) kann man die Manipulation
von Decision Diagrams effizient parallelisieren?

Annabelle Mclver schrieb:
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My foundational "‘puzzle"™ is to do with the interaction of
nondeterminism and probability in a context where the
nondeterministic choice cannot depend on the result of a
previous or (possibly simultaneous) probabilistic choice.
Although there are existing formalisms which consider this
problem, none that 1 know of treat the problem of refinement
or data abstraction.

This is particularly an issue if probability is used in
modelling security applications. What I"m really after is a
practical reasoning tool rather than say a model

checking technique, although of course the two

approaches are related. For practicality the semantics/logic
must be as simple as reasonably possible!

Hichem Boudali schrieb:
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It is believed that if any of the fundamental physical constants (e.g.
speed of light in vacuum, mass of electron, etc) is slightly (we are
speaking of very small percentage change) changed then the story of
our universe would have been radically differently, and most probably
such things as stars and planets (and US!!) would not exist.

Is it possible to find a "probability value” for the absence of human beings
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given the change by say for example 0.00001 percent of the elementary charge
e (=1.602176462 x 10-19 C); and if so how would one go about

finding this probably by involving astrophysicist, biologist, computer
scientist, etc.

eza Pulungan schrieb:
The minimal representations of phase-type distributions

Transient analysis of Markov chains plays an important role in
probabilistic verification. Many measures of interest can be inferred
from this analysis. In CSL model checking, for instance, the computation
of the probability distribution of the time required to arrive at some
goal states can be carried out through transient analysis by first
making all the goal states absorbing. 1f all the goal states are lumped
into a single state, the probability distribution is called a phase-type
distribution.

Such absorbing Markov chains are called the representations of the
phase-type distributions. It was known that these representations are
not unique: distinct absorbing Markov chains may represent the same
distribution. Therefore, the problem of identifying and finding the
smallest representations, namely the representations having the smallest
size of state spaces, is interesting and important. This problem remains
one of the most interesting theoretical research in the field of
phase-type distributions.

Bjoern Wachter schrieb:
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Relating meta-approaches to the abstraction of probabilistic models

There are at least 3 systematic "meta'-approaches to

the abstraction of probabilistic models (the term meta is justified
because different instances of each respective approach may vary
siginficantly):

1) region-based abstractions as in

-> magnifying lens

-> game-based abstraction

-> predicate abstraction

they are based on partitioning the state space

into regions and computing a safe abstraction of the transition relation
over the regions.

2) the abstract interpretation-based approach of Monniaux

is an extension of abstract interpretation (Al) to the probabilistic
world.

As common in Al, the instantiation consists in the choice of an abstract
domain.

3) "probabilistic refinement of action systems" /

While (1) and (2) are state-based, this approach is based on expectation
transformers

Quantitative Refinement *and* Model Checking for the Analysis of
Probabilistic Systems (A.K. Mclver)

How do these 3 meta-approaches relate in terms of precision, expressiveness,
potential for automation?

Is there a formal or conceptual relationship between them?

1 would expect (3) to be an abstraction of (1).

Wan Fokkink und Rena Bakshi schrieb:
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1) What is a good notion of weak/branching bisimilarity for Markov
Decision Processes?

2) How can probabilistic process algebra be equipped with abstract data
types?

Fot the latter point, we have for instance struggled with the fact that



> for lists of length n, one cannot easily take an alternative composition
> over the sublists of length k<n in say PRISM.
>

Nicolas COSTE schrieb:

One assumption has to be done before using probabilistic methods: the
studied system has to present a stochastic behavior if we want to have
accurate results. This assumption is more or less difficult to justify
according to the system studied. for example, Poisson arrivals in a
queueing system is the well-known assumption, but the accuracy of the
results found from probabilistic methods depends on the validity of this
assumption. Generally this assumption is well adapted but can be wrong
for “critical" cases or critical behaviors.

However, | think it is often possible to define the error done
concerning this assumption (for example : the arrivals in a queueing
system are poissonnian in 90% of the cases so, the arrival law is
approached by the Poisson law and the error between the real law and the
Poisson law may be estimated. On the same idea we can see the problem
encountered for the xSTream architecture: a constant delay is
approximated by an erlang distribution, and we are able to estimate the
error between the distribution of a constant delay and the erlang
distribution)

So, knowing that any arbitrary law can be approached by a phase-type
distribution (which fits well for probabilistic verification), and
knowing the error done between a real law present in the studied system
and its phase-type approximation, a great result would be the knowledge
of the error done on the results found from probabilistic verification
methods.

