

A Multilevel Algorithm based on Binary Decision Diagrams

Johann Schuster

Department of Computer Science
University of the Federal Armed Forces Munich

14.11.2007

Outline of the talk

- Introduction
- Multilevel algorithm
- Symbolic encoding
- Adapted data structures
- Symbolic algorithm
- Results and conclusion

Task

Calculate a steady state distribution of a time homogeneous continuous time Markov chain (CTMC) \mathcal{M} with generator matrix Q , i.e. solve

$$\begin{aligned}\vec{\pi} \cdot Q &= 0 \\ \sum_i \pi_i &= 1\end{aligned}\tag{1}$$

Problem

Direct solution infeasible, numerical solution often slow.

Task

Calculate a steady state distribution of a time homogeneous continuous time Markov chain (CTMC) \mathcal{M} with generator matrix Q , i.e. solve

$$\begin{aligned}\vec{\pi} \cdot Q &= 0 \\ \sum_i \pi_i &= 1\end{aligned}\tag{1}$$

Problem

Direct solution infeasible, numerical solution often slow.

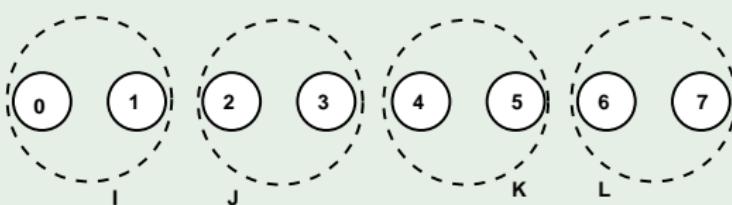
- Introduction
- *Multilevel algorithm*
- Symbolic encoding
- Adapted data structures
- Symbolic algorithm
- Results and conclusion

Example

System l_0

Grouping states

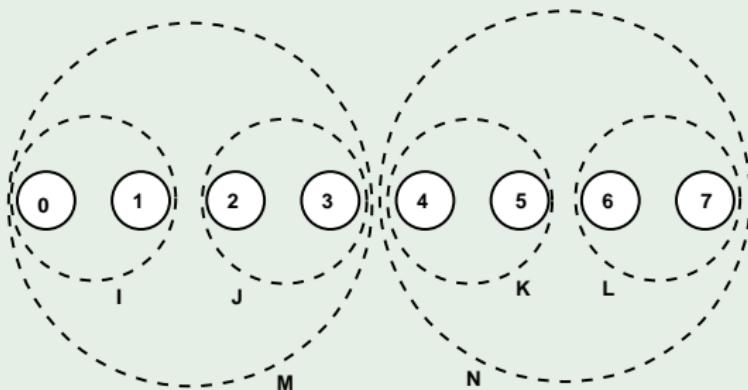
Example



System $l_0 - 1$

Grouping states

Example

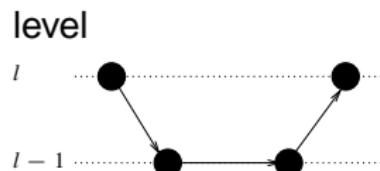


System $l_0 - 2$

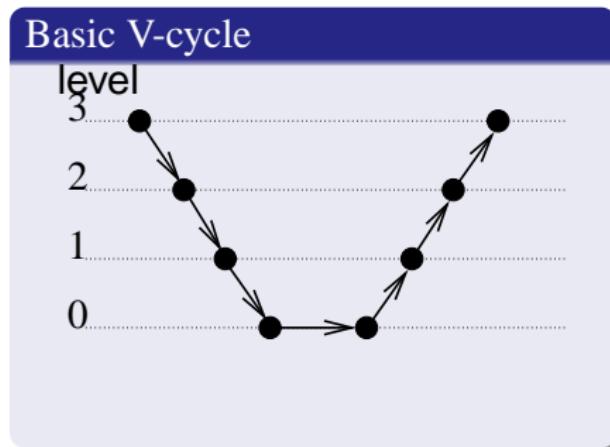
The algorithm (I)

A two-level step consists of the following parts

- Aggregation: From the rate matrix and current approximation of the solution vector on a certain level (l) derive a smaller system ($l - 1$)
- Solution: Solve the smaller system ($l - 1$) (i.e. directly or by another multilevel step)
- Disaggregation: Correct the solution of system (l) by the solution of system ($l - 1$)

