
CASPA - A Tool for Symbolic Performance
Evaluation and Stochastic Model Checking

Boudewijn R. Haverkort1, Matthias Kuntz1, Martin Riedl2,
Johann Schuster2, Markus Siegle2

1: Universiteit Twente
2: Universität der Bundeswehr München

Two Decades of Probabilistic Verification
Workshop at Lorentz Center, Leiden

12 - 16 November 2007

Principle Architecture of CASPA
Requirement specification

Stochastic PDL

System specification

Stochastic process algebra

MTBDD Generation

− MTBDD Semantics for stochastic
 process algebras

− Reachability analysis

− Property−dep. ssp generation

Symbolic Numerical Analyisis

− Transformation of MTBDDs to
 hybrid MTBDDs

− Numerical Analysis

− Performance measure computation

Stochastic Model Checker

− Symbolic program automaton
 construction

− Symbolic product automaton
 construction

Requirement specification

State measures, Throughput,
Performance measures

Mean values

Performance Evaluator

− Mapping spec. to state
 encodings

− Measure BDD construction

Example Specification

int max = 3
Process := Queue(0)
Queue(n [max]) := [n>=2] -> (serve, mu);Queue(n-2)

[n < max] -> (arrival, lambda);Queue(n+1)
[*] -> (fail, gamma);Repair

Repair := (repair, rho);Queue(0)
/***Measure specification
statemeasure Fill2 Queue(n > 0) & !Queue(n = max)
meanvalue Occupancy Queue(n)
throughputmeasure Serve serve
spdl P(> 0.9){tt [arrival∗;repair;arrival∗](4.3) Queue(n=max)}

Analysable Models: Extended SLTS

r, rho

S1
{p, q, r,...}

a, la
mbda

f, gamma

S1 Tangible state, only timed transitions

S2
{x, y, z,...}

a, lambda

a, lambda

D, P . . . E, (1−P)

S3
{...}

S3

Sn

Vanishing state, at least one untimed transition

State Space Generation

Denotational MTBDD Semantics

(a,);P P+Q P |[]| Q hide a in P recX:Pλ

Process −−> MTBDD
− For every operator translation procedure

− Exploits compositional nature of process algebras

− Compositional approach guarantees linear growth
 of memory needed for state space representation

s1

t2

a1

λ µ

t1

s2

Numerical Analysis

Three basic types of measures:

1. State measures

2. Mean values

3. Throughput measures

To compute measures we have to the following things:

1. Relate measure definition and states that are relevant for the
measure at hand

2. Compute state probability vector (transient or steady state)

3. Compute actual value of the measure

Stochastic Propositional Dynamic Logic (SPDL)

I SPDL is based on the Logic PDL (Fisher, Ladner 1979)

I CSL + action sequences

I Action sequences: Extended regular expressions (Programs)

λ

ρ

ρ

ν
µ

γ

λa,

b,

c,

d,

e,

c,
d,

Behaviour

State

InformationInformation specification

Computation of probabilities

oriented

oriented

Requirement

SLTS

Functional

System specification

Quantitative

SPDL formulae

Model checking SPDL path formulae

ρA

P (p

ρA

Compute transient probability to satisfy the
formula within t to t’ time units

)

Deterministic
Program Automaton

Non−deterministic
Program Automaton

ρN

System Model

MΦ [ρ] ΨI

Product SLTS
(PSLTS)

M x

SPDL Requirement
(SLTS)

Property-Driven State Space Generation

ρA

P (p

ρA

Compute transient probability to satisfy the
formula within t to t’ time units

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

)

Deterministic
Program Automaton

Non−deterministic
Program Automaton

ρN

Φ [ρ] ΨI

SPDL Requirement SPA Specification

P := (a, l);Q |[a,b,c]| (a, g);R

(PSLTS)
M x

Reduced product SLTS

Denotational Semantics

Case Studies

We have performed the following case studies:

I Flexible Manufacturing System

I Kanban System

I Polling System

I Fault Tolerant Computer System

I Handover Procedure in a Cellular Mobile Radio Network

I Mainframe System with Failures

I Tandem Queuing System

Empirical Results: Steady State Analysis

N Reach. States MTBDD Nodes MTBDD Gen. Iterations Num. Analysis
peak final

CASPA:
5 2,546,432 25,514 5,392 0.32 sec. 457 2min 47sec
6 11,261,376 47,395 8,086 0.69 sec. 625 18min 30sec
7 41,644,800 76,230 10,389 1.32 sec. 804 1h 27min

10 1,005,927,208 248,461 23,231 6.92 sec. - -
12 5,519,907,575 414,719 32,324 12.97 sec. - -

Pentium IV, 3.0 GHz, 1GB RAM, SuSe Linux 10.2

Empirical Results: Transient Analysis

N Reach. States MTBDD Nodes MTBDD Gen. Iterations Num. Analysis
peak final

CASPA:
5 2,546,432 25,514 5,392 0.32 sec. 282 1min 44sec
6 11,261,376 47,395 8,086 0.69 sec. 282 8min 6sec
7 41,644,800 76,230 10,389 1.32 sec. 804 30min 31sec

10 1,005,927,208 248,461 23,231 6.92 sec. - -
12 5,519,907,575 414,719 32,324 12.97 sec. - -

Pentium IV, 3.0 GHz, 1GB RAM, SuSe Linux 10.2

Extension of CASPA for handling immediate transitions

Extension of CASPA for handling immediate transitions

Semantics and Implementation Aspects

I semantics (from weights to probabilities)

I implementation
I two separate MTBDDs for immediate and Markovian

transitions
I semi-symbolic elimination algorithm (no additional MTBDD

variables needed)
I can handle cycles of immediate transitions

A GUI for CASPA? - Why?

Reasons for a GUI:

I clearness of the graphical representation of the model

I no need to tackle with CASPA syntax and call conventions

Therefore CASPAEdit has

I an import/export mechanism for models in CASPA syntax,

I a panel to support setting the CASPA arguments (e.g. type of
numerical algorithm) and its execution

and furthermore it provides

I automatic layouting and

I complete syntactical validation

I partial semantical validation

CASPAEdit - System Layer

A system is defined by a
directed graph

I nodes for
I the root process
I synchronisation
I hiding
I sequential

processes

I links between the
nodes

I and definitions of
constants, measures

CASPAEdit - Process Layer

Definition of a process by

I states
I name
I values of process

parameters

I transitions
I label
I weight/rate
I guard
I assignment

CASPAEdit - Implementation Aspects

The CASPA GUI has been developed in a model driven way using
Eclipse

I and its Graphical Modeling Framework (GMF) and

I is usable as an Eclipse Plugin or as a Rich Client Application.

It supports the CASPA syntax and therefore the existing models
with an

I import function (JavaCC generated parser: for syntactical
Analysis of a CASPA-Model and the instantiation of the
internal model), and an

I export function (Java Emitter Templates: for Model-to-Text
(M2T) transformations).

CASPA Tool Presentation

Please ask

I Markus Siegle

I Matthias Kuntz

I Martin Riedl

I Johann Schuster