I think this question of errors due to approximations is important in
the area of stochastic model checking. Indeed, model checking is
generally based on a complete exploration of the state space, and the
evaluation of the impact of the different approximation errors could be
used to size (and to limit) the phase-type approximations (and
consequently to limit the size of the system model). Otherwise, the only
thing we can say is that the improvement of the phase-type
approximations (generally increasing the number of states of the phase
type distributions) implies that the results found are more accurate,
but we can not evaluate the link between the gain of accuracy and the
way the phase-type distribution '"get fatter'. Unfortunately, using more
and more accurate approximations is a problem for model checking due to
size explosion of the system.

I don"t know if this problem can be seen as a foundational problem
because it may be unsolvable. But I think that this problem may fit with
the definition of the "theoretical puzzles® because it seems to be a
very challenging problem :-)

IT there is a solution, it may be a great improvement for probabilistic
verification and more generally for performance evaluation.
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crouzen@alan.cs.uni-sb.de schrieb:

> 1"m afraid the most interesting and most challenging question in

> probabilistic verification is an old one: "What to do about the state

> space explosion?” This question is as old as computer science itself and
> many solutions have been proposed. A common way of dealing with the stace
> space explosion is to avoid generating the full state space (for instance
> in assume-guarantee reasoning). In probabilistic verification such

> techniques generally do not work. The foundational methods of solving

> probabilistic models (e.g.- transient and steady-state analysis) require

> that we know the entire state space.

>
>
>
>
>
>

There are of course different approaches to tackling this problem. I list
here the ones | can easily think of:

- Modularize the solution techniques in the spirit of assume-guarantee
reasoning,

- Optimize model generation to avoid large intermediary state spaces
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appearing during the generation, and
- Use approximation techniques.

Lastly I believe it is important to realize the fundamental difference
between probabilistic models and non-probabilistic models.
Non-probabilistic models often model the allowed or desired behavior of a
system. As such these models are often very restrictive. Out of all
possible event-chains only a few are allowed. When "X" happens the system
must do "Y'.

On the other hand probabilistic models often model the unpredictable
nature of a system. A lot of the possible event-chains are allowed and we
are in fact interested in the probability of some very unprobable
event-chain happening. When "X happens "Y1'" may happen with probability
pl™, Y2" with probability "p2', et cetera. In short non-probabilistic
models are often very "narrow” where probabilistic models are very "wide".
In my opinion this difference is important and should be kept in mind
when dealing with the state space explosion in probabilistic verification.

To put it briefly: in probabilistic verification we need a new answer to
an old gquestion: "What about the state space explosion?"

Jaco van de Pol schrieb:
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1. is there a polynomial algorithm for parity games cq. mu-calculus
model checking.
(1 have "small progress on the strategy improvement algorithm”™ for
parity games of

Jurdzinski, of which polynomiality is open)

2. Basically, time can be treated as data. So timed verification can
be reduced to

functional verification. This holds, despite the obvious fact that
specialized algorithms

can be useful for a more effective study of timed systems.

Question: can probabilities be treated as data as well?

Answer: 1 have no idea.

ngting Han schrieb:
1) For continuous-state systems, exponential or generalized distributed
delays, with or without non-determinism, how to

a) give a formal definition of the model?

b) minimize the state-space by some equivalences?

c) do the parallel compositions?

d) extend logics to specify certain properties?

d) do model checking?

2) For probabilistic automata, we have already known that the trace
distribution precongruence is a branching relation that is compositional.
Does there exist a real trace-like (linear) congruence for probabilistic
automata that is compositional ?

