TECHNISCHE
@ UNIVERSITAT
DRESDEN

At a glance:
LiQuor / ProbMela

in context of
Lorentz Workshop | 1/07
Leiden NL

Christel Baier
Frank Ciesinski
Marcus Grof3er
Joachim Klein

TECHNISCHE
UNIVERSITAT
DRESDEN

Overview

*ProbMela
*Guarded command language

*Strongly inspired by PROMELA (SPIN)
*Probabilistic extensions

o iQuor
*Explicit model checker for quant. LTL and MDPs
? ?

M = Ol<p =M = —@]>(1-p)

LTL

TECHNISCHE
UNIVERSITAT
DRESDEN

ProbMela

eImperative probabilistic guarded command language
eSimilarities to PROMELA:
eatomic, numeric datatypes,do...od,if. . .£fi (nondeterministic
choices), channels (synchronous and asynchronous), assertions,
partial order reduction

eDifferences /Extensions to PROMELA:
*Minor syntactical differences
eProbabilistic choice (pif. . . £fip),
eLossy channels
*MDP semantics
eComplex data structures (members of classes)
*Recursive functions (functions of classes)
Numerical solution is performed

TECHNISCHE
@ UNIVERSITAT
DRESDEN

e ossy channels
e Jossy 0.3 channel of {int} size 8

ec ! x loses message (i.e.= skip) with probability
0.3

*Probabilistic choice
epif :0.3:-> value =
:0.7:=->goto exit
fip

TECHNISCHE
@ UNIVERSITAT
DRESDEN

ProbMela process handling:

constant int N = 2;

bool p bootstrapped=false;

proctype p(int par) {
p_bootstrapped; wait

skip
}

active proctype starter()
{
int i=0;
p[N] procs;
do: :i<N ~>
procs[i] = p.create(i); create processes
procs[i] .start(); i++ start processes
: :i==N~>
atomic{
p _bootstrapped = true;

me .destroy () destroy myself

TECHNISCHE
UNIVERSITAT
DRESDEN

ProbMela defines:

define tryEat(l,r)={
if ::forks[l]==false~>forks|[l]=true;
if
::forks[r]==false~>forks[r]=true;
eat++;,eat--;
forks[r]=false;forks[l]=false
: :forks[r]==true~>forks[l]=false
fi
:: forks[l]==true~>skip

Béél[N] forks;
ProbMela functions:

tryEat(mypid, mypid+1%N)

function fak(int n)
{
if::n==1 returnurn(n)
::n> 1 return(n*fak(n-1))
fi
}

TECHNISCHE
@ UNIVERSITAT
DRESDEN
Bytecode principle

// Probmela
proctype p() {

i=42;

eSemantical clarity “at
least” at PASM level

*Very flexible to
implement

Beispiel:
pushretaddr

// PASM

14 0 guard:
guard[src = "1
permit;
loadcal " 14 0";
loadclé "1";
ndetenable;

42 {15,0

}

_14 0:
code[src = "i = 42 {15,0}"]{
loadc "42";
storev "i";
loadcal "null";

}

null:
guard[src = "end of process"] {
permit;

}

TECHNISCHE

UNIVERSITAT

DRESDEN

Visualization of state space

@ processcreation

File Help

Model Model Checking Method | Statistics and Results | Other Options | Developer's options |

Program Graph Construction DFS on MDP | Quantitative Reachability in MDP | Quantitative &

A depth first search on the whole state space will be performed. (Properties are proce

M aximum search depth: [1 ::] [Millions :I | Apply partial order reduction

Size of hashtable: |1 ﬂ IMiIIions __:_{ | LTL property:

LTL formula is "'F a" with the fol
propositions:

Graphviz | JFF export | State vector dump | a > global.i==

VYisualizationc

v create graphviz file (enable only for "small" systems!)

Graphviz Output File: Itransition_syslem.graphviz

speed variables:

profiling counters:

text fields:

model checking was completed
execution complete

Open shell Explorer | |FU" model checking L‘ G0

2029230 bytes
DFS only unchanged C:\Dokumente und Einstellungen‘ciesinsk\Desktop\LiQuorCheck

atomicq
p_bootstrapped = true;
me.destroy(g

plactd p_bootstrapped = tre {30,15}

1: p_bootstrapped = true {30,15}

>

TECHNISCHE

£, D

| gl

Quantitative analysis:

@ Vo daphone UMTS

=0

File Help

Model | Model Checking Method ~ Statistics and Re[~

Statistical values of interest

Integer variables | Floating point values | Text f
~ Toaggle all

number of cache hits for state-hashing
number of states in PROBOA
number of states in PROB1E

v number of statesin S_7?

Output of results:
Report CSY output |

v generate CSV file
[append to existing CSV file

|ana|ysis.csv

profiling counters:
text fields:
model checking was completed

2L

...... execution complete

Result of last run

i

LiQuor ended with the following message:

Results:

integer counters:

number of states: 35202
number of transitions: 36413
number of statesin S_7: 19298

the bound (Ip result): 0.0255815

time variables:

overall time (s) For model checking: 47
time (s) For solving linear program: 46

speed variables:

profiling counters:
text fields:

{see panel "Statistics and Results" for more result values)

oK

[Full model checking

Open shell | Explorer |

1360446 bytes

quant.reach.

unchanged

C:\Dokumente und Einstellungenhciesinsk\Desktop\LiQuorCheckouti\LiQuorsLiQuorsmoc

_ DOTTY

@G (nota or F bj[a (USIM.syncNeeded)][b (USIM.nok le .. M=}

Flle Help

G(lalFb)

Syntax help

LTL formula:

E

Automaton type: |deterministic Rabin

LiQuor/PASM |

Probmela definition: |.'\U MTS_sync_3.probmela

5

Assign variable evaluations to atomic propositions

Process variables Atomic propositions

USIM.pbin |
Varables: hir e

i Define
nok evaluation as
nok[1] proposition

Process: Variable [

evaluation:

Undefine Zedit
proposition

Use Variable

a (USIM.syncNeeded)
b [USIM.nok < 10]

Display after building
IV automaton

| automaton pasm code

[

Cuit
Cocktail¥' 1.8.15

Last results

Go

eNumerical Solution in
LiQuor:
*Value Iteration
e[psolve (free LP lib)
eexport to file

Safra[NBA=2]

utomaton ‘ Cuit

Decaf 1.5.20

hskiDesktophLiQuorl

TECHNISCHE

Simulation /Step by step: ©

pl-act2@323-plprocs [i]. start [) {27.8}

Processes

27 This fi d bv Cocktail V0.8.04 State history [select to set):
Is hle was created by Locktall YU.5. >) ,—
- 24 LiQuor core lib version 65 Visited states: :

. sk : 2
Process Type: global.pbin__1// LiQuor auxillary lib version 57 Current state: |2

Process Type ID: |1 &) starter.pbin (proc 1. 4 user vanables) [, Last action: procs [i]=p. creat
Process ID: 1

i Process Type: starty — UDraw(Graph) 3.1.1 \;\]E[nulation data
t File View Mavigation Abstraction Layout Options ? Clear State history
- Process Type ID: |3

o ﬂ Clear variable history
Process Type: p.pbin g ~—

- ” - 5how variable history
#O: t —
Process TypeID: |2 | by :@:23 ance . -

Process ID: 3 #2: "procs"== proc #0 <PTID: 1> <PID: 1> <blocking> <PC : 56> vars: <#0:0> <#1:1> <#2:0>

#3: "procs[1]"==0 proc #1 <PTID: 3> <PID: 2> <enabled> <PC : 64> vars: <#0:0> <z1:0> <32:0> <=3:0>
#0: "@instance''== length in bytes (whole vector): 25 B
#1: "par''==0

states: 2
[proctype plint par){

slways on top

Row: 27 Cal: 8

active proctype star ™~ ~—

proc #0 <PTID: 1> <PID: 1> <blocking> <PC : 56> vars: <20:1> <21:1> <£2:0>

proc #1 <PTID: 3> <PID: 2> <enabled=> <PC : 278> vars: <£0:0> <Z1:0> <£2:3> <Z3:0>
proc 2 <PTID: 2> <PID: 3> <blocking> <PC : 48> vars: <20:0> <z1:0>

length in bytes {(whole vector): 34

Row: nfa Col: nfa

|
i

TECHNISCHE
UNIVERSITAT
DRESDEN

plactl pif 124,34

Program Graph analysis:

al
Yplact]7 ddp « plactl0 forka | myright | = tne (K27}
.

.

.. — o3
% DiningPhilosophers H@ Pl i glp g ats

File Help

-

Model Model Checking Method | Statistics and Results | Other Dptions | Developer's options | Potace1r ke ot 1= 110321, plac e e 1= e 113311

b

Program Graph Construction | DFS on MDP | Quantitative Reachability in MDP | Quantitative Analysis (LTL) of MDP |

A program graph will be extracted from the model

Program extraction: ITraverse processes separately LI Help?

Yisualization
Graphviz Output File: Iprogtam_graph.graphviz Edit || Show I

1 forka [regmighe | = &

f:ll'l:lﬂlirlg counters: ?PXJAI[‘ forka [reodedt | = Salae (12,15
text fields:
Date and time: 1141207, 09:59:09

: 11 ok [reodedt |~ Salae (12,154
model checking was completed

Clear output | v

Open shell Explorer 'Full model checking | Last results | Quitl

el AR el RN i e Bl Mk Lol A ADK S Gl Gl RN CoRR ARl A AN, TR N Al S

Cocktail ¥ 1.8.15

9, e
plactl pif 12431 N

1350304 bytes '
Program graph unchanged C:A\Dokumente und Einstellungeniciesinsk\D esktophLiQuorCheckoutiLiQuoriLiQuorsmaoc

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Partial Order Reducti
=k

on:.

6 Dining Philosophers| w/o POR with POR
states 411255 | 305757
actions | 2875869 | 1133974

5 Leader Election (as)| w/o POR with POR

states >4 Mio 967855
actions >|2 Mio 1.5 Mio

Reachability
analysis

TECHNISCHE
UNIVERSITAT
DRESDEN

* LiQuor for Research:
* A flexible and dynamic language
* Process handling is very dynamic
LTL
e explicit (:-) or:-(72)

* Extending LiQuor
e Cooperations are very welcome

e Availability of LiQuor:
* http://wwwtcs.inf.tu-dresden.de/~ciesinsk/transfer _open/liquor_download.html

¢ Available for Windows only

http://wwwtcs.inf.tu-dresden.de/~ciesinsk/transfer_open/liquor_download.html
http://wwwtcs.inf.tu-dresden.de/~ciesinsk/transfer_open/liquor_download.html
http://wwwtcs.inf.tu-dresden.de/~ciesinsk/transfer_open/liquor_download.html
http://wwwtcs.inf.tu-dresden.de/~ciesinsk/transfer_open/liquor_download.html
http://wwwtcs.inf.tu-dresden.de/~ciesinsk/transfer_open/liquor_download.html
http://wwwtcs.inf.tu-dresden.de/~ciesinsk/transfer_open/liquor_download.html