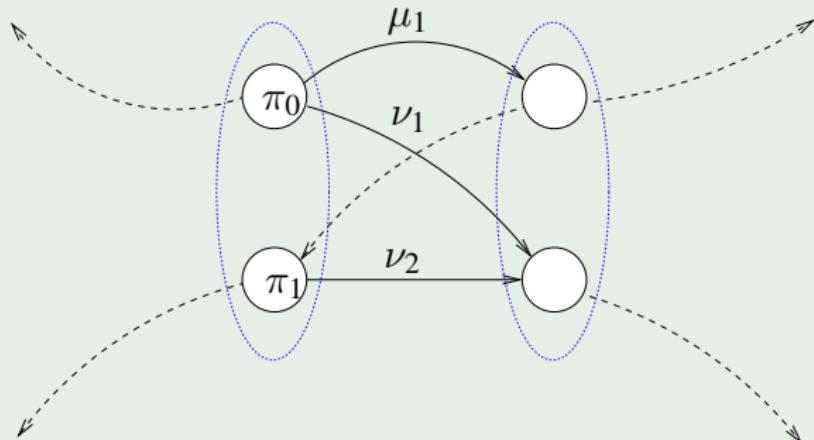


Multilevel algorithm - V-cycle



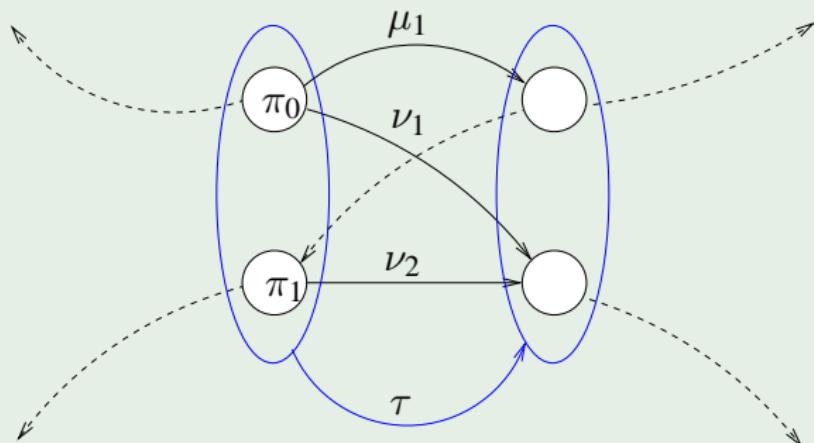
Aggregation - idea

Example



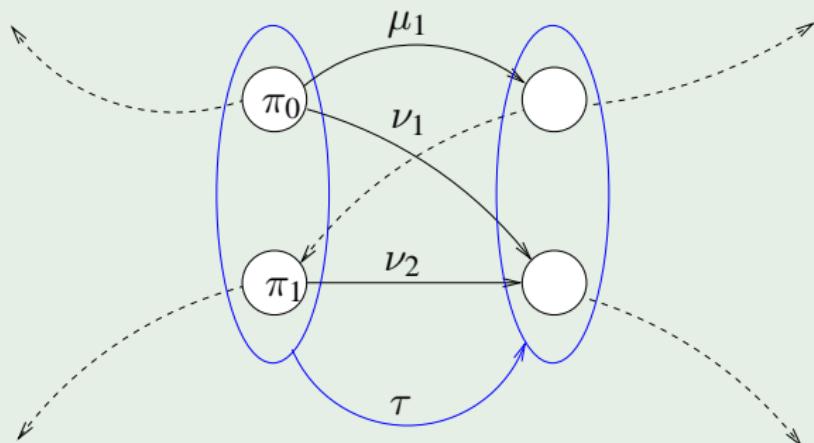
Aggregation - idea

Example



Aggregation - idea

Example



$$\tau = \frac{\pi_0 \cdot (\mu_1 + \nu_1) + \pi_1 \cdot \nu_2}{\pi_0 + \pi_1}$$

Aggregation equations

Partitioning a statespace of n states $\{i, j, \dots\}$ into N macro states I, J, \dots leads to

$$q_{IJ} = \frac{\sum_{i \in I} \pi_i \sum_{j \in J} q_{ij}}{\sum_{i \in I} \pi_i} \quad (2)$$

