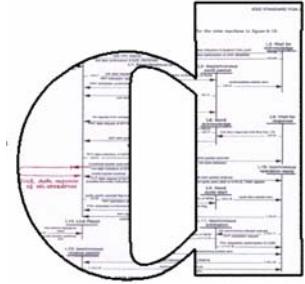


The Quest for Quantifiable Quality



Holger Hermanns

Dependable Systems and Software
Saarland University

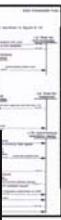
and

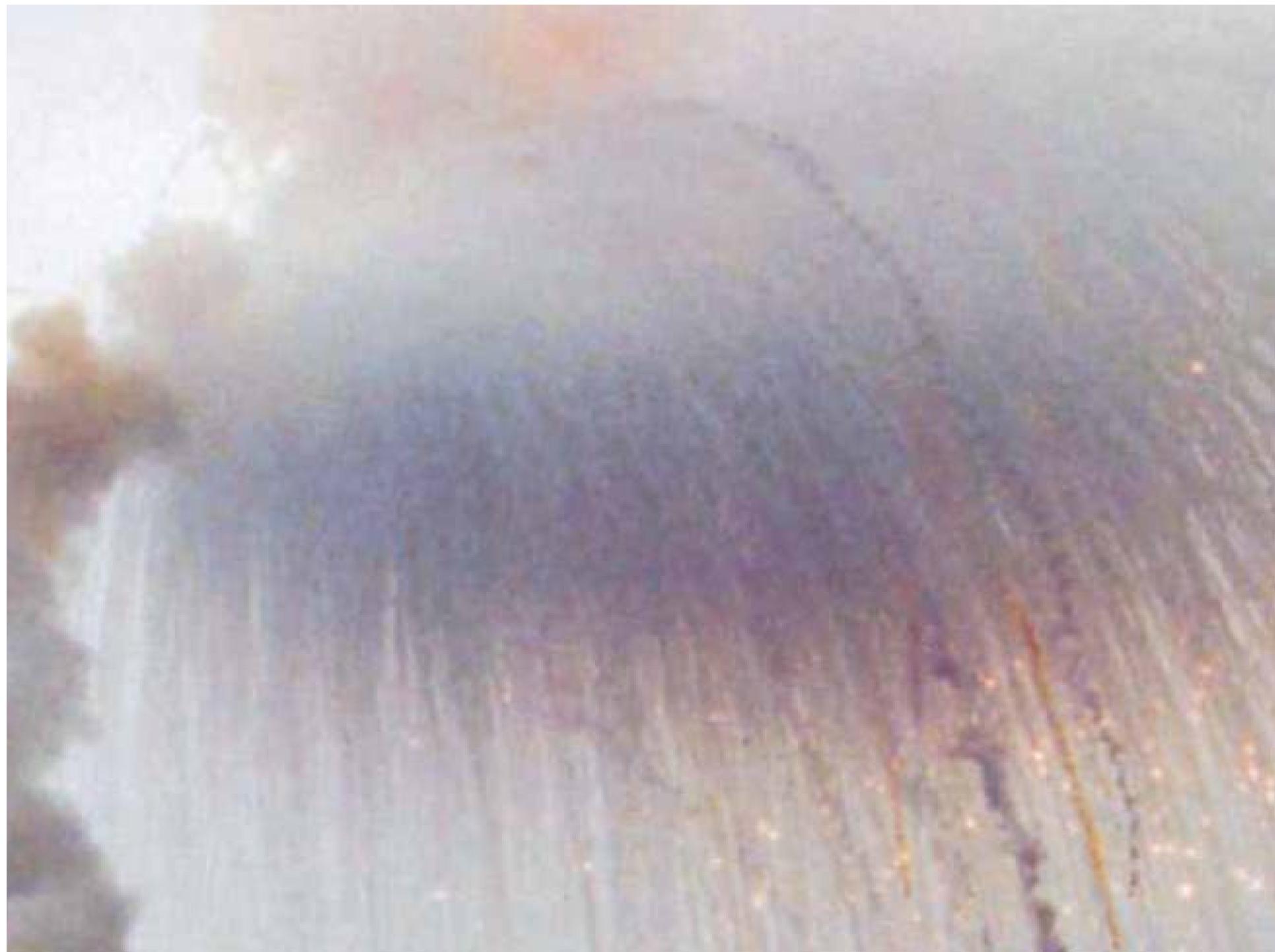
VASY
INRIA Rhône-Alpes

What is this talk about?

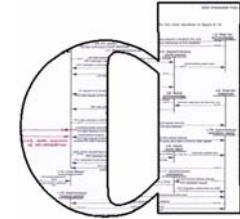
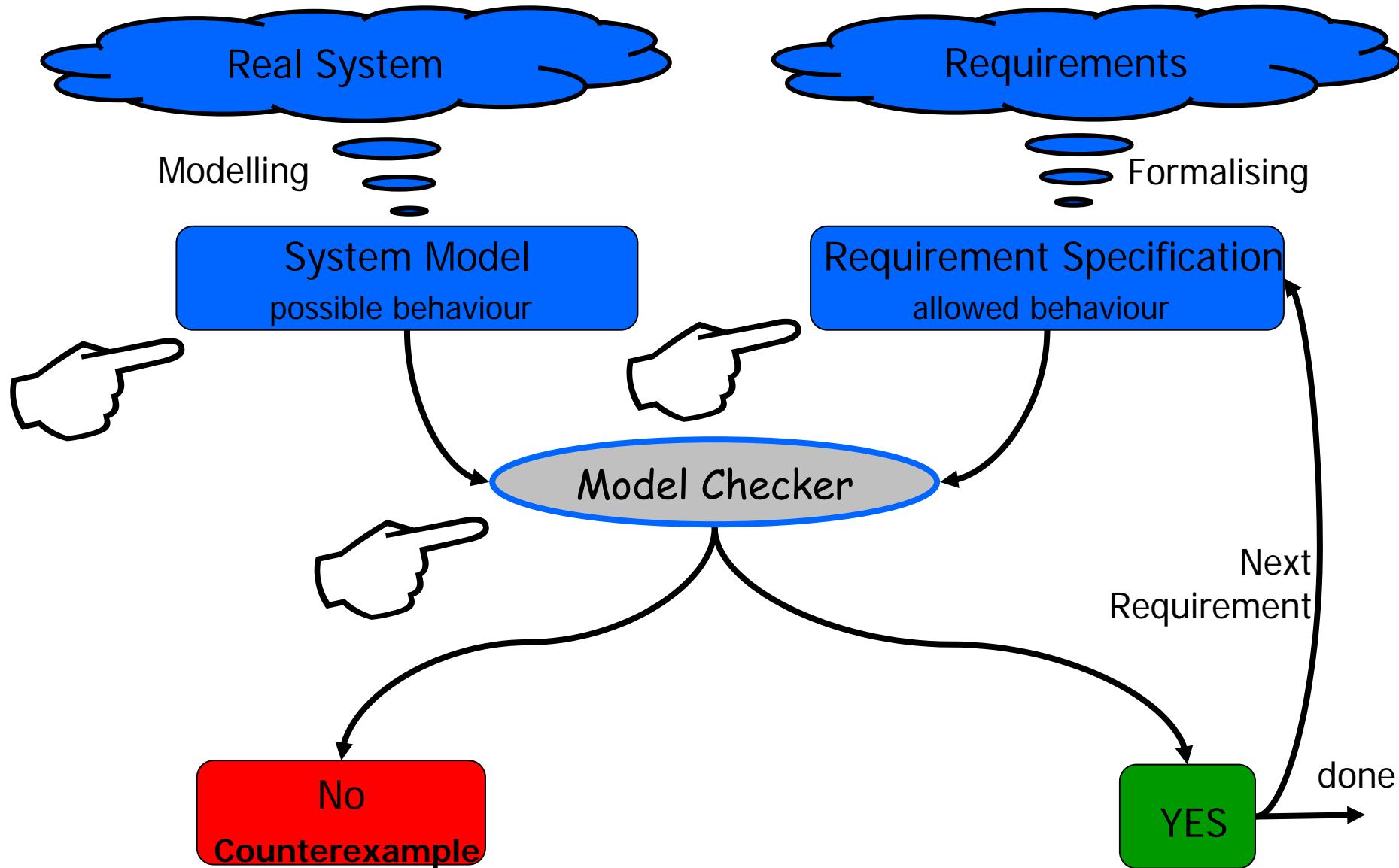
- Guaranteeing properties of computer systems that are not at hand
 - because they are embedded in a physical environment
 - because they are not existing, or not so easy to play with
- Usually systems that are safety-critical, expensive, and/or numerous.

Embedded Systems

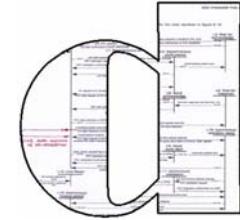
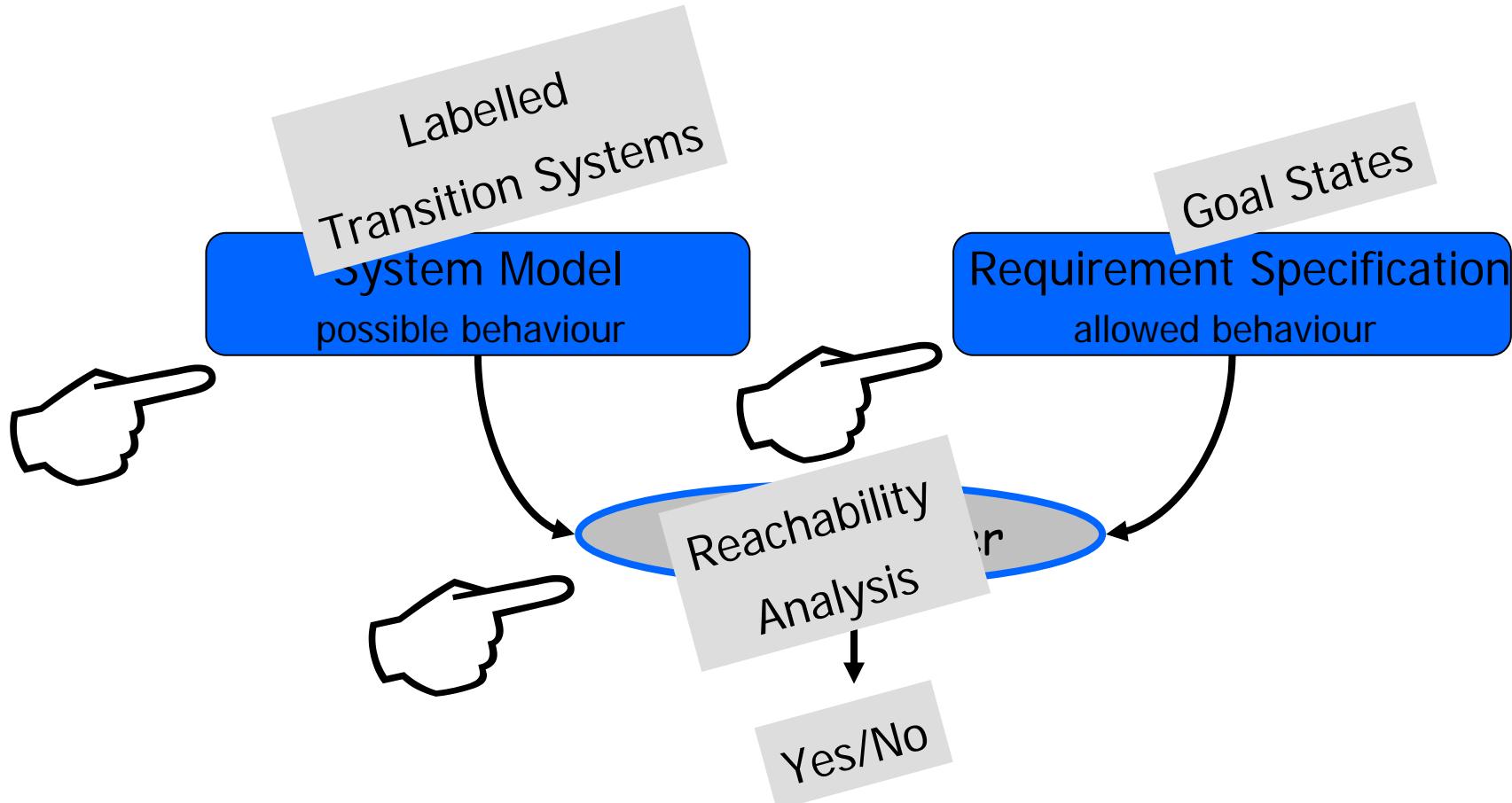




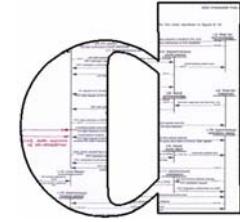
Model Checking



Model Checking (the simplest case)



Labelled transition systems

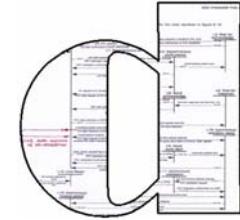


What do we like about this model?

- Is easy to model with
- Fits well to concurrency: Interleaving semantics
 - Message passing,
 - handshake communication, and
 - shared variable communication

all behave naturally
- Is compositional

Labelled transition systems



What we do not like about this model?

