
the SMART team 3 smart@cs.ucr.edu

Copyright c©2007 Gianfranco Ciardo

All rights reserved

PART: FILE:SMART/history.tex

SMART history 2

1994 Definition of a general framework for defining interacting models that exchange data

1996 First prototype: stationary solution of GSPNs, sparse matrices, iterative methods

1997 Kronecker solution algorithms, state-space storage requiring few bytes per state

1998 MDD-based state-space generation and storage

1998, 1999 MxD-based numerical solution algorithms

1999 Simulation with general distributions. Numerical solution with DPH distributions

2000 MDD+Kronecker-based approximations [SIGMETRICS 2000]

2001 Saturation-based symbolic state-space generation [TACAS 2001]

2001 Numerical solution for phased-delay SPNs

2001 First release

2002, 2003 Full CTL model checking, EVMDD-based CTL witnesses and counterexamples

2005 Fully general (non-Kronecker-based) symbolic state-space generation

2007 Bounded CTL model checking

Ongoing Full rewrite: performance and generality enhancements, integration of logical and stochastic

analysis, unification of decision-diagrams libraries

PART: FILE:SMART/smart.tex

The SMART package 3

Initially: SMART: Simulation and Markovian Analyzer for Reliability and Timing

• Stochastic models described as Petri nets with random firing times

• Efficient explicit state space generation

• Numerical transient or stationary solution of continuous-time or discrete-time Markov chains

• Batch means simulation of general discrete-state processes

Now: SMART: Stochastic Model-checking Analyzer for Reliability and Timing

• Implicit (MDD) state-space generation and CTL model checking

• Implicit (Kronecker, MxD, EVMDD) description of the underlying continuous-time Markov chain

• Numerical stationary solution of a Markov regenerative phase-delay Petri nets (PDPNs)

• Regenerative simulation of general PDPNs, with automatic detection of regenerations

PART: FILE:SMART/smart-features.tex

What is SMART? 4

• A package integrating logic and stochastic modeling formalisms into a single environment

(at the moment: DTMCs, CTMCs, and SPNs)

• Models expressed in different formalisms can be combined in the same study

• For the analysis of logical behavior:

2 explicit (BFS exploration) and implicit (symbolic MDD Saturation) state-space generation

2 symbolic CTL model checking

• For the study of the stochastic and timing behavior

2 explicit (sparse storage) and implicit (Kronecker) numerical solution approaches

2 numerical solution of semi-regenerative models

2 regenerative discrete-event simulation

• Easy integration of new formalisms and solution algorithms

• Over 100,000 lines of source C++ code

PART: FILE:SMART/smart-features.tex

SMART statements 5

Declaration statements declare functions over some set of arguments

If there are no arguments, the function is constant (different from “non-random”, i.e., deterministic)

The type of the function and of its arguments must be defined

Definition statements declare functions, but also how to compute their value

Expression statements compute and print values

Can also have side-effects, such as redirecting the output or displaying additional information

Option statements modify the behavior of SMART

There are options to control the numerical solution algorithms (such as the precision or the maxi-
mum number of iterations), the verbosity level, etc.

Options statements appear on a single line beginning with “#”.

Compound for statements define arrays or repeatedly evaluate parametric expressions

Useful to explore how a result is affected by the modeling assumptions
(rate of an event, maximum size of a buffer, etc.)

Compound converge statements specify fixed-point iterations

Useful for approximate performance or reliability studies

PART: FILE:SMART/smart-features.tex

SMART basic object types 6

SMART uses a strongly-typed declarative language with the following predefined types:

• bool: the values true or false bool c := 3 - 2 > 0;

• int: integers (machine-dependent) int i := 12;

• bigint: arbitrary-size integers bigint n := 12345678901234567890*2;

• real: floating-point values (machine-dependent) real x := sqrt(2.3);

• string: character-array values string s := "Monday";

Composite types can be defined using the concepts of:

• sets {1..8,10,25,50}

• arrays a[3][0.2]

• aggregates p:t:3

PART: FILE:SMART/smart-features.tex

SMART basic object types, cont. 7

An object can be further modified by a stochastic nature:

• const: a non-stochastic quantity, the default

• ph: a random variable with discrete or continuous phase-type distribution

• rand: a random variable with arbitrary distribution

• proc: a random variable that depends on the state of a model at a given time

In addition, we can define models in various formalisms:

• ctmc: continuous-time Markov chains

• dtmc: discrete-time Markov chains

• spn: stochastic Petri nets

PART: FILE:SMART/smart-features.tex

SMART objects are functions 8

Objects defined in SMART are functions, possibly recursive, and can be overloaded

real pi := 3.14;
bool close(real a, real b) := abs(a-b) < 0.00001;
int pow(int b, int e) := cond(e==1,b,b*pow(b,e-1));
real pow(real b, int e) := cond(e==1,b,b*pow(b,e-1));
pow(5,3); // computes and prints an integer, 125
pow(5.0,3); // computes and prints a real, 125

Arrays are declared with (possibly nested) for-loops ⇒ useful for large, repetitive structures

for (int i in {1..5}, real r in {1..i..0.1}) {
real res[i][r]:= MyModel(i,r).out1;

}

Facilities for fixed-point iterations are built-in ⇒ useful for numerical approximations

converge {
real x guess 1.0;
real y := f(x);
real x := g(x,y);

}

PART: FILE:SMART/smart-features.tex

Phase-type distributions 9

Discrete or continuous phase-type random variables can be managed numerically

The internal representation is an absorbing discrete-time or continuous-time Markov chain

Combining ph types produces a ph type if the distributions are closed under that operation

ph int X := geometric(0.7) + 2 * equilikely(0,5);
ph int T := min(3 * X, 20);
ph real a := erlang(4,5);
ph real b := min(3 * a, expo(3.2));

