

Hiding sensitive information from the scheduler

Kostas Chatzikokolakis

joint work with Catuscia Palamidessi

Why we need to hide information from the scheduler

- In security
 - Protocols often use randomization to **obfuscate the link between the observable and the hidden events**
 - Most of the times the outcome of the random choices **must remain secret**
- In our models (process calculi, automata)
 - The scheduler resolves the nondeterminism
 - It is assumed to have **full knowledge of the state of the system**
- Problem: the scheduler can **leak the outcome of a prob. choice** by depending its decisions on it

Why we need to hide information from the scheduler

- In security
 - Protocols often use randomization to **obfuscate the link** between the observable and the hidden events
 - Most of the times the outcome of the random choices **must remain secret**
- In our models (process calculi, automata)
 - The scheduler resolves the nondeterminism
 - It is assumed to have **full knowledge of the state** of the system
- Problem: the scheduler can **leak the outcome of a prob. choice** by depending its decisions on it

Why we need to hide information from the scheduler

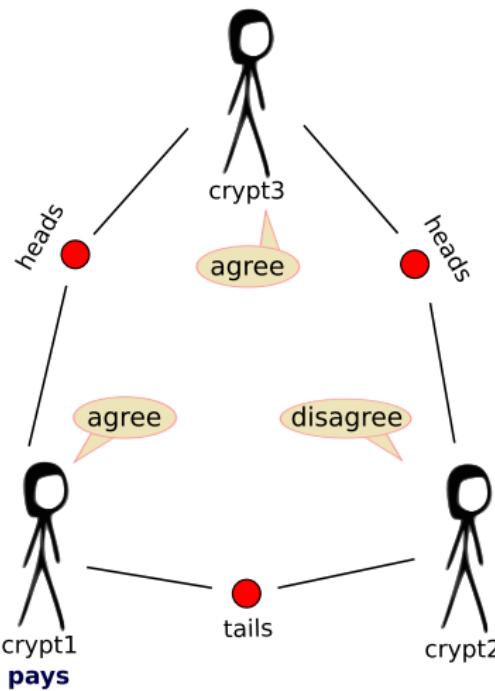
- In security
 - Protocols often use randomization to **obfuscate the link** between the observable and the hidden events
 - Most of the times the outcome of the random choices **must remain secret**
- In our models (process calculi, automata)
 - The scheduler resolves the nondeterminism
 - It is assumed to have **full knowledge** of the state of the system
- Problem: the scheduler can **leak the outcome of a prob. choice** by depending its decisions on it

Example: The dining cryptographers protocol

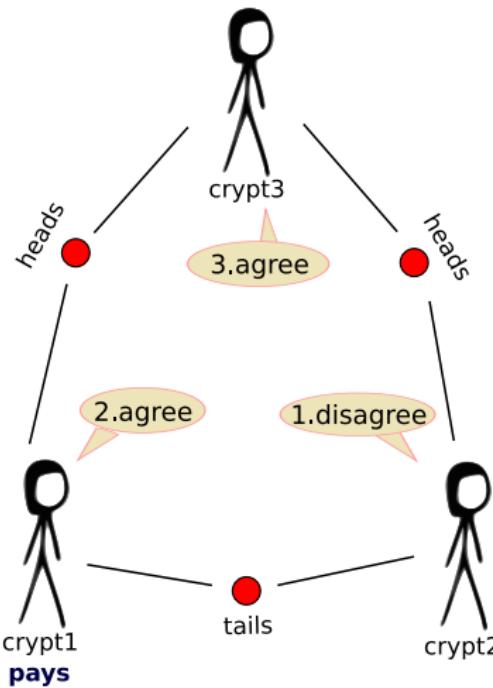


Who is this guy?

Example: The dining cryptographers protocol



Example: The dining cryptographers protocol



Formalizing strong anonymity

- Without non-determinism

$$p(aad \mid \text{crypt}_1) = p(aad \mid \text{crypt}_2)$$

- With non-determinism

$$ps(aad \mid \text{crypt}_1) = ps(aad \mid \text{crypt}_2) \quad \text{for all schedulers } S$$

- Take $S = \text{scheduler who prioritizes the payer}$

$$0 < ps(a_1 a_2 d_3 \mid \text{crypt}_1) \neq ps(a_1 a_2 d_3 \mid \text{crypt}_2) = 0$$

Formalizing strong anonymity

- Without non-determinism

$$p(aad \mid \text{crypt}_1) = p(aad \mid \text{crypt}_2)$$

- With non-determinism

$$ps(aad \mid \text{crypt}_1) = ps(aad \mid \text{crypt}_2) \quad \text{for all schedulers } S$$

- Take $S = \text{scheduler who prioritizes the payer}$

$$0 < ps(a_1 a_2 d_3 \mid \text{crypt}_1) \neq ps(a_1 a_2 d_3 \mid \text{crypt}_2) = 0$$

Formalizing strong anonymity

- Without non-determinism

$$p(aad \mid \text{crypt}_1) = p(aad \mid \text{crypt}_2)$$

- With non-determinism

$$ps(a_1 a_2 d_3 \mid \text{crypt}_1) = ps(a_1 a_2 d_3 \mid \text{crypt}_2) \quad \text{for all schedulers } S$$