Disaggregation equations

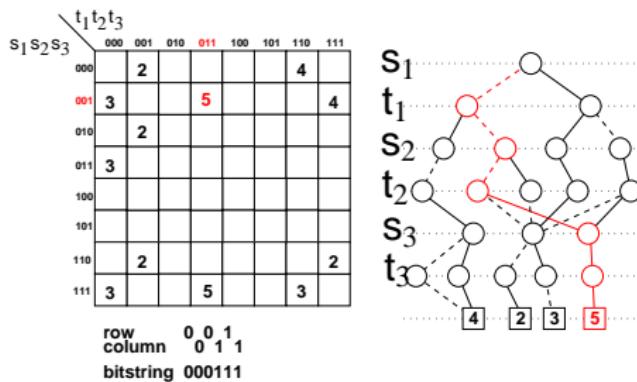
The Disaggregation step scales all the fine states $i \in I$ with the same factor:

$$\pi_i^{new} = \frac{\vec{\pi}_I^{agg,new}}{\vec{\pi}_I^{agg}} \cdot \vec{\pi}_i$$

- Introduction
- Multilevel algorithm
- *Symbolic encoding*
- Adapted data structures
- Symbolic algorithm
- Results and conclusion

Symbolic encoding of a Matrix

Store nonzero entries as bitstrings with weights

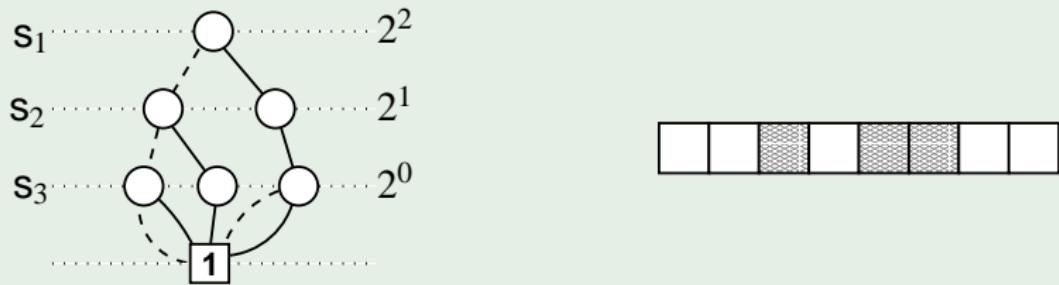


Example path: (001,011)=5, resulting bitstring: 000111

Reachability

Symbolic reachability analysis leads to Binary Decision Diagram (BDD) *reach* encoding reachable states

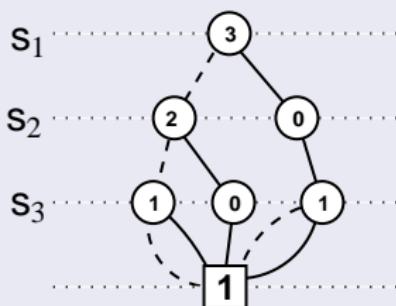
Example



Reachability BDD mapping a potential statespace of $2^3 = 8$ states to 5 reachable states

- The mapping from potential state space to reachable statespace is stored in *reach* as offset information
[Parker 02]

offset labelled BDD

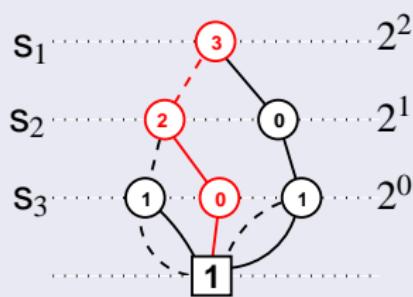
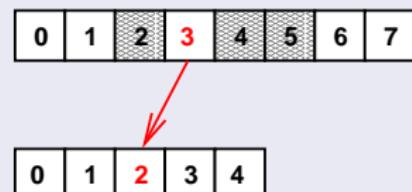


mapping potential to reachable states

offset labelled BDD *reach*

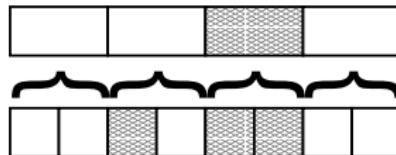
Offset labelling example path

- potential state index: $2^1 + 2^0 = 3$
- reachable state index (=offset): $2 + 0 = 2$

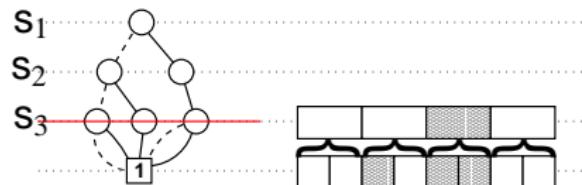


Aggregation of neighbouring states

Neighbouring states are grouped to macro states



The same can be achieved by aggregation of the lowest BDD variable in *reach*.