Kai Lampka schrieb:

VVVVVVVVYV

Given symbolic CTMC generation techniques, one of the biggest practical
problems in the field of stochastic verification by the means of CTMCs
in my opinion is the computation of individual state probabilities. Thus
a reduction in the number of states would not only decrease the memory
overhead imposed by extremely large solution vectors, but also in the
run-time per matrix-vector multiplication. In this respect a reward
function driven CTMC reduction algorithm would be something very useful.
(a) But how does one aggregate the CTMC, especially if the equivalence
classes with respect to the reward function contain not bi-similar



states of the original CTMC and still guarantees correct results? (b) If
the solution computed on the reward-dependent somehow aggregated CTMC is
not correct, can one compute bounds on the error, which often would be
satisfactory, when it comes to the computation of the availability of a
system.

Usefull literature as starting point in this context would be:

VVVVVVVVVYV

Graham Horton, Scott T. Leutenegger

<http://www. informatik._uni-trier.de/%7Eley/db/indices/a-tree/l/Leutenegger:Scott
T=_html>:

> A Multi-Level Solution Algorithm for Steady-State Markov Chains.

> SIGMETRICS 1994

>

<http://www. informatik.uni-trier.de/%7Eley/db/conf/sigmetrics/sigmetrics94._html#
HortonlL94>:

191-200

*and

VVVVYVYV

Bazan, Peter ; German, Reinhard

<http://univis.uni-erlangen.de/prg?show=info&key=821/persons/2007w:tech/ IMMD/ IMM
D7/german>*:

Approximate Analysis of Stochastic Models by Self-Correcting Aggregation .

In: *Ciardo, G. ; D"Argenio, P. ; Miner, A. ; Rubino, G.* (Hrsg.) :

*/Proc. 2nd. Int. Conf. on the Quantitative Evaluation of Systems 2005/*
/(QEST 2005 Torino, ltaly 19-22 September)./

2005, S. 134-143. - ISBN 0-7695-2427-3

VVYVVYV

ijun Zhang schrieb:

* Logical characterisation of (bi-)simulations on image-infinite systems. In
[NKO7], logical characterisation (using CSL) of bisimulation for finite
CTMDPs is presented. The characterisation is sound, but not complete. In
[PSO7], strong and weak bisimulation are characterised for image-finite PAs.
We have studied [submitted] the logical characterisation of simulation for
image-finite PAs, and their continuous-time extensions. It is interesting to
study the logical characterisation of (bi-)simulations over image-infinite
systems

* Deciding weak (probabilistic) simulation for PAs. In [ZHO7], we presented
algorithm for deciding strong (probabilistic) simulation for PAs and their
continuous-time variant. The algorithm can not be extended to weak
(probabilistic) simulation in an obvious way: as infinite many different
distributions can be arrived via internal actions. Perhaps we can again
exploit the power of parametric maximum flow algorithm to compute the weak
(probabilistic) simulation for PAs.

VVVVVVVVVVVVVVVYVVHI

erena Wolf schrieb:

Time-dependent schedulers (depending on the time already elasped and
on the sequence of visited states) and schedulers that may decide to
"wait' with their decision for a certain amount of time (add an extra
delay to the residence time of a state).

How can we find a scheduler that maximizes the probability to reach a
certain set of states within time interval [a,b]?

There is another problem which is probably not interesting enough ...

It is still an open problem if trace equivalence on IMCs defined using
randomized stationary schedulers is a subset of trace equivalence
defined using randomized history-dependent schedulers.

V
>
>
>
>
>
>
>
>
>
>
>
>
>
> There is also some stuff in the area of probabilistic testing, but at
> the moment I am not engough into that to suggest something...

Gethin Norman schrieb:

> This is quite a difficult question to answer as there is not just one



foundational question or one answer/solution, but I suppose what
appears to be the most challenging question is how to extend
compositional model checking (like for example assume guarantee
reasoning). The most interesting/difficult part comes from the
quantitative aspect, for example can one combine quantitative results
about two subsystems to obtain a quantitative result about the complete
system. (There has been some preliminary work in this area but there is
still are long way to go and a lot of different ways to go)

VVVVVVVYV

aniel Klink schrieb:
"how to (efficiently) model check CTMDPs™"...

to begin with, probably

"Efficient computation of time-bounded reachability probs in /Zarbitrary/
CTMDPs™

would be puzzling enough... sounds familiar? ;)
okay... just some initial ideas on that topic... (I hope the notations

are clear... should be similar to the ones in "Efficient computation ...
in uniform CTMDPs'™)

VVVVVVVVVVVVVVOD

>> applying uniformization as for CTMCs in a naive way does not do the

> trick. ..