- ⌚ No support for quantities

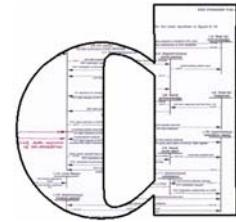
- ⌚ Time

- ⌚ Cost

- ⌚ Probabilities

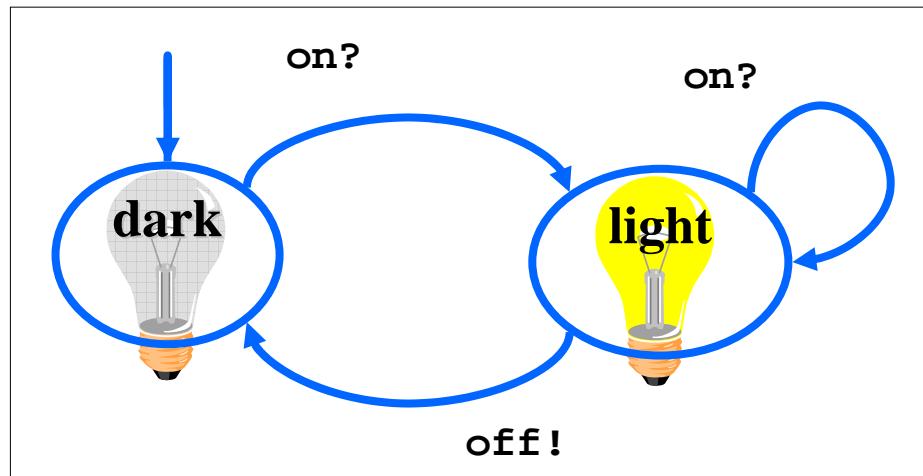
- ⌚ No support for continuity

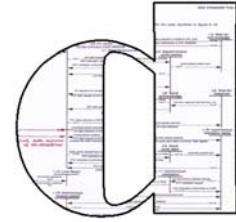
- ⌚ ...



Quantitative Models?

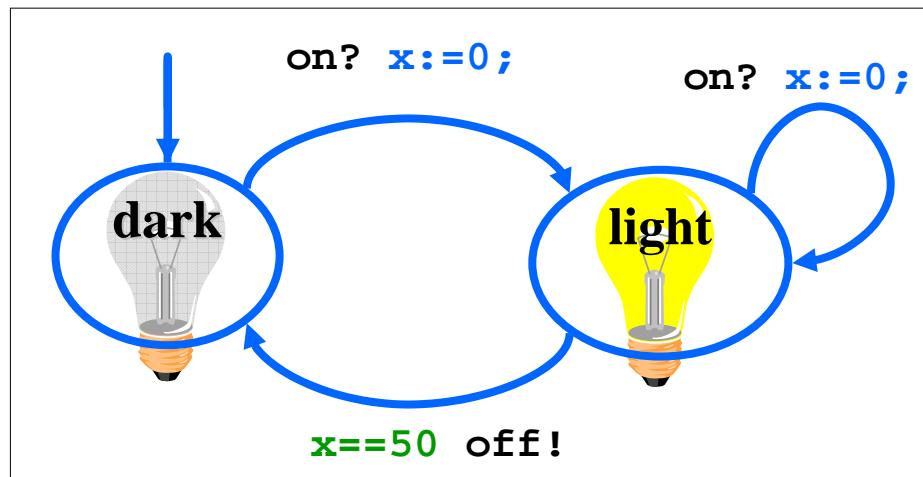
finite automata



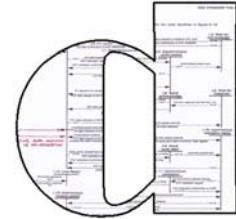


Quantitative Models?

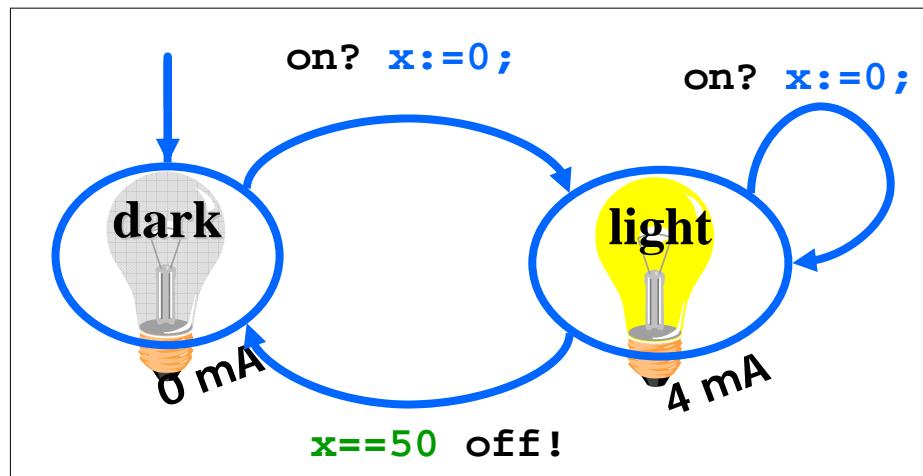
- finite automata *all run at the same speed*
- decorated with clocks

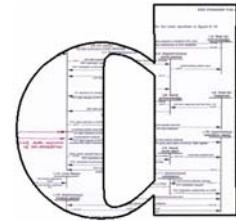


Quantitative Models?



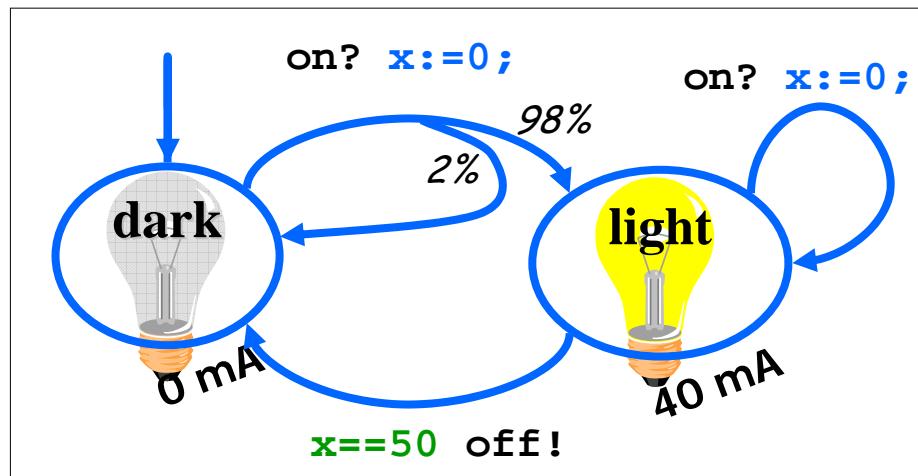
- finite automata
- decorated with clocks
- and with costs *accumulated linear with time*



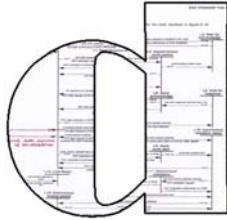


Quantitative Models?

- finite automata
- decorated with clocks
- and with costs
- and with probability distributions

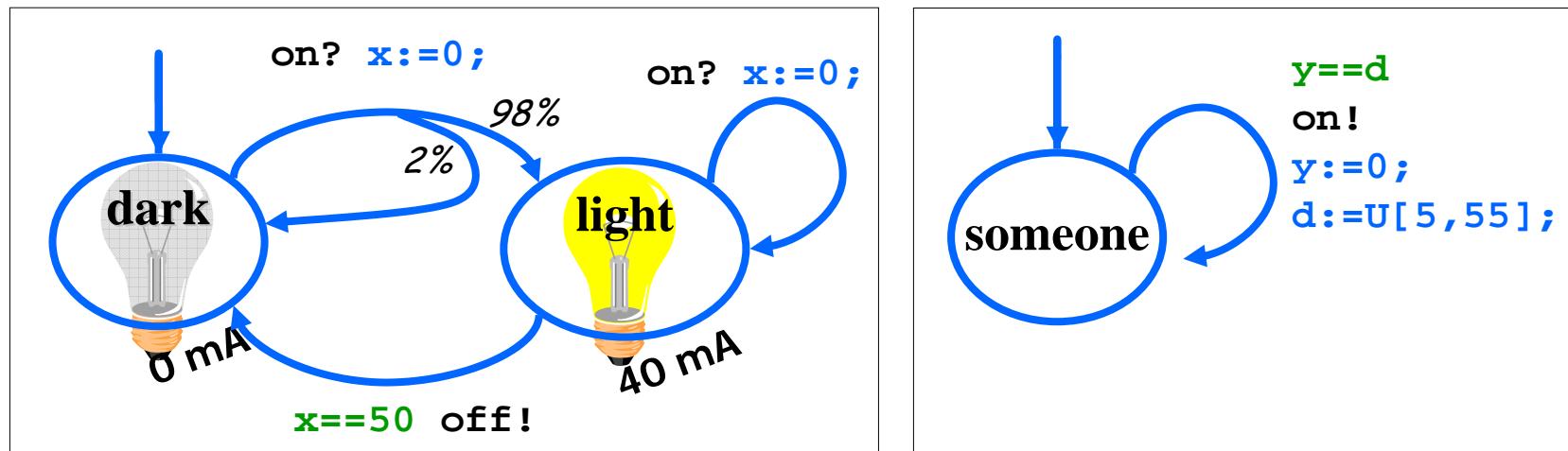


priced Probabilistic Timed Automata (pPTA)



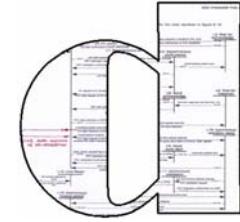
Quantitative Models?

- finite automata
- decorated with clocks
- and with costs
- and with probability distributions



- modular: composition of automata

priced Probabilistic Timed Automata (pPTA)



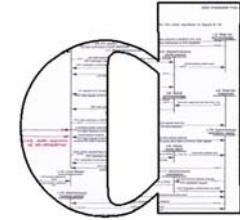
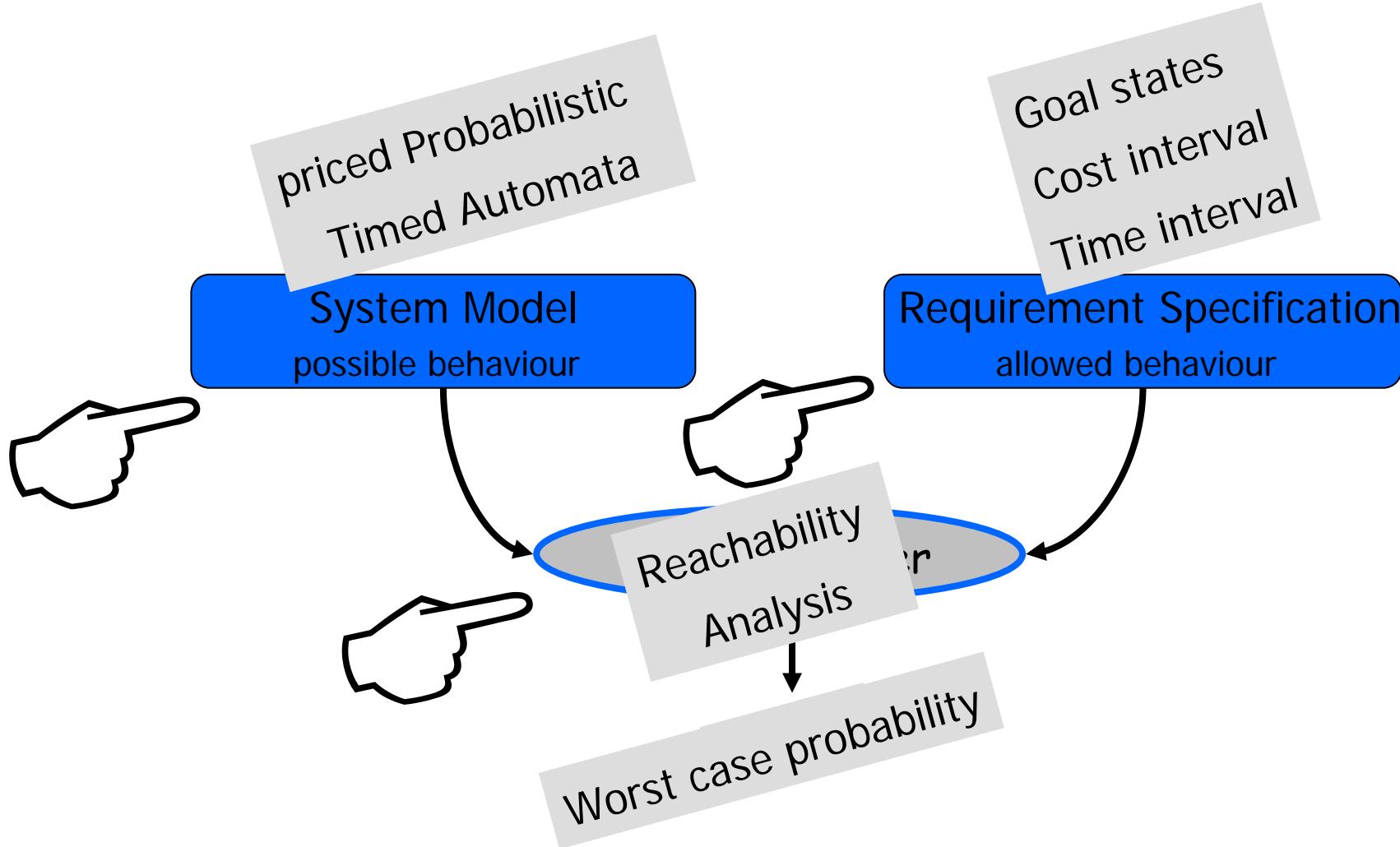
priced Probabilistic Timed Automata

What do we like about this model?

- Is (rather) easy to model with
- Fits somewhat well to concurrency: Interleaving Semantics
 - Message passing,
 - handshake communication, and
 - shared variable communication

all behave naturally
- Synchronicity of clocks is a little awkward.

Quantitative Model Checking



This talk is not about priced Probabilistic Timed Automata

- Anyway, what you may want to know:

UPPAAL

- Reachability for TA is decidable
- Time bounded reachability for TA is decidable

[Alur/Dill]

PRISM

- Reachability for PA is decidable
- Hop bounded reachability for PA is decidable

[Puterman]

UPPAAL CORA

- Cost bounded reachability for pTA is decidable
- Time and cost bounded reachability for pTA is decidable

[Fehnker]

[Behrmann et al]

PRISM?