- Introduction
- Multilevel algorithm
- Symbolic encoding
- *Adapted data structures*
- Symbolic algorithm
- Results and conclusion

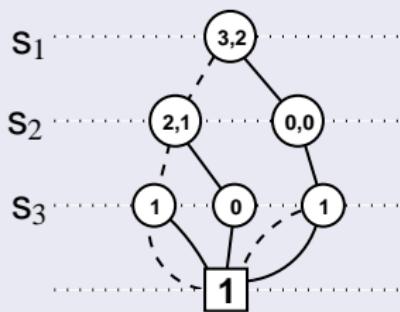
Symbolic multilevel ingredients

Two concepts are needed to perform the symbolic multilevel algorithm

- Multi-offset-labelling to compactly store the iteration vectors
- Compact storage of aggregated transition matrices
- Speed-up by intermediate sparse matrices

Multi-offset-labelling is introduced that describes the reachable state space for each aggregated system

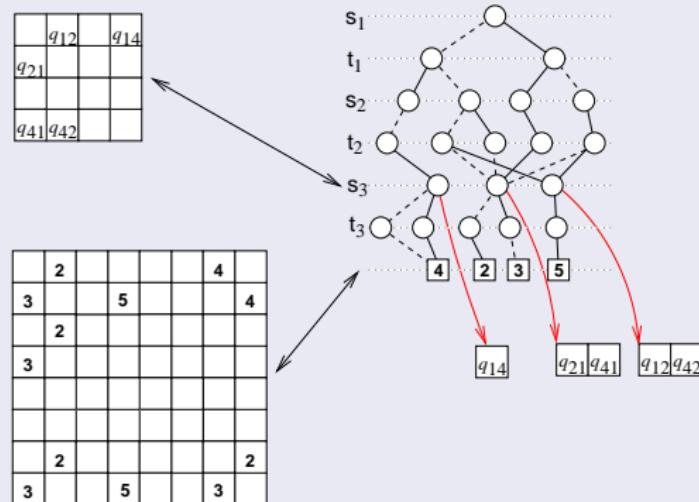
Multi-offsets for aggregation of variable s_3



Symbolic aggregation basics (II)

Aggregated transition matrix entries are stored at the row nodes of the corresponding aggregation variable.

Matrix storage (aggregation at s_3)

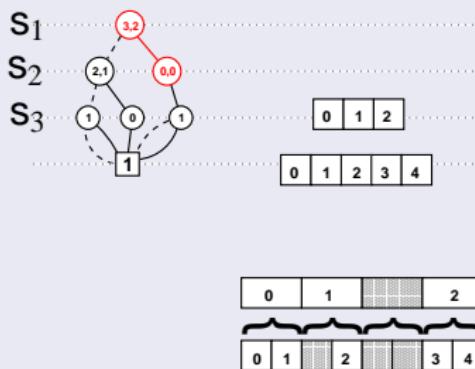


Diagonal elements are stored in a separate vector.

- Introduction
- Multilevel algorithm
- Symbolic encoding
- Adapted data structures
- *Symbolic algorithm*
- Results and conclusion

Aggregation, example path

section of Depth first traversal (DFS), aggregation at s_3



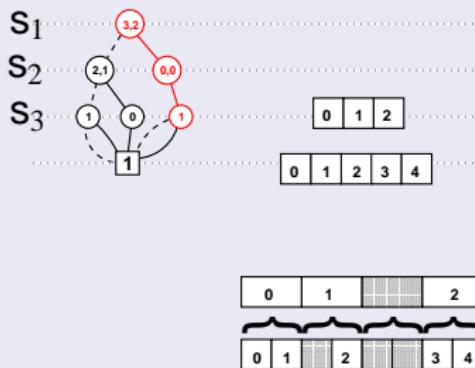
$\pi = (\pi_0, \pi_1, \pi_2, \pi_3, \pi_4)$
s-Offsets:

coarse = 2
fine = 3

$\bar{\pi} = (\pi_0 + \pi_1, \pi_2, 0)$

Aggregation, example path

section of Depth first traversal (DFS), aggregation at s_3



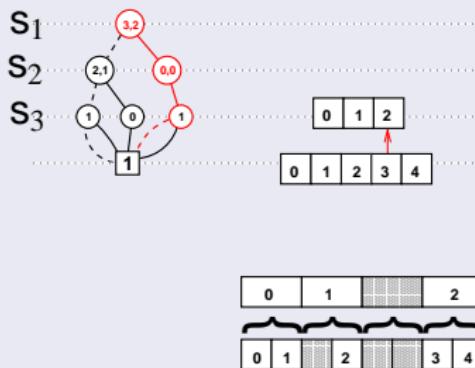
$\pi = (\pi_0, \pi_1, \pi_2, \pi_3, \pi_4)$
s-Offsets:

coarse = 2
fine = 3

$\bar{\pi} = (\pi_0 + \pi_1, \pi_2, 0)$

Aggregation, example path

section of Depth first traversal (DFS), aggregation at s_3



$\pi = (\pi_0, \pi_1, \pi_2, \pi_3, \pi_4)$
s-Offsets:

coarse = 2

fine = 3

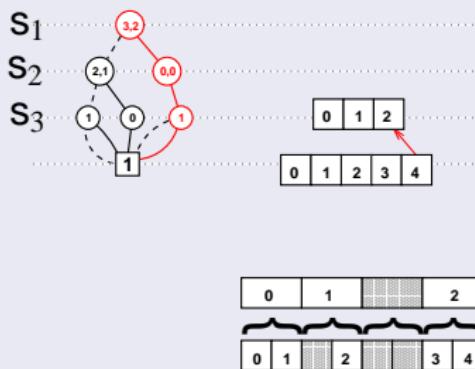
$\bar{\pi} = (\pi_0 + \pi_1, \pi_2, \pi_3)$

der Bundeswehr

Universität München

Aggregation, example path

section of Depth first traversal (DFS), aggregation at s_3



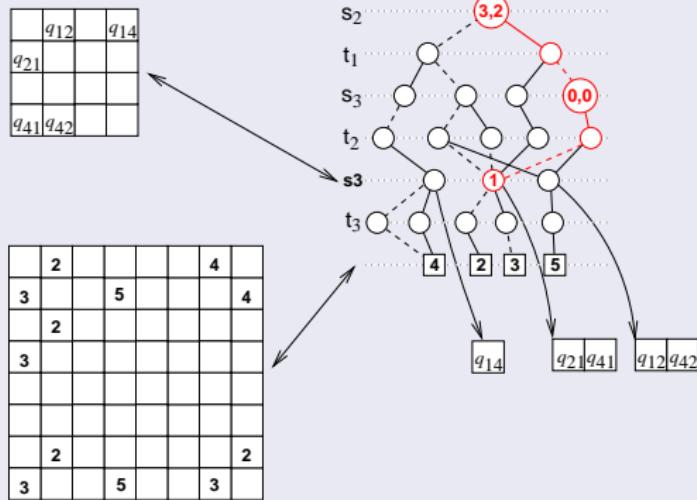
$\pi = (\pi_0, \pi_1, \pi_2, \pi_3, \pi_4)$
s-Offsets:

coarse = 2

fine = 4

$\bar{\pi} = (\pi_0 + \pi_1, \pi_2, \pi_3 + \pi_4)$

Symbolic aggregation



Let

$$\vec{\pi} = (\pi_0, \pi_1, \pi_2, \pi_3, \pi_4)$$

Processing the last red node:

$$q_{41} = 2\pi_3 + 3\pi_4$$

Dividing by the coarse vector element with offset 2 leads to:

$$q_{41} = \frac{2\pi_3 + 3\pi_4}{\pi_3 + \pi_4}$$

By an iterative solver or another multilevel step get a solution $\vec{\pi}^{agg,new}$ of the aggregated system.

The Disaggregation step scales all the fine states $i \in I$ with the factor:

$$\pi_i^{new} = \frac{\vec{\pi}_I^{agg,new}}{\vec{\pi}_I^{agg}} \cdot \vec{\pi}_i$$

This can be done in a depth first traversal of the reachability graph similar to the aggregation