Mixing ph int and ph real results in a generally-distributed random variable

rand int D := X - T;
rand real R := b + X;

A rand object can be manipulated only via Montecarlo methods (under development)

PART: FILE:SMART/smart-features.tex

Example of model formalism: an SPN 10

spn net(int n) := {
place p5, p4, p3, p2, p1; init(p5:n);
trans a, b, c, d, e;
arcs(p5:a,a:p4,a:p2,p4:c,c:p3,p3:b,

b:p4,p2:d,d:p1,p1:e,p3:e,e:p5);
firing(a:expo(1.1),b:expo(1.2),

c:expo(1.3),d:expo(1.4),e:expo(1.5));
bigint cnt := num_states(false);
real speed := avg_ss(rate(a));

};

for (int n in {2..4}) {
print("For n=",n," there are ",net(n).cnt," states");
print(" and the throughput is ",net(n).speed,"\n");

}

a

p
5

p
4

p
2

p
3

p
1

b c d

e

n

exp(1.1)

exp(1.2) exp(1.3) exp(1.4)

exp(1.5)

The for loop outside the model produces the output

For n=2 there are 14 states and the throughput is 0.456948
For n=3 there are 30 states and the throughput is 0.553456
For n=4 there are 55 states and the throughput is 0.612828

PART: FILE:SMART/smart-features.tex

Advanced features: parametric discrete-state models 11

spn phils(int N) := {
for (int i in {0..N-1}) {

place idle[i],waitL[i],waitR[i],hasL[i],hasR[i],fork[i];
partition(1+div(i,2):idle[i]:waitL[i]:waitR[i]:hasL[i]:hasR[i]:fork[i]);
init(idle[i]:1, fork[i]:1);
trans Go[i], GetL[i], GetR[i], Stop[i];
firing(Go[i]:expo(1),GetL[i]:expo(1),GetR[i]:expo(1),Stop[i]:expo(1));

}
for (int i in {0..N-1}) {

arcs(idle[i]:Go[i], Go[i]:waitL[i], Go[i]:waitR[i],
waitL[i]:GetL[i], waitR[i]:GetR[i],
fork[i]:GetL[i], fork[mod(i+1,N)]:GetR[i],
GetL[i]:hasL[i], GetR[i]:hasR[i],
hasL[i]:Stop[i], hasR[i]:Stop[i],
Stop[i]:idle[i], Stop[i]:fork[i], Stop[i]:fork[mod(i+1, N)]);

}
bigint n_s := num_states(false);

};
StateStorage MDD_SATURATION
print("The model has ", phils(read_int("N")).n_s, " states.\n");

PART: FILE:SMART/smart-features.tex

Advanced features: State-space generation and storage 12

Using multiway decision diagrams (MDDs), SMART can generate extremely large state spaces:

Number of States MDD Nodes Memory (bytes) CPU

Philosophers |S| Final Peak Final Peak (secs)

100 4.97×1062 197 246 30,732 38,376 0.04

300 1.23×10188 597 746 93,132 116,376 0.13

1,000 9.18×10626 1,997 2,496 311,532 389,376 0.45

3,000 7.74×101880 5,997 7,496 935,532 1,169,376 1.34

Symbolic CTL model checking queries are available in SMART:

stateset Reach := forward(initialstate); // reachable
stateset NotAbs:= prev(potential(true)); // with successors
stateset Abs := difference(Reach,NotAbs); // deadlocked
bool dead := neq(Abs,nostates);

stateset Good := potential(e1);
stateset Bad := potential(e2); // before reaching bad...
stateset Safe := AU(Bad,Good); // ...we are always good
stateset Stable:= EG(Good); // there is an infinite good run

PART: FILE:SMART/smart-features.tex

Advanced features: MxD-based numerical solutions 13

Using explicit data structures:

• If the SPN has an underlying DTMC or a CTMC

2 power method or uniformization for transient analysis

2 iterative methods (Jacobi, Gauss-Seidel, SOR) for stationary analysis

• If synchronized ph int are mixed with ph real the process is semi-regenerative

2 embedded DTMC + subordinated CTMCs solved to compute overall stationary measures

Using implicit data structures:

• The transition rate matrix for the underlying CTMC can be encoded

2 with matrix diagrams (MxDs), a generalization of Kronecker operators

• stationary solution is available using

2 iterative methods (Jacobi, Gauss-Seidel, SOR)

With implicit methods, can solve at least one order of magnitude larger models

PART: FILE:SMART/smart-features.tex

Advanced features: An approximation scheme 14

• With MDDs for S and MxDs for R, SMART can encode huge CTMCs

• The solution vector is the memory bottleneck

• SMART provides an approximation technique that uses the complete knowledge of S and R

• K approximate aggregations based on the structure of the MDD representing S

• A fixed-point iteration is used to break cyclic dependencies

Example: a Kanban model

Worst relative error CPU

N |S| Average number of tokens Transition throughput (sec)

4 4.54×105 2.846% -0.016% 0.47

5 2.55×106 2.557% -0.074% 0.84

6 1.13×107 2.262% -0.099% 1.38

7 4.16×107 2.032% -0.097% 2.19

30 4.99×1013 unknown unknown 462.48

66 1.99×1017 unknown unknown 13,424.50

PART: FILE:SMART/future.tex

Planned development for SMART 15

MDD-based state-space generation in SMART is arguably the best for the class of targeted models

MxD-based exact and approximate CTMC solution in SMART are quite advanced

Evolve these capabilities into an integrated tool that can perform symbolic stochastic model checking

Many of the functionalities in SMART use and manipulate similar classes of decision diagrams

Modularize the SMART code, releasing a geneal MDD library