- Reachability for PTA is decidable
- Time bounded reachability for PTA is decidable

[Kwiatkowska et al]

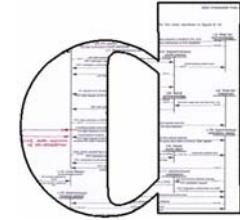
(nothing)

- Cost bounded reachability for pPTA is semi-decidable
- Time and cost bounded reachability for pPTA is semi-decidable

[Berendsen et al]

infinite zone range

This talk is about an alternative to Probabilistic Timed Automata



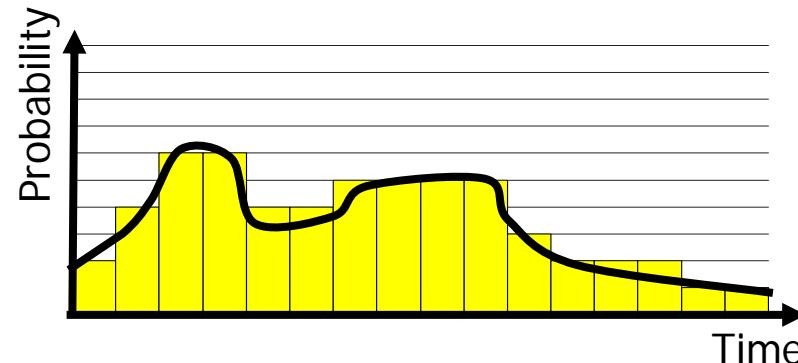
Reachability for PA is decidable

▫ Hop bounded reachability for PA is decidable [Puterman]

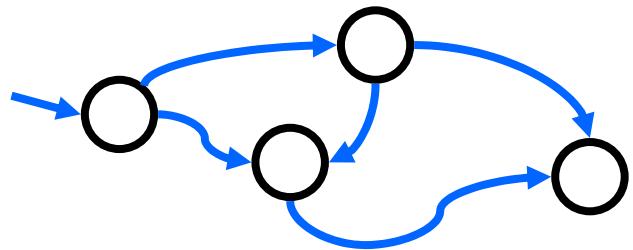
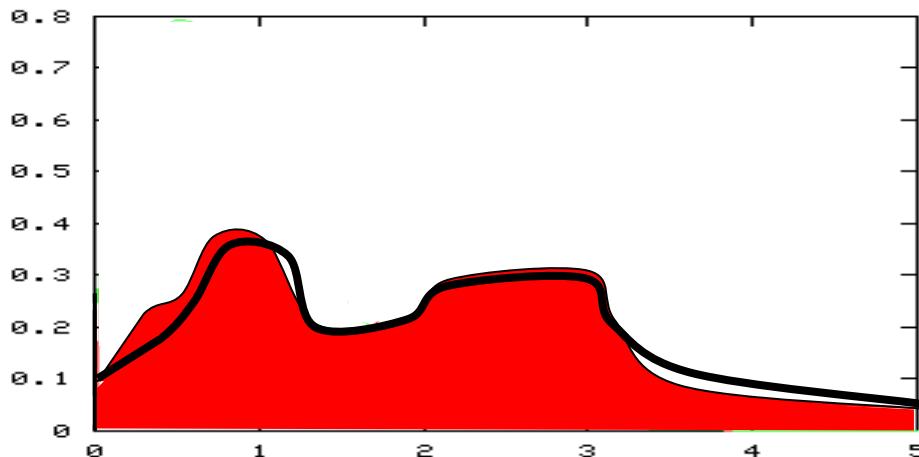
▫ State-of-the-art in PTA model checking:
Discretize time and check reachability [Kwiatkowska et al]
[Kattenbelt][Daws]

▫ Reachability for PTA is decidable
▫ Time bounded reachability for PTA is decidable [Kwiatkowska et al]

▫ Double discretisation:



Approximation in continuous time

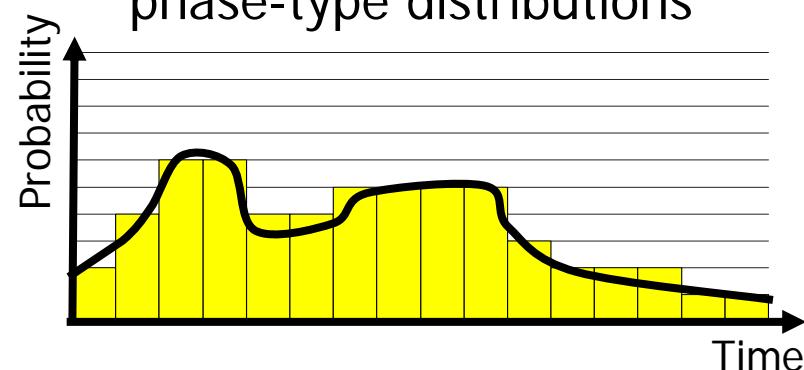


Recall: double discretisation

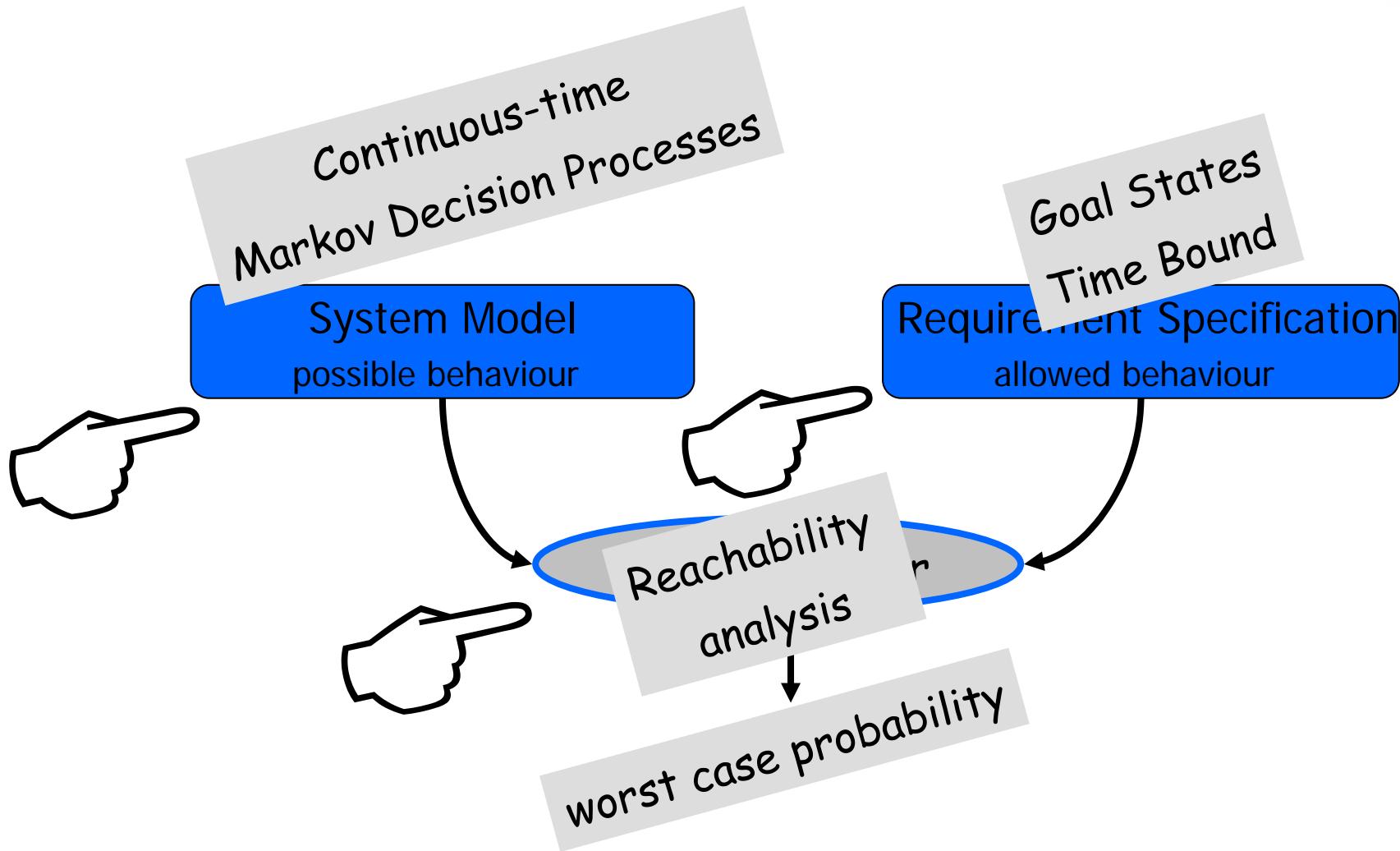
*Memoryless sojourn times,
but memorization of
phase of the distribution*

Phase-type distributions form a dense set of continuous distributions

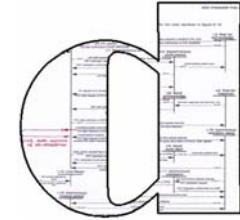
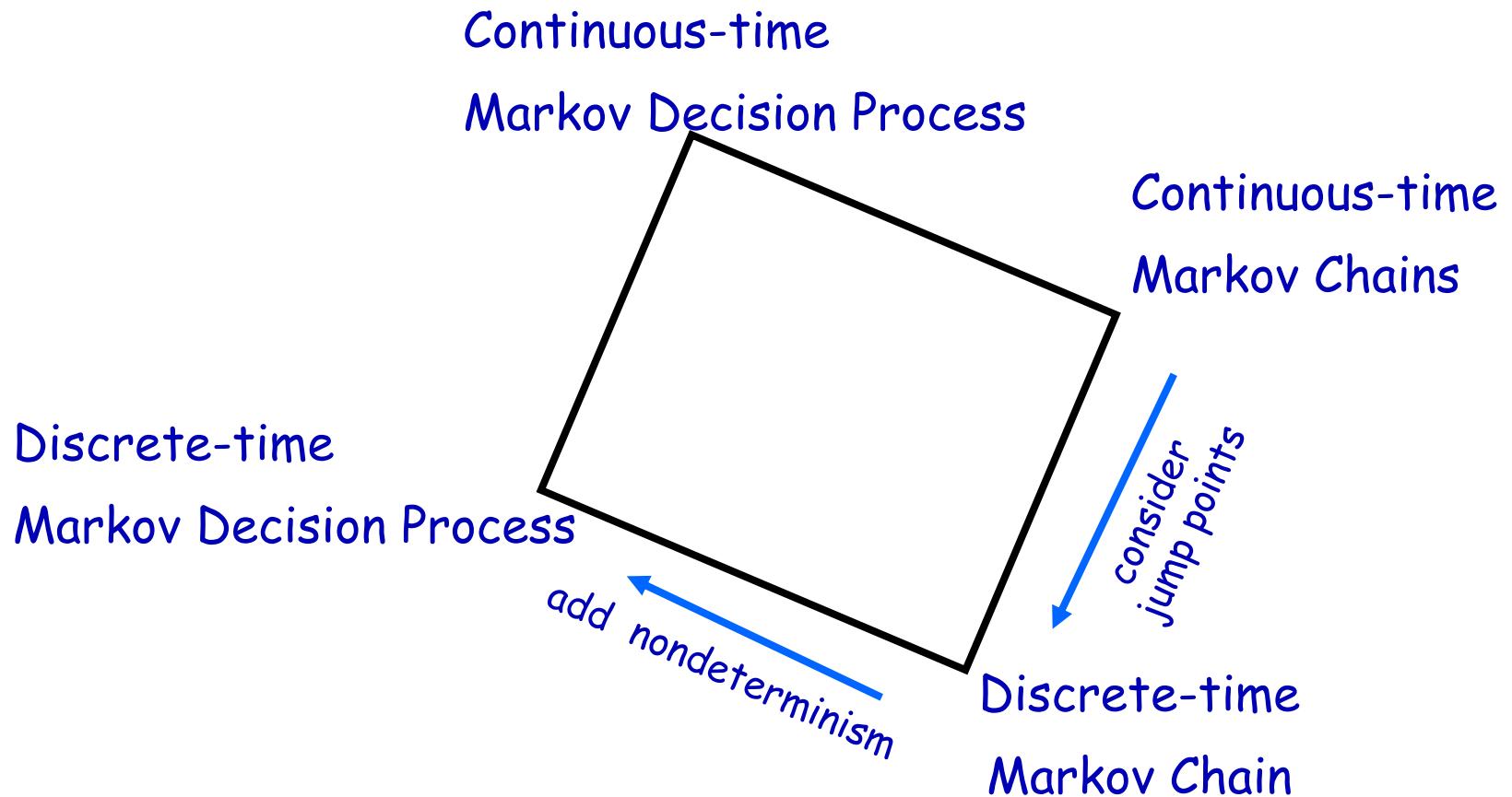
superpositions can approximate arbitrary continuous distributions: phase-type distributions