vect

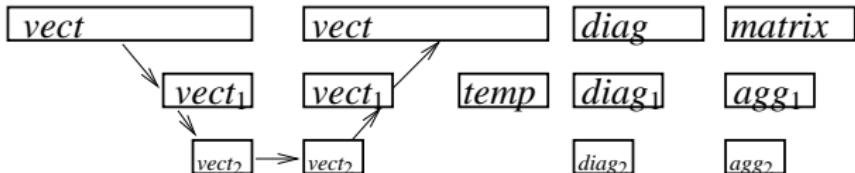
vect

diag

matrix

Memory for a basic Jacobi iteration

Memory considerations

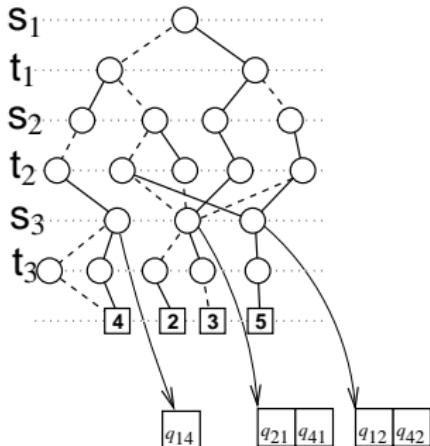
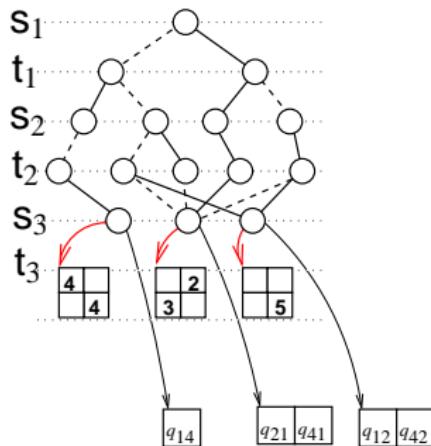


Multilevel overhead

- $matrix + diag + vect + \max(vect, agg) + sm$
- $agg_i = diag_i + 2 * vect_i + rates$
- $agg = \sum_{i \in agg_level} agg_i + temp$

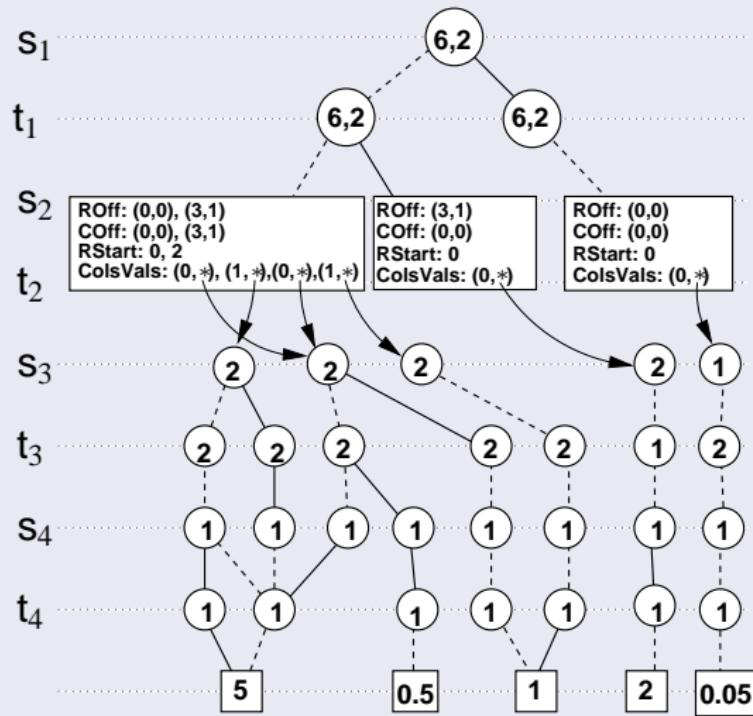
Improving speed - adding sparse matrices

Up to lowest aggregation level sparse matrices can be used
[Parker 02]



otherwise intermediate sparse matrices have to be used

intermediate sparse matrices



- Introduction
- Multilevel algorithm
- Symbolic encoding
- Adapted data structures
- Symbolic algorithm
- *Results and conclusion*

Conclusion

- Framework for symbolic multilevel solvers is given
- Solution times depend on the model
- Current speedup up to 2
- Memory requirements depend on position and number of aggregation levels

Future work

- Try different orderings of the aggregated systems
- Parallelise parts of the algorithm

- P. Buchholz and T. Dayar. *Comparison of multilevel methods for kronecker-based markovian representations.* Computing, 73(4):349-371, 2004
- G. Horton and S. Leutenegger. *A Multi-Level Solution Algorithm for Steady-State Markov Chains.* ACM Performance Evaluation Review, 22(1):191-200, May 1994. Proceedings of the ACM Sigmetrics and Performance 1994, International Conference on Measurement and Modeling of Computer Systems
- D. Parker. *Implementation of symbolic model checking for probabilistic systems.* PhD thesis, School of Computer Science, Faculty of Science, University of Birmingham, 2002.