>> consider the following example:

>>

> /s | <--a,1-- s --b,2--> s r

>> /

>> adding edge /s --a,1--> s/ allows for path /s --a--> s --b--> s r/ and
> as consequence

>> Psi = /in(s) => P_>0(in(s) U in(s_D)) & P _>0(in(s) U in(s_r)) /

>>

>> would be satisfied in the uniformized CTMDP but not in the original one!
>

>> to Fix uniformization for this example it would suffice to make a copy
> of /s/, say /s a

> /> where only outgoing /a/-transitions of /s/ are copied... instead of s
> --a,1--> s the

>> following two transitions can be added to make the CTMDP uniform

> (keeping it

>> weakly bisimilar):

>>

>> /s --a,1--> s a/ and /s_a --a,l1--> s a/

>>

>> Once a is chosen in s, b is not an option anymore... still, this is

> not a solution for

>> arbitrary CTMDPs as uniformization allows to /guess /the time a system
> has been

>> running fairly well._.._.. this implies that the set of HD schedulers on

> the uniformized

>> CTMDP is not coinciding with the set of HD schedulers on the original
> one, nor

>> with the set of THD schedulers on the original one...



Properties on P?TA*

Jasper Berendsen David Jansen

November 6, 2007

Recently, the use of real-time model checkers for scheduling synthesis has
become en vogue [HLPO01,Feh99]. The basic idea here is to model all resources
as well as all individual tasks together with their (hard) deadlines as timed
automata. The question whether there exists a schedule that meets all require-
ments (such as order of tasks, timing aspects and deadlines) can be formulated
as timed reachability question and be tackled with model checkers such as Up-
paal.

Scheduling synthesis has been the major motivation to enrich timed au-
tomata with prices [LBBT01,BFHT01, ALTPO1]. Such prices can be interpreted
as bonus, gain, or dually, as cost. Price rates attached to locations indicate the
increase of price per time unit, whereas prices attached to edges indicate in-
stantaneous costs. (This is similar to state and impulse rewards, respectively,
in Markov reward models [Tij03].) The problem of minimal cost reachabil-
ity on priced timed automata (also called weighted timed automata) has been
shown to be decidable [BFH*01, ALTP01]. The symbolic algorithms are based
on priced extensions of the symbolic data structures used for timed automata,
such as regions and zones. When interpreting prices as resource costs, these
timed automata can be used to obtain minimal cost schedules. In combination
with the use of heuristics, scheduling synthesis with (priced) timed automata
can often handle larger problem instances than with standard approaches using,
e.g., mixed-integer linear programming [NW88].

An important restriction, however, of these approaches is that resources
are typically considered to be fully reliable. That is to say, resources are as-
sumed never to break down and (e.g., in case of production machines) never
to produce imperfect output. In order to handle situations where things may
fail, we introduce priced probabilistic timed automata (P?>TA, for short), which
are a probabilistic extension of LPTA (linear priced timed automata) [BFHT01].
P2?TA are an orthogonal extension of LPTA, as well as PTA (probabilistic timed
automata [KNSS02].) When prices are omitted, probabilistic timed automata
are obtained, whereas the deletion of probabilities yields priced timed automata.

Definitions

A zone is a conjunction of inequalities where the value of a single clock or the
difference between two clocks is compared to an integer'. Formally, for the set

*Similar problems to the ones described in this text were originally formulated by Joost-
Pieter Katoen
IThe definition of zones is one of the major results for timed automata [AD94].



X of clocks the set Zones(X) of zones Z is defined by the grammar:

Zuo=xxblex—yxb|ZAZ]|true
where z,y € X,b € Z,xe {<,>}

Definition 1 ? A priced probabilistic timed automaton (P*TA) is a tuple
(L, linit, X, pE, $), where:

e L — finite set of locations;

e linit € L — the initial location;

e X — finite set of clocks;

e pE C L x Zones(X) x 2% x Dist(L) — probabilistic edges;

e $:L >N - function assigning a price rate to each location.