Model Checking



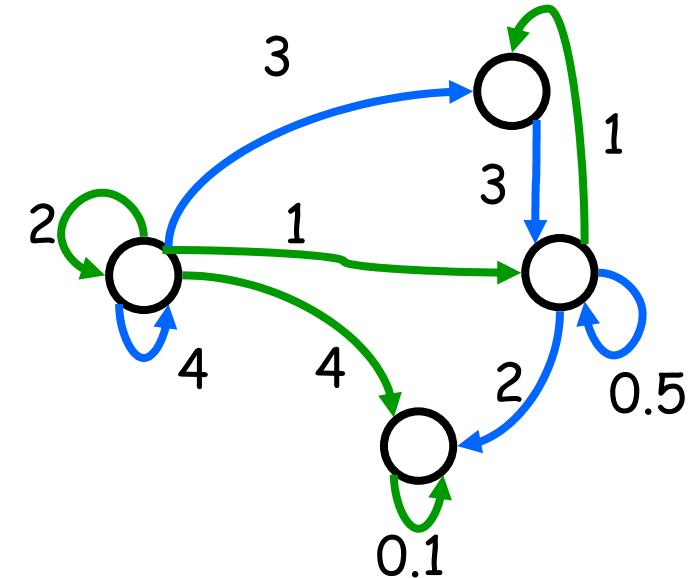
Markov Chains and Decision Processes



Continuous-Time Markov Decision Processes: CTMDPs

A tuple $\mathcal{M} = (S, Act, \mathbf{R})$, where

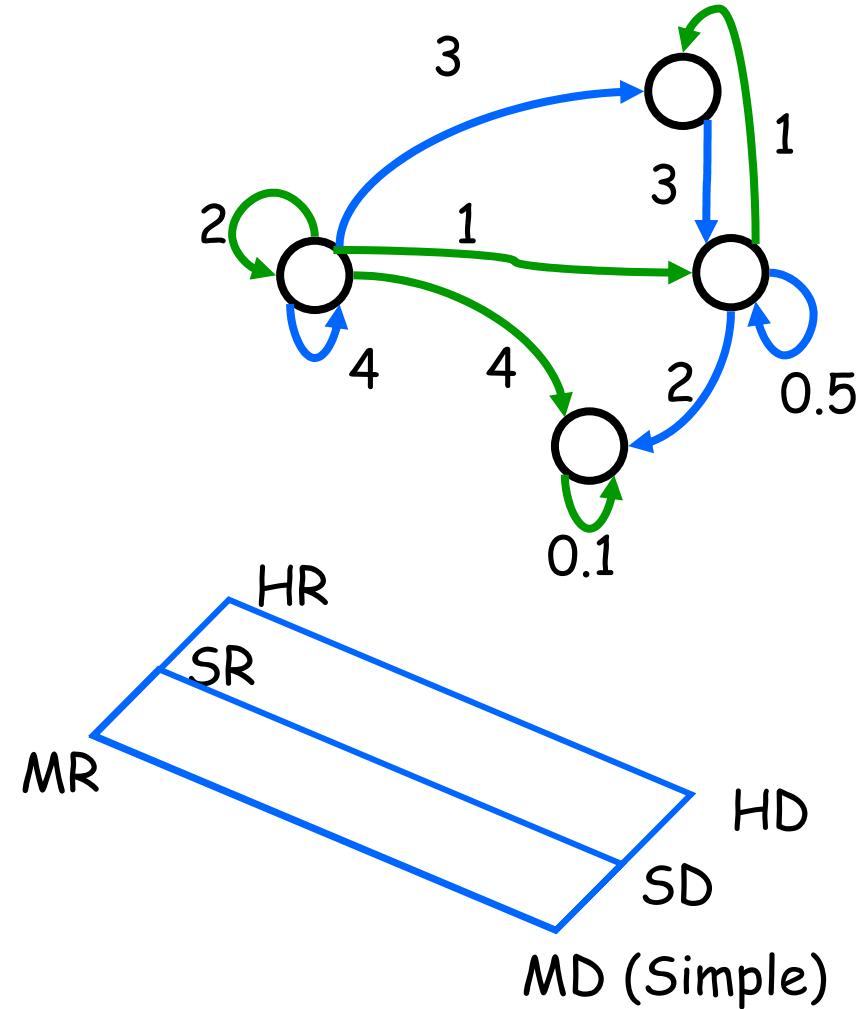
- S is a finite set of states,
- Act a finite set of actions,
- $\mathbf{R} : (S \times Act \times S) \rightarrow \mathbb{R}_{\geq 0}$ is the (three-dimensional) rate matrix.



Scheduler types

- H: History dependent
- S: Step dependent
- M: Markov (History independent)

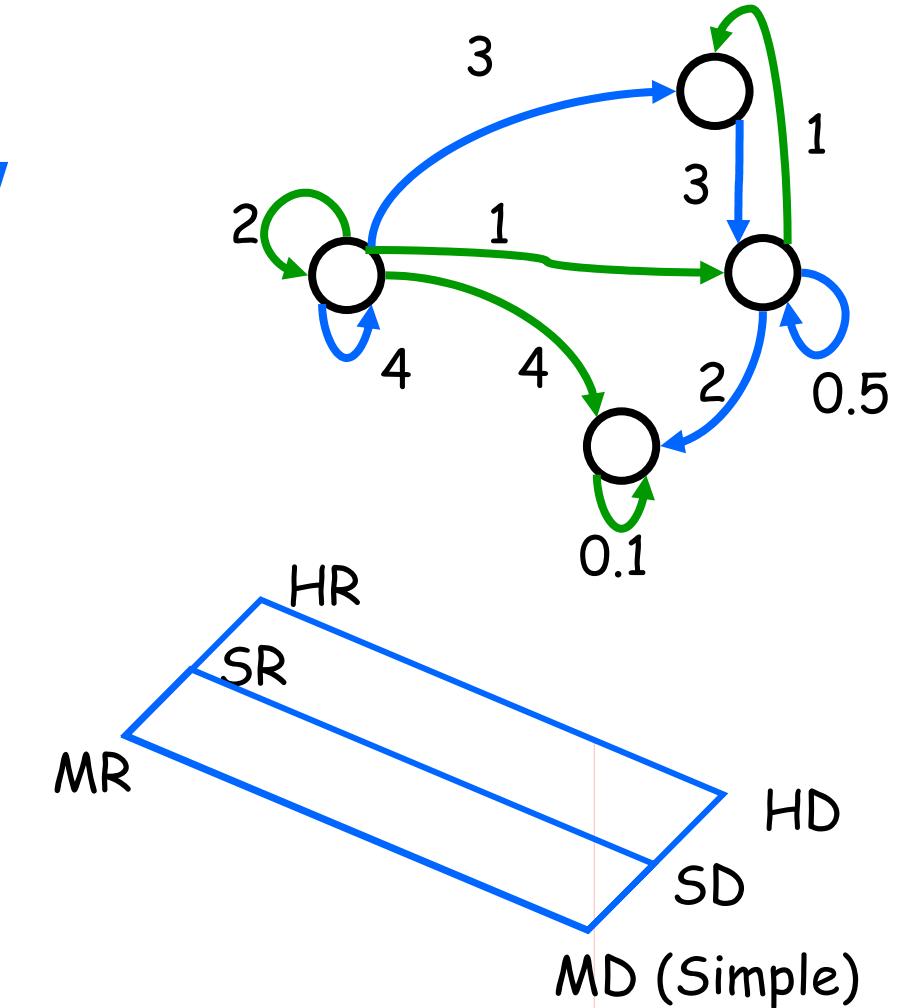
- R: Randomized
- D: Deterministic



Maximum timed reachability probability

We look for the maximum probability to reach a set of goal states within a given time interval:

$$\sup_{D \in \text{Sched}} \Pr_D(s, \xrightarrow{\leq t} B)$$



where $t > 0$ is a real time-bound, $B \subseteq S$ and $s \in S$.

And Sched is the class of schedulers considered.

How to compute

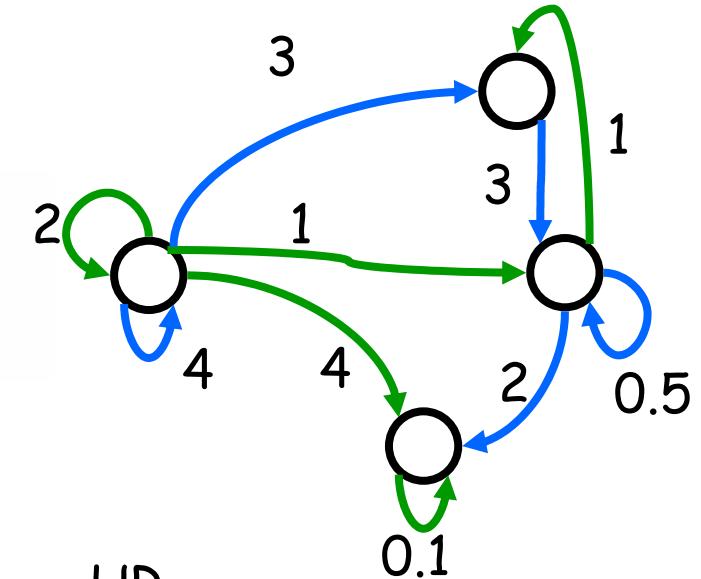
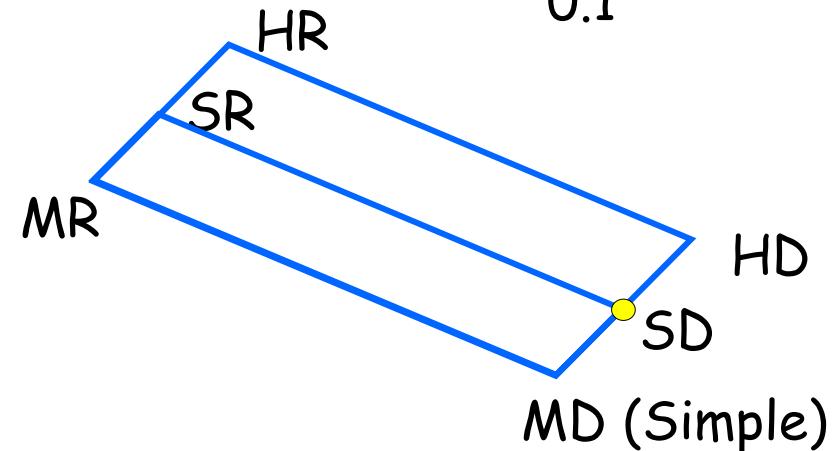
$$\sup_{D \in \text{Sched}} \Pr_D(s, \xrightarrow{\leq t} B)$$

We

- look at SD schedulers,
- and restrict to uniform CTMDPs.

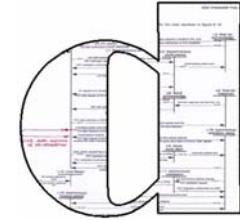
Then we'll show that this cannot be outperformed by adding

- more History,
- or Randomization.



A CTMDP \mathcal{M} is called uniform if there is some E such that for all states s , $\alpha \in \text{Act}(s)$ implies $E(s, \alpha) = E$.

A greedy backward algorithm (for truncated SD-schedulers)



Idea:

- Consider truncated SD-schedulers

$$D : S \times \{1 \dots k\} \rightarrow Act$$

- Try to construct the optimal one.
- To do so, use a greedy backwards strategy:
 - For each state determine the action that maximises the probability to reach set B in one step.
 - Use these actions to calculate the last (the k -th) summand of

$$\left(\sum_{n=0}^k \pi(n) \cdot \mathbf{P}_{D,B}^n \cdot \mathbf{i}_B \right) (s)$$

- Continue this way.
- Make sure that the resulting schedule is of interest.

Optimality for HD and HR schedulers

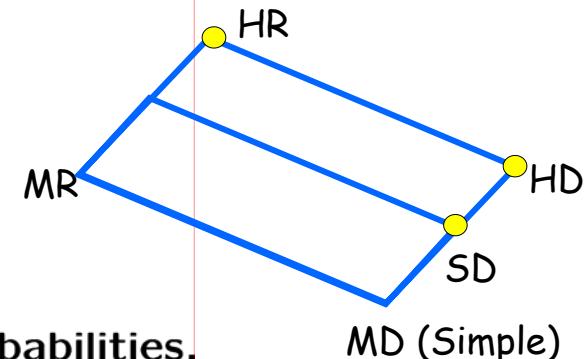
Optimality of the returned vector q up to ε .

For all states $s \in S$:

$$\sup_{D \in HD} \Pr_D(s \xrightarrow{\leq t} B) - \varepsilon \leq q(s) \leq \sup_{D \in HD} \Pr_D(s \xrightarrow{\leq t} B)$$

Suprema under HD and SD agree for accumulated probabilities.

$$\sup_{D \in SD} \Pr_D(s \xrightarrow{\leq t} B) = \sup_{D \in HD} \Pr_D(s \xrightarrow{\leq t} B)$$



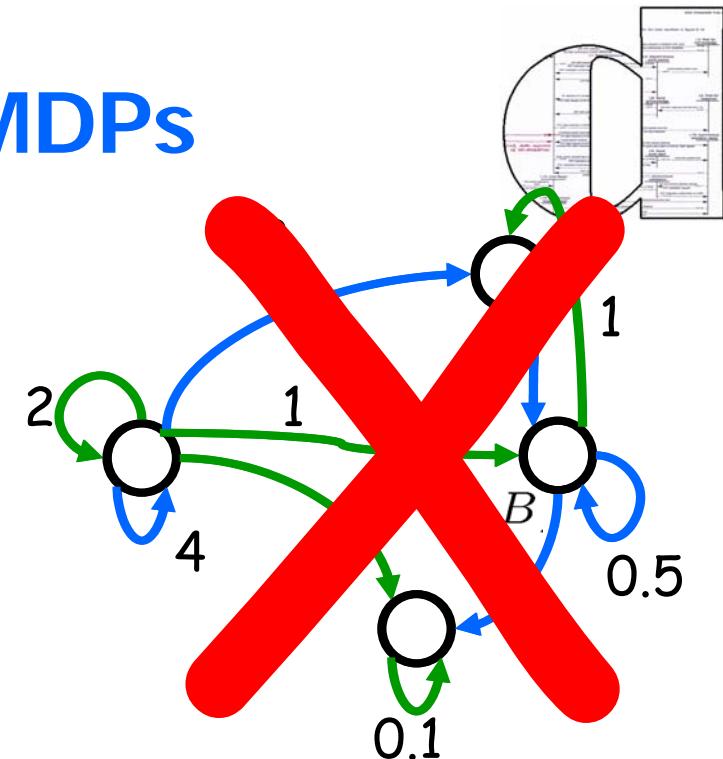
Suprema under HD and HR agree for accumulated probabilities.