- Take $S = \text{scheduler who prioritizes the payer}$

$$0 < ps(a_1 a_2 d_3 \mid \text{crypt}_1) \neq ps(a_1 a_2 d_3 \mid \text{crypt}_2) = 0$$

Formalizing strong anonymity

- Without non-determinism

$$p(aad \mid \text{crypt}_1) = p(aad \mid \text{crypt}_2)$$

- With non-determinism

$$p_S(a_1 a_2 d_3 \mid \text{crypt}_1) = p_S(a_1 a_2 d_3 \mid \text{crypt}_2) \quad \text{for all schedulers } S$$

- Take $S = \text{scheduler who prioritizes the payer}$

$$0 < p_S(a_1 a_2 d_3 \mid \text{crypt}_1) \neq p_S(a_1 a_2 d_3 \mid \text{crypt}_2) = 0$$

We need to restrict the scheduler

- Two views of this problem
 - **Verification** problem: we cannot verify this protocol
 - **Security** problem: realistic attacks can be based on the scheduler
eg. the payer needs **more time** to compute the message to send
- We need to restrict the scheduler
- How to do that?

Task PIOAs

Canetti, Cheung, Kaynar, Liskov, Lynch, Pereira, Segala

Probabilistic Input/Output Automata

$\mathcal{A} = (Q, q_{\mathcal{A}}, I, O, H, D)$, where

Q – set of states

$q_{\mathcal{A}}$ – start state

I, O, H – pairwise disjoint sets of actions

$D \subseteq Q \times Act \times Disc(Q)$

Satisfying transition determinism:

for all $q \in Q$ there is at most one transition labelled by a

Task PIOAs

- PIOA + an equivalence relation R on $I \cup O$
- **Task**: an equivalence class of R
- Action determinism:

for all $q \in Q$ and task T
there is at most one action $a \in T$ enabled in q

- Task **schedule**: a (possibly infinite sequence) T_1, T_2, \dots of tasks
- Drawback: schedulers are **oblivious**

A process-algebraic approach

Goals and design features

- Fine-grained control: no unnecessary restrictions
- Keep our previous model, add annotations
- Use a simple language: CSS with internal probabilistic choice
- A process provides **labels** to the scheduler
- The scheduler can be seen as a (simple) process that runs in parallel to the main process and guides its execution

Syntax of CCS_σ

$P, Q ::=$	processes	$S, T ::=$	scheduler
$L:\alpha.P$	prefix	$L.S$	single action
$ P \mid Q$	parallel	$ (L, L).S$	synchronization
$ P + Q$	non-determ.	$ \text{if } L$	label test
$ L:\sum_i p_i P_i$	prob. choice	$\text{then } S$	
$ (\nu a)P$	restriction	$\text{else } S$	
$!P$	replication	$ 0$	nil
$ L:0$	nil	$CP ::= P \parallel S$	complete process

Semantics by example

$l:(l_1:a +_{\frac{1}{2}} l_2:\bar{b}) \mid l_3:c.(l_4:b + l_5:d) \parallel l.\text{if } l_1 \text{ then } \dots \text{ else } l_3.(l_2, l_4)$

$\xrightarrow{\tau_{\frac{1}{2}}} l_2:\bar{b} \mid l_3:c.(l_4:b + l_5:d) \parallel \text{if } l_1 \text{ then } \dots \text{ else } l_3.(l_2, l_4)$

$\xrightarrow{c} l_2:\bar{b} \mid (l_4:b + l_5:d) \parallel (l_2, l_4)$

$\xrightarrow{\tau} 0 \parallel 0$

Expressiveness of the syntactic scheduler

How powerful is the syntactic scheduler wrt the semantic one?

Linear labelling: all labels are disjoint

Proposition

Let $P_\sigma = P + a$ linear labelling. Then

$$\forall \zeta \exists S : \zeta(\llbracket P \rrbracket) \sim \llbracket P_\sigma \parallel S \rrbracket$$

Non-linear labelings

- Non-linear labellings allow us to constrain the scheduler
- Example: $l:(l_1:a +_p l_2:b) \mid l_3:c \mid l_4:d$
- **Goal:** do the probabilistic choice. Then if a is available do c , otherwise do d

$l.\text{if } l_1 \text{ then } l_3 \text{ else } l_4$

- However using the same label we can hide the outcome:

$l:(\textcolor{red}{l_1}:a +_p \textcolor{red}{l_1}:b) \mid l_3:c \mid l_4:d$

Private choice

Making all choices in the beginning should make no difference.

Theorem

$$C[l:\tau.P] +_p C[l:\tau.Q] \approx C[P +_p Q]$$

Key point: the labels of the context are duplicated

Also: \approx is a congruence

Still a lot of work to be done

- Our understanding of restricted schedulers is limited
 - What types of restrictions are needed
 - Other formalisms, comparisons
 - How do they affect compositionality
- What about model checking
 - How can the algorithms be adapted?
 - Tools that allow to express restrictions on the scheduler
 - Verify properties for individual schedulers

Thank you

Questions?