For probabilistic edge (I, g,7,p) € pE, | denotes the source location, g the guard,
r the set of clocks to be reset, and p a distribution on destination locations.
The set Ey of edges of a P2TA W is defined as follows: (I,g,7,p,l') € Ey if
(I,g,7,p) € pE and p(I') > 0.

o (L,linit,X, Ew,$) is an LPTA.
o (L,linit, X, pE) is a PTA.
o (L,lini, X, Ey) is a timed automaton.

The intuitive semantics of P2TA is as follows. Each P2TA is mapped onto a
(typically infinite-state) transition system. States in these transition systems
consist of a location, a clock valuation assigning a value to each clock, and the
accumulated cost. Execution starts in the initial location with all clocks and
the accumulated cost equal to zero. Time may pass in a location, as a result, all
clocks increment by the same value. The cost of delaying is determined by the
price rate of the location: residing d time units in location [ incurs the cost $(1)-d.
To accommodate for the probabilistic branching, MDPs are used as semantics.
A probabilistic edge that emanates from location [ may be taken when the state
of the system is in [, and the guard is satisfied. On taking a probabilistic edge,
the reset set determines which clocks are reset, the destination location is chosen
probabilistically according to the distribution of the edge. No time elapses when
taking a probabilistic edge.

Definition 2 [KNSW07] A timed probabilistic system (TPS) is a tuple (S, T'Steps),
where TSteps has one extra label in comparison to a normal discrete time MDP:

T'Steps C S x R>¢ x Dist(S)

For (s,d, ) € TSteps, the real d denotes the duration that the system remains

in state s. We write s = for a transition between states s and s’ whenever
there exists (s,pu) € TSteps such that u(s’) > 0. Transitions conform to the
following rules:

2In comparison to [BJKO6] location invariants are removed, distributions are on destination
location instead of on pairs of destination location and reset, and instantaneous costs on
transitions are removed. Note however that the more elaborate model is easily encoded by
the one presented here.



. . . . . . . . . d,-
e time determinism: if d > 0, then p is a point distribution, and if s — t

d.
and s = t' thent =1,

e Wang’s axiom: s Ay iff for all 0 < d' < d there exists s' such that

d d—d',-
s — s and 8 —t.

. do, dy, da, .
A path w in a TPS has the form: w = sg 010, o) DML, g, 2k - with

(8iydi, p;) € TSteps; and pi(s;+1) > 0 for all ¢ € N. The probability space
corresponding to a TPS is defined analogously to the probability space of a
MDP by means of adversaries (or schedulers) see [KNSWO07]. Note that these
adversaries have full control on the non-deterministic choices.

Definition 3 (P2TA Semantics) The semantics of P2TA (L, lini, X, pE,$)
is the TPS (S, TSteps), where

Sz{(l,v,c)|l€L/\v€IR§O/\c€IR20}

A probabilistic transition ((I,v,c),d, ) € TSteps if and only if one of the fol-
lowing conditions holds:

o d>0, and pu(l,v+d,c+$(1)d) = 1, where v+d denotes the clock valuation
v with all values are increased by d;

e d =0, and there exists (I, g,r,p) € pE such that v E g, and for anyl' € L:
w(l',vlr == 0],¢) = p(l'), where vr := 0] denotes the clock valuation v with
all clocks in r set to 0;

Problems

For P2TA a number of interesting problems can be formulated. In [BJKO6]
a semi-decidable algorithm for cost bounded maximal reach probability is pre-
sented. The algorithm computes the maximal probability (under all adversaries)
of reaching some location within a cost bound. Here we present two interesting
problems which to the best of the authors’ knowledge are new.

Problem 1 The maximal expected cost gives the maximal expected cost, under
all possible adversaries, of reaching some location with some clock valuation. An
adversary assigns a choice to all non-deterministic choices in a P?TA. Therefore
under some adversary the semantics of a P2TA is fully probabilistic, and all
paths have a certain cost and probability. By looking at all paths that can reach
a certain location with some clock valuation, one can define the expected cost of
reaching this location/valuation pair under the adversary.

Problem 2 The minimal expected operational cost gives, under all adver-
saries, the minimal expected cost per time unit. When fixing the adversary,
all paths have a certain cost and duration. The operational cost of a path is its
cost divided by its duration. The expected operational cost is then defined using
the probabilities of the paths. Finally we are interested in the adversary that
manimizes this value.
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