$$\sup_{D \in HD} \Pr_D(s \xrightarrow{\leq t} B) = \sup_{D \in HR} \Pr_D(s \xrightarrow{\leq t} B)$$

Complexity for uniform CTMDPs

Space complexity: $\mathcal{O}(|S|^2 \cdot |Act|)$

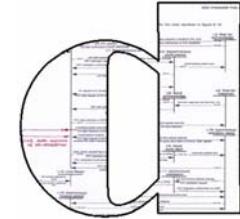
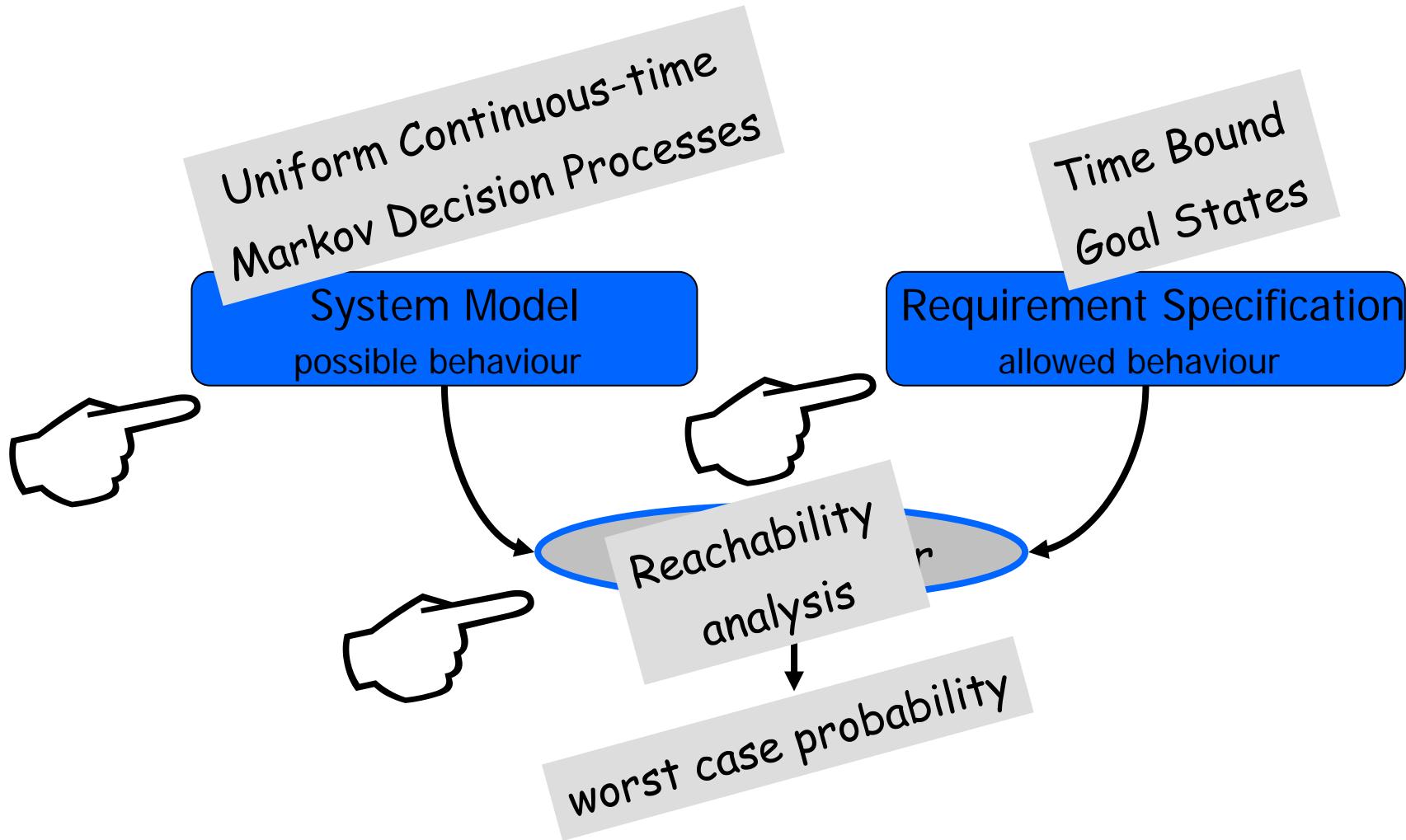
Time complexity: $\mathcal{O}(E \cdot t \cdot |S|^2 \cdot |Act|)$



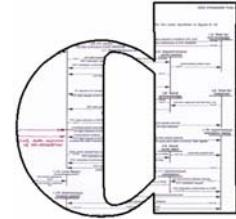
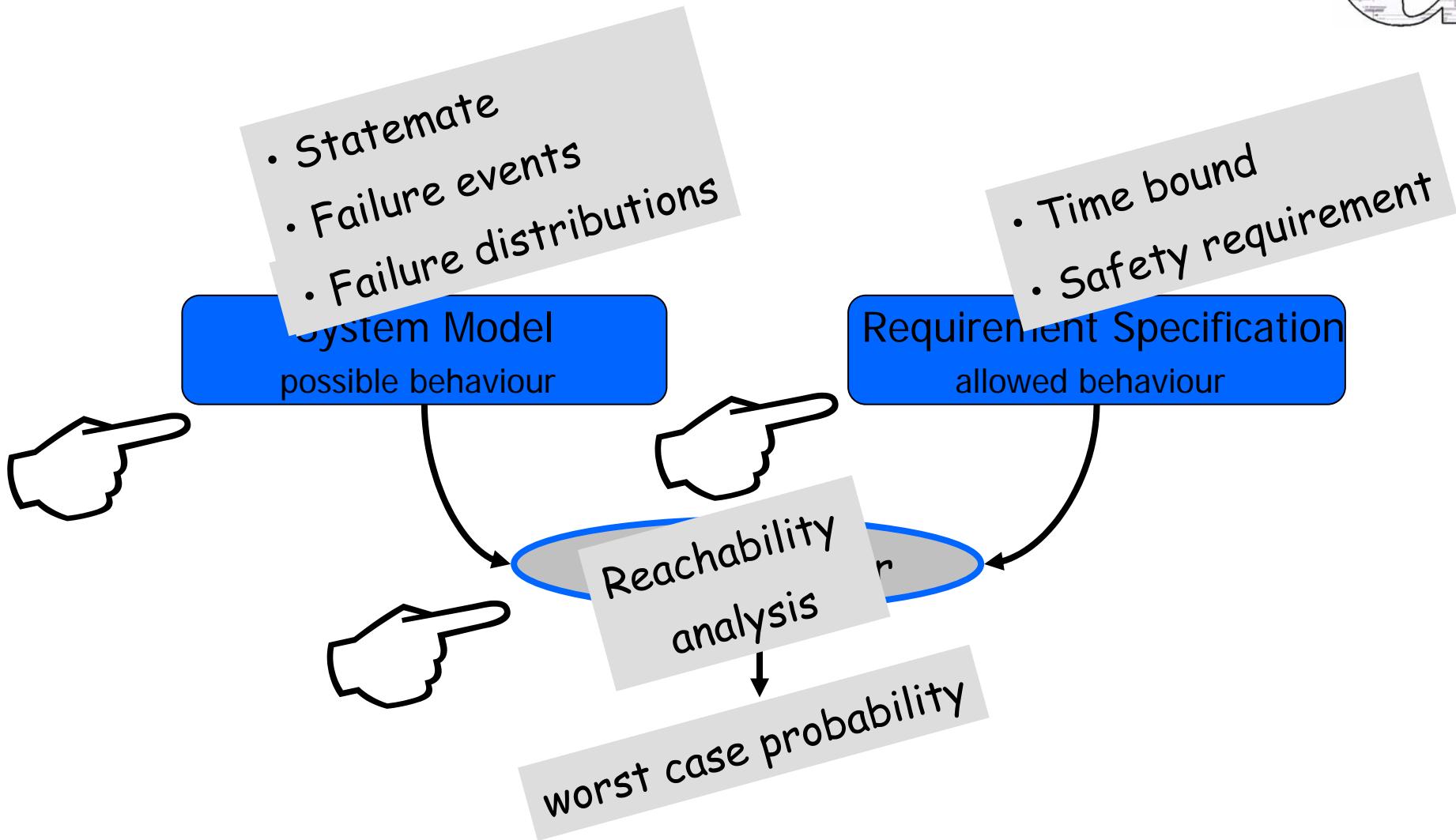
A CTMDP \mathcal{M} is called uniform

if there is some E such that for all states s ,
 $\alpha \in Act(s)$ implies $E(s, \alpha) = E$.

Model Checking, what we have

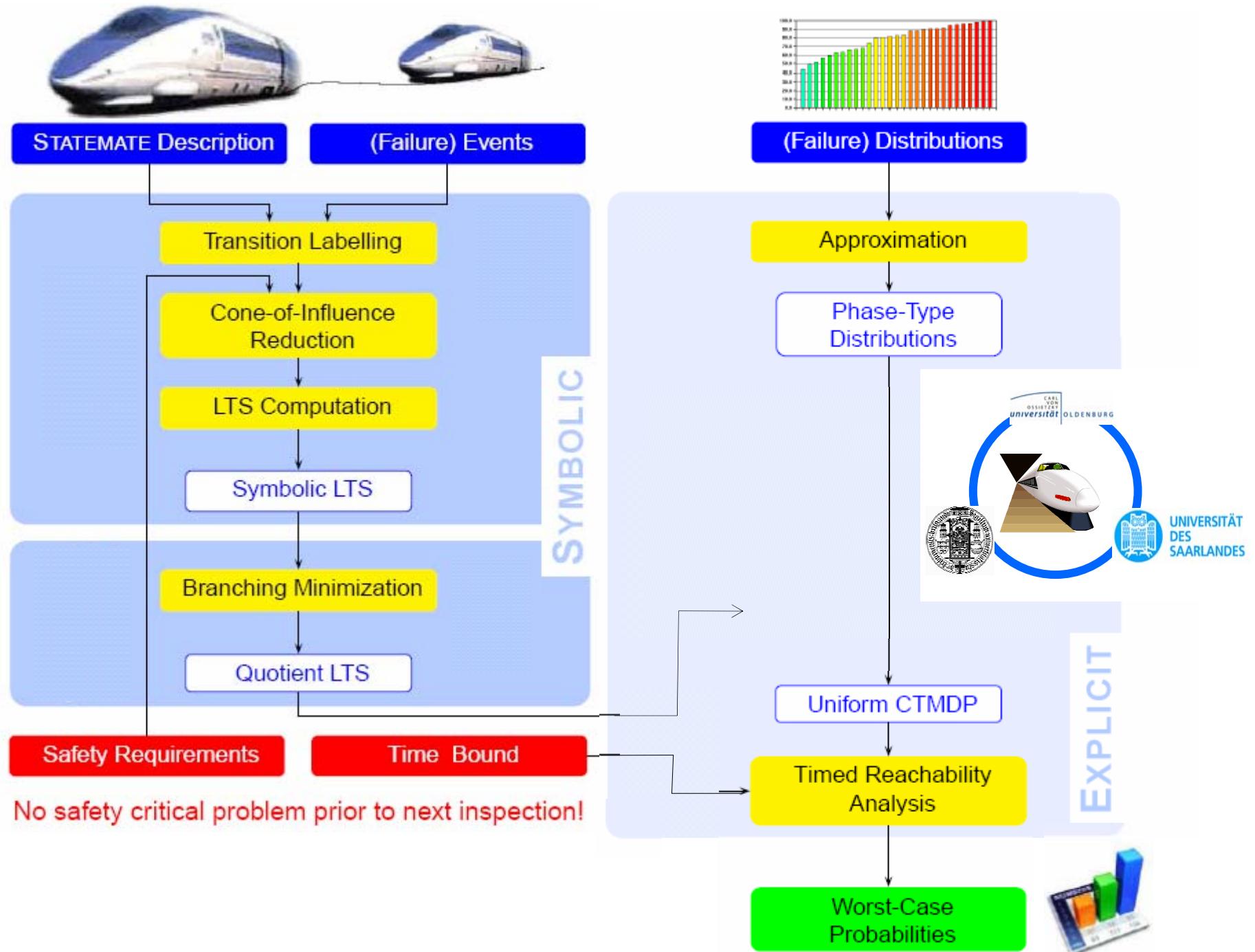


Model Checking, what we also have

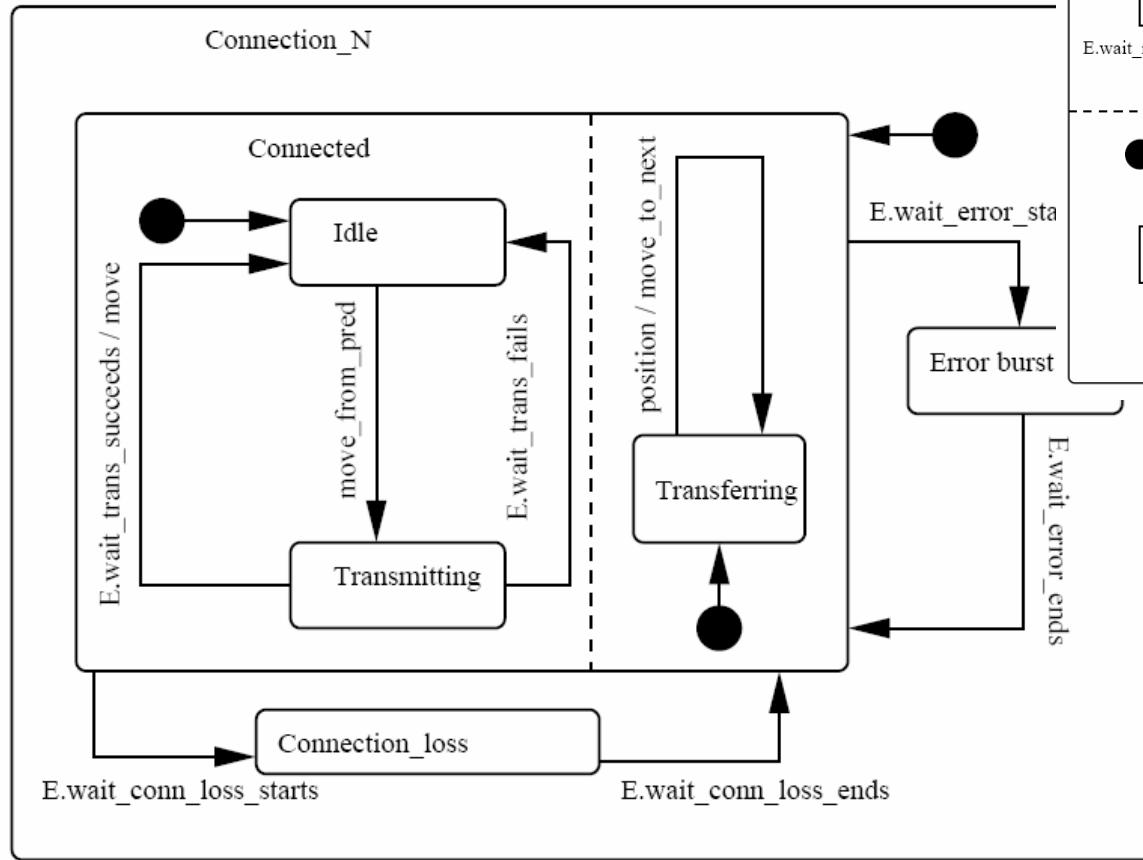
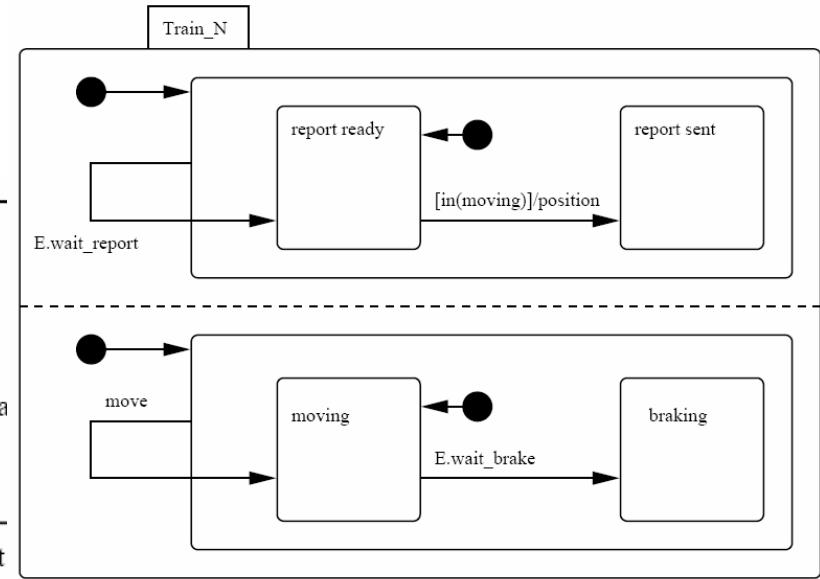


What this gives us:

the worst case probability to hit an unsafe situation within a given time bound

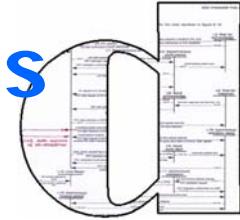


Modelling: Statemate



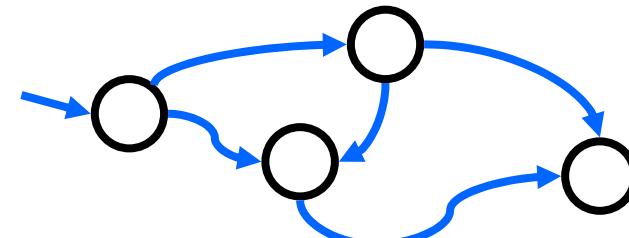
- █ Hierarchical, state-transition oriented specifications of reactive systems.
- █ Underlying: a finite-state transition system.

Failure modes and general distributions

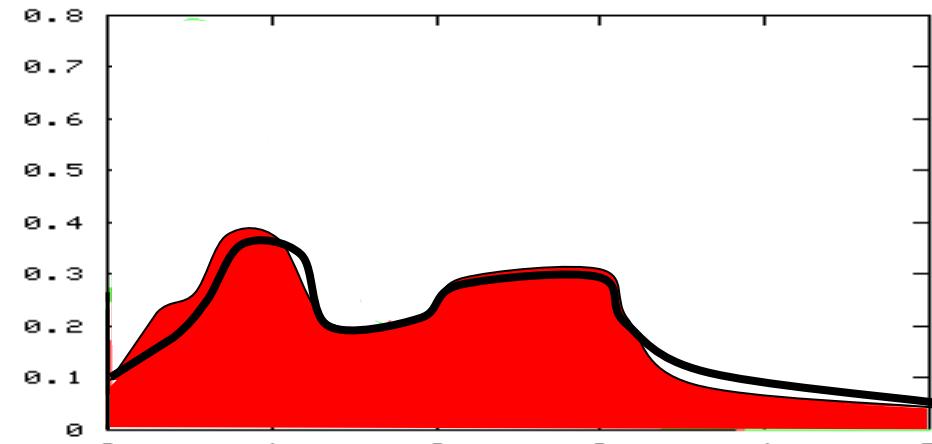


- Failure modes allow a 'fault injection'-style behavioural extension of the TS underlying a Statechart.

- Available in Statemate.

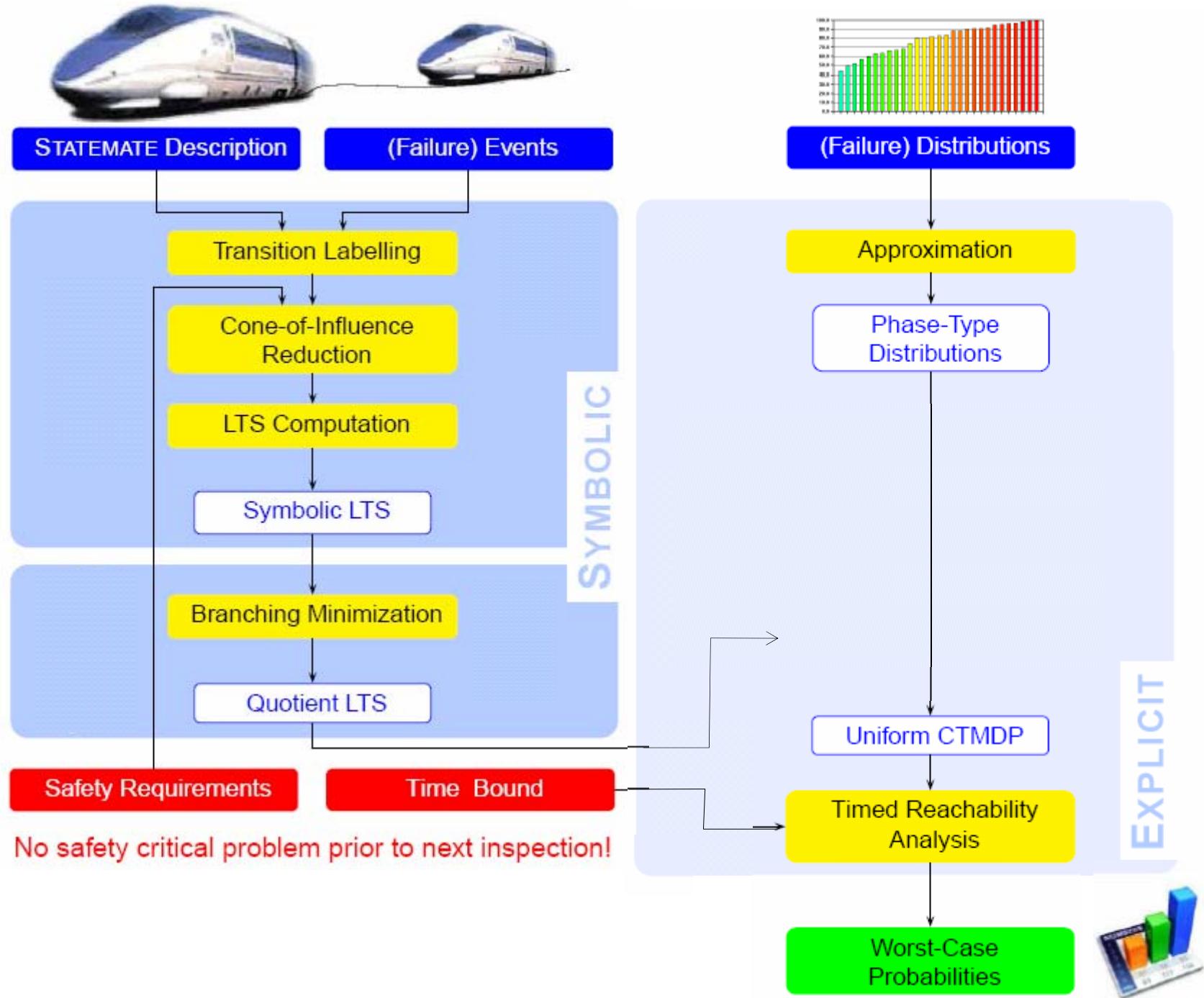


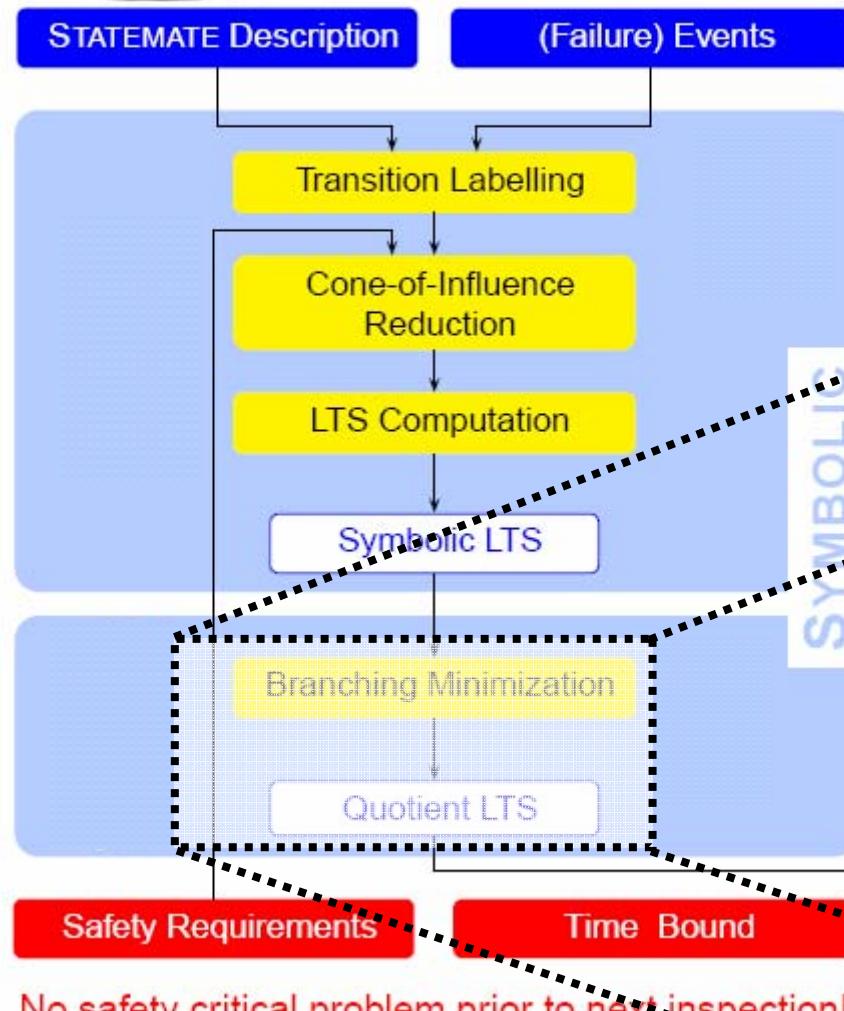
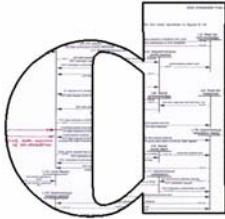
- We enable to delay the occurrence of these failures by *general* probability distributions.



- Those are approximated by Phase-Type distributions.

- And integrated by composition.

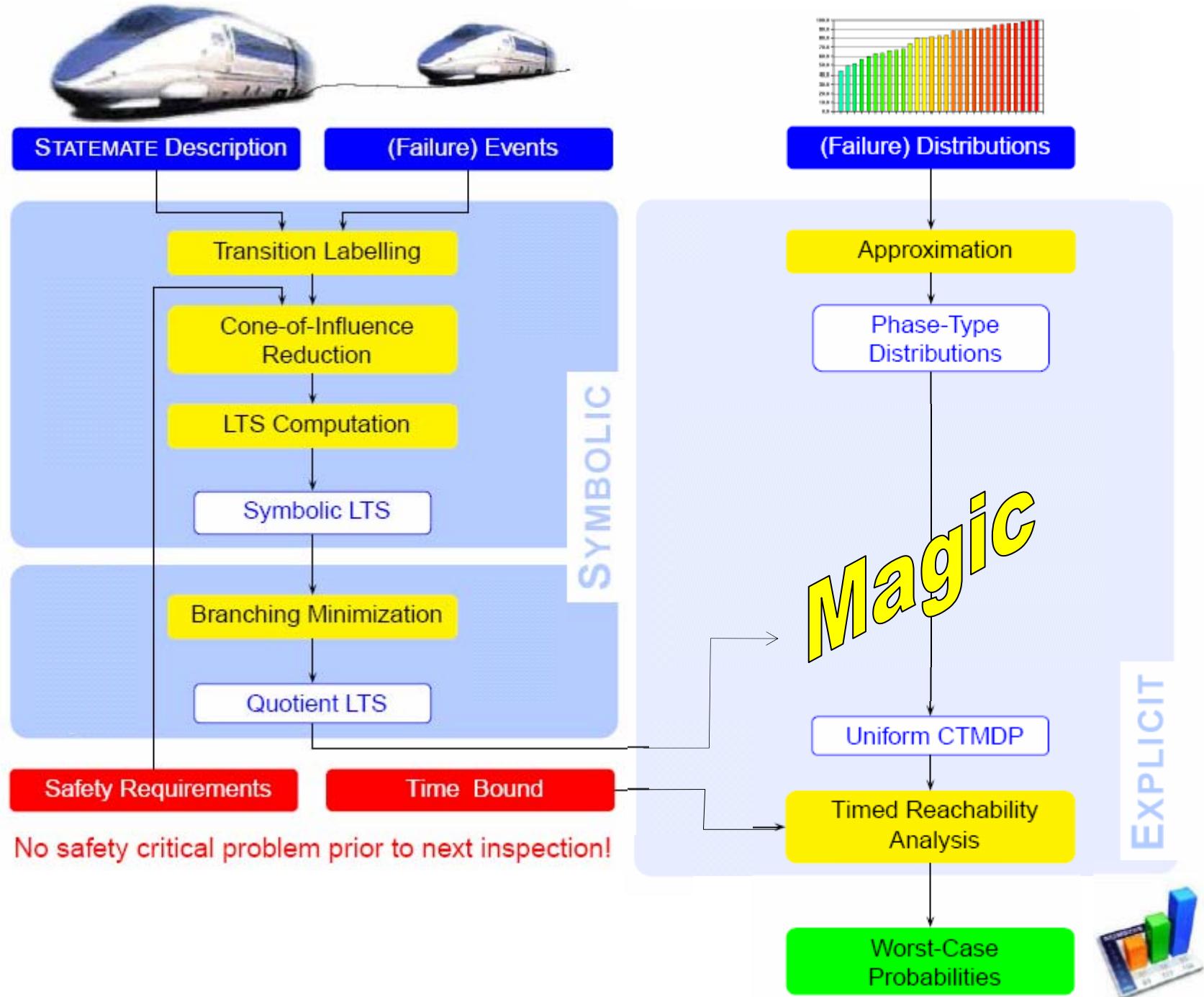


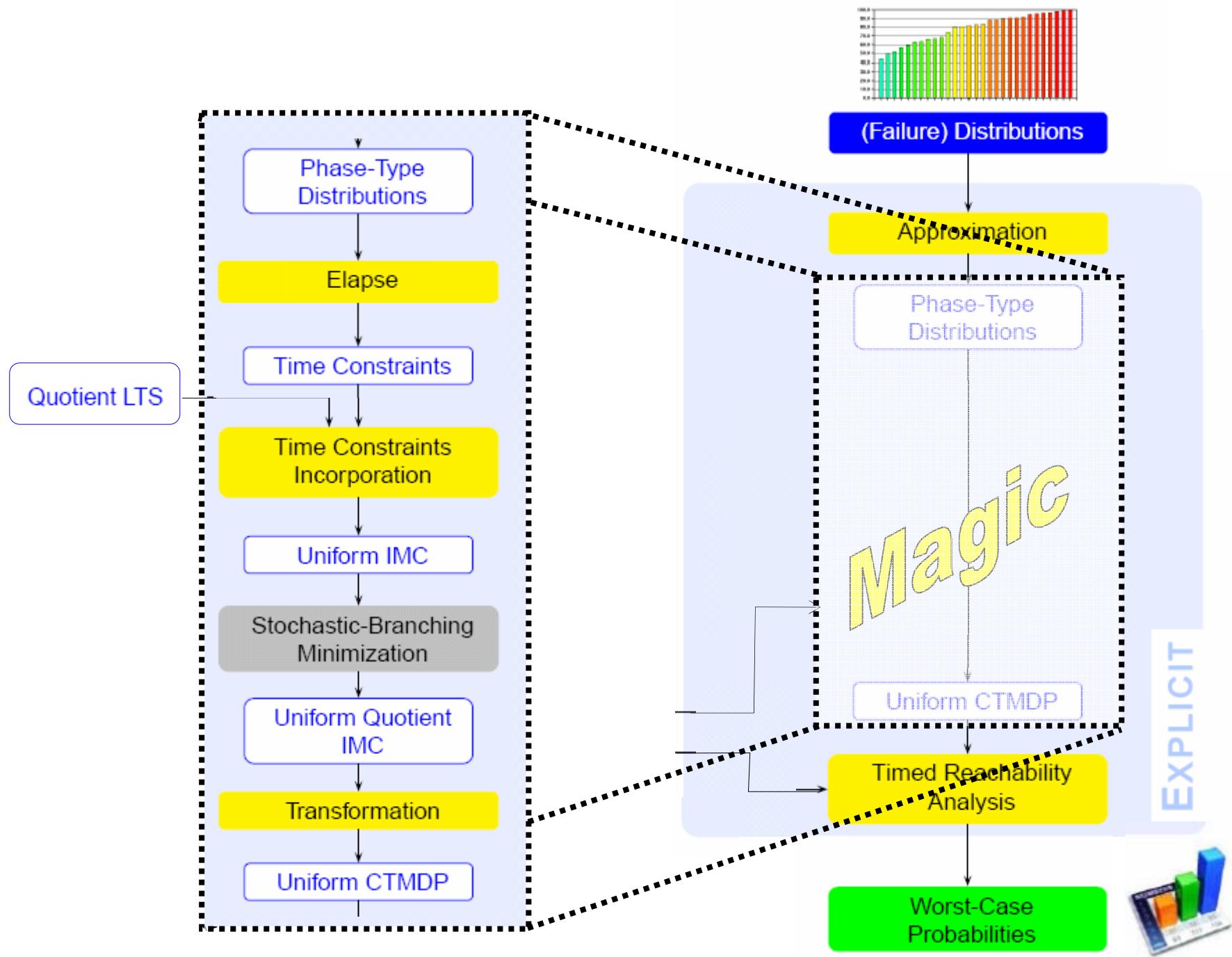


Sigref

▫ symbolic
▫ signature
based
▫ partition
refinement
toolbox for
various
bisimulations

[Wimmer]





Interactive Markov chains



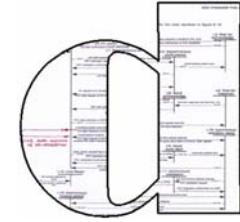
Model level

- An orthogonal extension
 - of labelled transition systems
 - of CTMCs
- two types of transitions
 - $\xrightarrow{\text{bla}}$
 - $\xrightarrow{\nu}$
- in the state space
- equipped with semantic equivalence notions

Syntax level

- A super-algebra
 - of standard process algebra
 - of CTMC algebra
- two types of 'actions'
 - actions
 - Markov delays
- in the specification
- equipped with the necessary compositional theory

Interactive Markov Chains



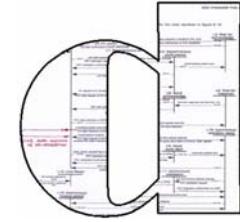
What do we like about this model?

- Is (rather) easy to model with
- Fits well to concurrency: Interleaving Semantics
 - Message passing,
 - handshake communication, and
 - shared variable communication

all behave naturally
- Is compositional
- Has 'state-local' clocks (if at all)

Correspond to CTMDPs

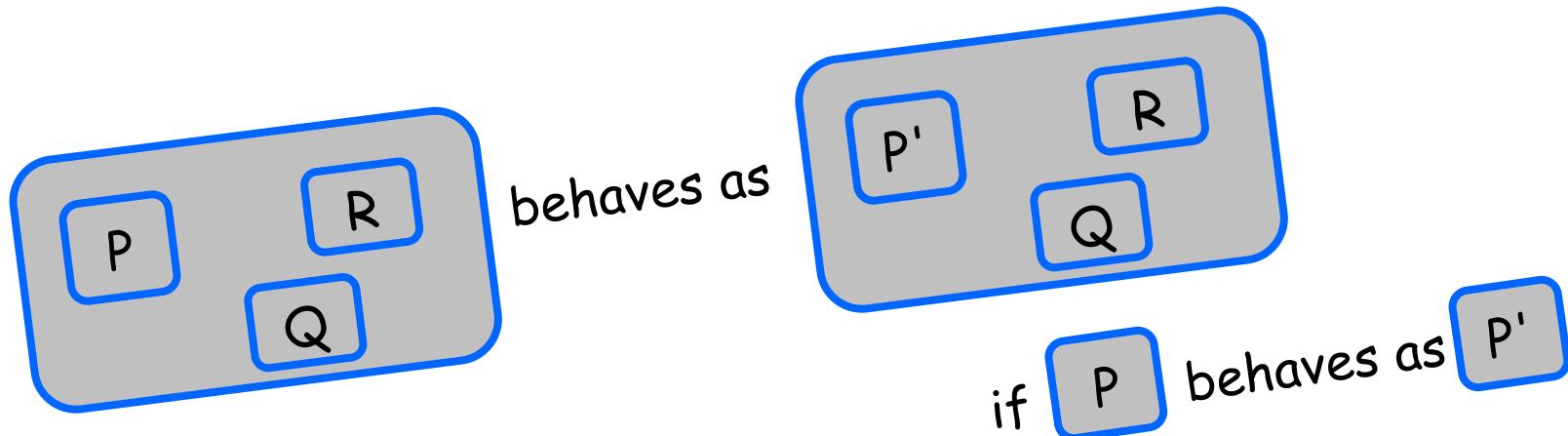
Semantic 'workhorse'



Interactive Markov chains

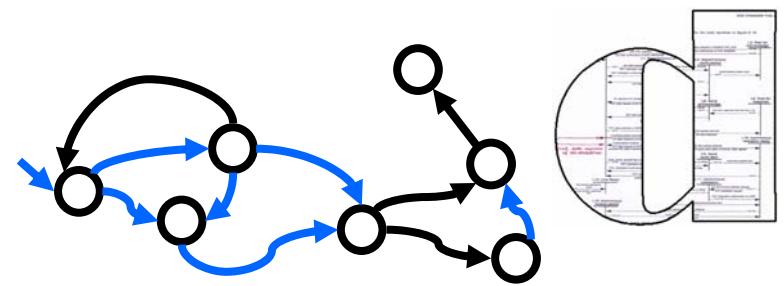
- Orthogonal superposition of
 - automata (or LTS), and
 - Continuous Time Markov Chains,
- with a compositional semantics,
- and *substitutive* notions of equivalence

heavily exploited
in the construction
(compositional minimisation)



What is the relation to CTMDPs? How about uniformity?

IMCs to CTMDPs



An on-the-fly construction:

- cut according to maximal progress assumption,
- split sequences of Markov transitions,
- transitive closure of action transitions.

Let IMC \mathcal{M} be given and let \mathcal{C} be its underlying CTMDP.

Theorem 7.1 Given scheduler D over IMC \mathcal{M} , it holds for all traces $\beta \in \text{Words}_L$ of CTMDP \mathcal{C} that there exists scheduler D' over \mathcal{C} such that

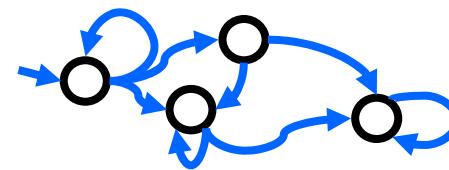
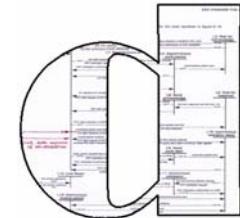
$$\Pr_{\mathcal{M}, D}^{\omega} \left(C_{\text{trace}_{\setminus T}^{-1}(\beta)} \right) = \Pr_{\mathcal{C}, D'}^{\omega} \left(C_{\text{trace}^{-1}(\beta)} \right) .$$

Theorem 7.2 Given scheduler D over CTMDP \mathcal{C} , it holds for all traces $\beta \in \text{Words}_L$ of CTMDP \mathcal{C} that there exists scheduler D' over \mathcal{M} such that

$$\Pr_{\mathcal{C}, D}^{\omega} \left(C_{\text{trace}^{-1}(\beta)} \right) = \Pr_{\mathcal{M}, D'}^{\omega} \left(C_{\text{trace}_{\setminus T}^{-1}(\beta)} \right) .$$

[Johr]

Uniformity

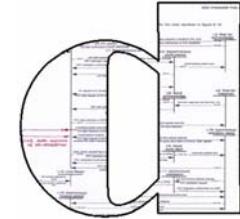
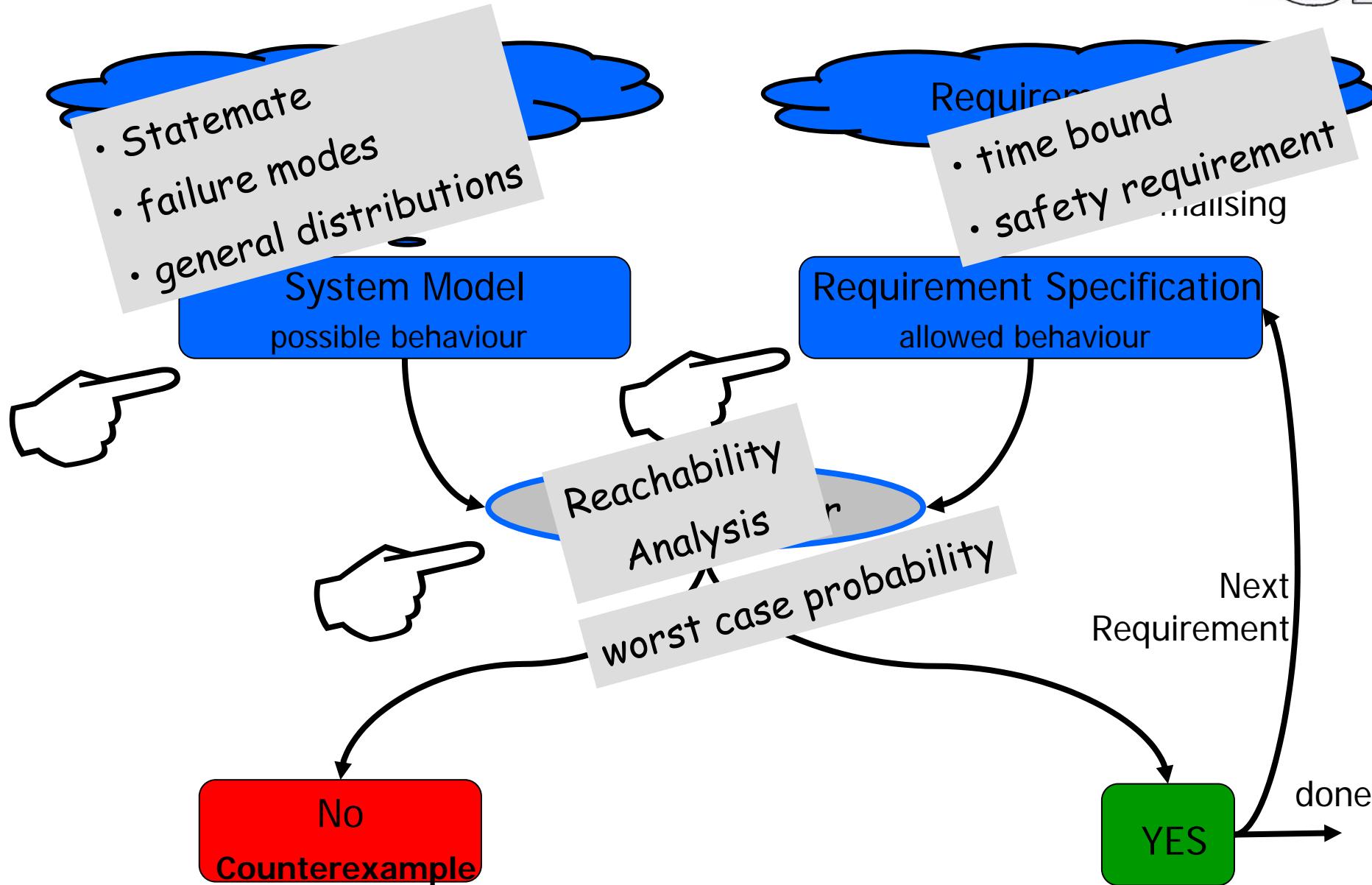


- Uniformisation is a CTMC transformation that preserves its probabilistic behaviour, but makes the jumps occur at Poisson intervals.
- We apply this to the input CTMCs, modelling PH distributions.
- LTS are uniform.
- The composition, minimisation and transformation algorithms are all ensured to preserve uniformity, if the input models are.

Theorem 6.1 Let IMC \mathcal{M} be given and let \mathcal{C} be its underlying CTMDP. The reachable states of \mathcal{M} are uniform iff the reachable states of \mathcal{C} are uniform.

[Johr]

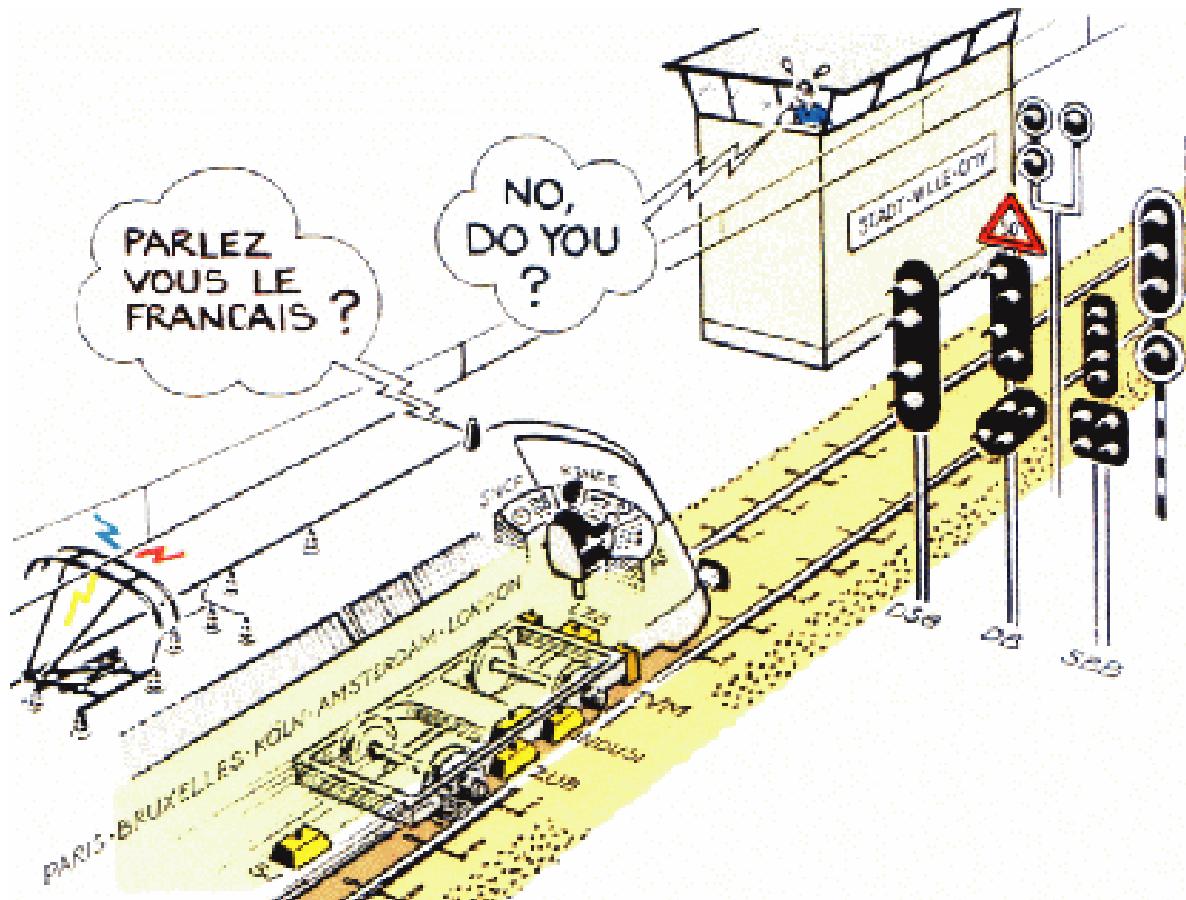
Where we stand.



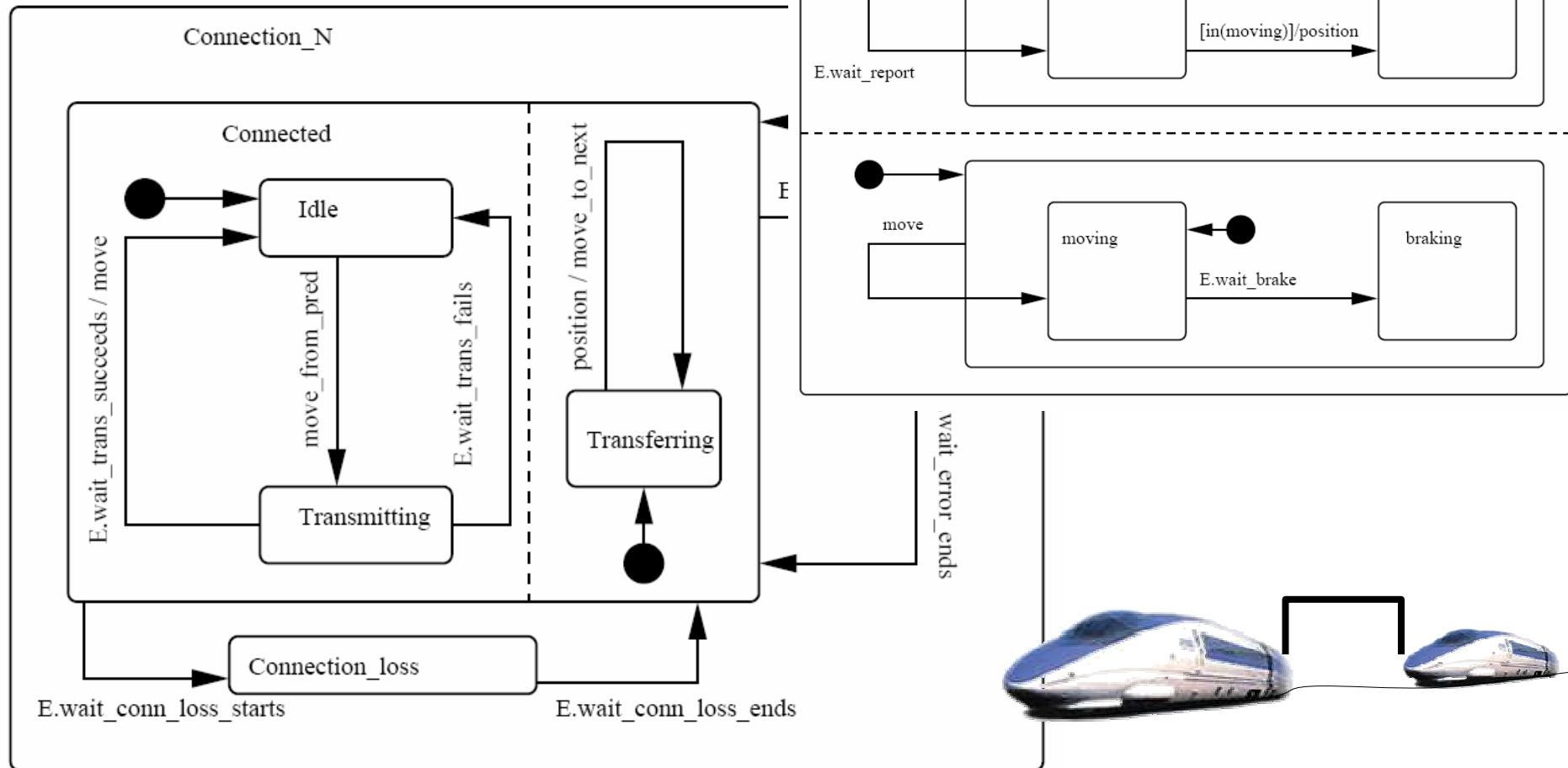
An exemplary case: Future European Train Coordination

'ETCS'

- Future standard for cross-European trains
- Defines train interoperability
- Moves functionality inside train, to improve track utilisation
- Train-trackside communication via 'GSM-R'

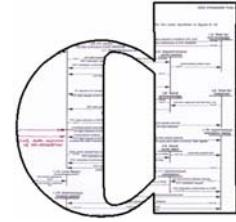


An exemplary case



- ⌚ A sequence of N trains following each other
- ⌚ What is the risk of having to brake within (10 or) 180 sec?

An exemplary case



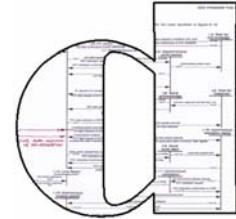
MONOLITHIC CONSTRUCTION FOR ETCS WITH 2 TRAINS

Phases	Monolithic Construction			
	States	Transitions	G Time (sec.)	M Time (sec.)
1	33600	518464	12	3
5	302400	4142016	22	402
10	1016400	13521376	46	5154

EXPLICIT STEPS: COMPOSITION AND MINIMIZATION STATISTICS

Trains	Phases	Compositional Construction			Final Quotient IMC	
		States	Transitions	G + M Time (sec.)	States	Transitions
2	1	600	2505	42	355	1590
	5	10000	53625	61	5875	39500
	10	37500	207500	511	20000	154750
3	1	3240	16064	58	1375	5225
	5	64440	354100	813	36070	159119
	10	249480	1382900	10666	113650	533500
4	1	2870	11260	53	1435	5475
	5	57950	260350	420	30575	141000
	10	224900	1022700	7391	119650	558500

An exemplary case



MONOLITHIC CONSTRUCTION FOR ETCS WITH 2 TRAINS

Phases	Monolithic Construction			
	States	Transitions	G Time (sec.)	M Time (sec.)
1	33600	518464	12	3
5	302400	4142016	22	402
10	1016400	13521376	46	5154

EXPLICIT STEPS: CTMDP TRANSFORMATION AND ANALYSIS STATISTICS

Trains	Phases	Uniform CTMDP		Time for Analysis of Formula (sec.)	
		States	Transitions	$\sup_D \Pr_D(s, \xrightarrow{\leq 10} B)$	$\sup_D \Pr_D(s, \xrightarrow{\leq 180} B)$
2	1	227	352 (1.75)	0.06	0.44
	5	3127	3752 (4.60)	0.54	7.00
	10	11252	12502 (5.52)	2.23	31.15
3	1	787	1347 (1.10)	0.14	2.01
	5	21722	35942 (1.55)	6.24	89.39
	10	56452	90402 (1.84)	17.95	254.29
4	1	817	1457 (1.01)	0.16	2.28
	5	15477	26577 (1.57)	4.43	62.83
	10	59452	101402 (1.64)	19.94	280.88

Conclusion and Outlook

- Overview of the probabilistic behavioural model spectrum
- State-of-the-practice modelling combined with state-of-the-art analysis algorithm.
- More examples needed.
- Restricted to timed bounded reachability, no costs yet.
- Tool chain is long and prototypical, not easy to handle.
Make more of tool chain symbolic
- What I did not discuss:
 - Why symbolic vs. explicit this way