On Automated Verification of Probabilistic
Programs

Joél Ouaknine
Oxford University Computing L aboratory, UK

(Joint work with Axel Legay, Andrzej Murawski, James Worrell)

Lorentz Workshop, November 2007

‘Verification of Probabilistic Programs I

e Probabilistic programs occur in a wide variety of situations:
— Randomised algorithms, e.g. Miller-Rabin primality testing
— Symmetry-breaking and fairness in distributed systems

— Achieving security goals, e.g. anonymity in electronic voting

e Randomisation can improve complexity, even achieve goals that
deterministic algorithms cannot

e Probability makes reasoning even harder than in deterministic
settings

‘Verification of Probabilistic Programs I

Many frameworks for modelling/reasoning about probabilistic systems,
e.g.:

e Markov chains

e Probabilistic process algebras

e PRISM

‘Verification of Probabilistic Programs I

Many frameworks for modelling/reasoning about probabilistic systems,
e.g.:

e Markov chains

e Probabilistic process algebras

e PRISM

Our goal: verify probabilistic programs.

A Probabilistic Programming Language I

Iteration (whi | e), conditionals (i f t hen el se), ...
Arrays
Procedures (with value-passing and reference-passing parameters)

Global and local variables

Randomisation

A Probabilistic Programming Language I

e [teration (whi | e), conditionals (i f t hen el se), ...
o Arrays
e Procedures (with value-passing and reference-passing parameters)
e Global and local variables
e ...
e Randomisation
Some restrictions:
e Finite datatypes
e NoO pointers

e NO recursion

‘ Probabilistic Programs and Game Semantics I

e \We model probabilistic programs as probabilistic automata using
game semantics

e The probabilistic automata represent probabilistic strategies for the
programs

e Allows us to model open programs (modules with indeterminate
components). Enables compositional reasoning

Probabilistic Program Equivalence'

e Two programs P; and P; are equivalent if no context can distinguish
them: P =P Iff

VC'.Prob(C|P;] terminates) = Prob(C|P,| terminates)

— A context is a program with a ‘hole’ in it, such that C'[F;] are
closed programs of type com

Probabilistic Program Equivalence'

e Two programs P; and P; are equivalent if no context can distinguish
them: P =P Iff

VC'.Prob(C|P;] terminates) = Prob(C|P,| terminates)

— A context is a program with a ‘hole’ in it, such that C'[F;] are
closed programs of type com

— Note that “distinguishing’ is a probabilistic notion: contexts can
do statistical sampling

Probabilistic Program Equivalence'

e Two programs P; and P; are equivalent if no context can distinguish
them: P =P Iff

VC'.Prob(C|P;] terminates) = Prob(C|P,| terminates)

— A context is a program with a ‘hole’ in it, such that C'[F;] are
closed programs of type com

— Note that “distinguishing’ is a probabilistic notion: contexts can
do statistical sampling

e Theorem [MO 05]. Two programs are equivalent if the probabilistic
automata representing their respective strategies accept the same
probabilistic languages

Probabilistic Program Equivalence'

e Two programs P; and P; are equivalent if no context can distinguish
them: P =P Iff

VC'.Prob(C|P;] terminates) = Prob(C|P,| terminates)

— A context is a program with a ‘hole’ in it, such that C'[F;] are
closed programs of type com

— Note that “distinguishing’ is a probabilistic notion: contexts can
do statistical sampling

e Theorem [MO 05]. Two programs are equivalent if the probabilistic

automata representing their respective strategies accept the same
probabilistic languages

e Language equivalence for probabilistic automata is decidable in
polynomial time [Tzeng 92]

The Dining Cryptographers'
C%l

=>>-0
=>>-0

The Dining Cryptographers'
C%l

=>>-0
=>>-0

The Dining Cryptographers'

Cy
%
coin, ‘ ‘coin3

=>>-0

ﬁ\‘/ s

The Dining Cryptographers'

Agreel
Disagree!

A
o .

=@,
A A
c, \‘/ cs

coin,,

coing

The Dining Cryptographers'

Agree!

Disagree!

C,
coin, ‘ 'coins

1

e Correctness: If the number of “Disagree!” is odd, then one of them
paid, otherwise the NSA paid.

The Dining Cryptographers'

Agree!

Disagree!

C,
coin, ‘ 'coing

1

e Correctness: If the number of “Disagree!” is odd, then one of them
paid, otherwise the NSA paid.

e Anonymity: If one of them paid, then neither of the other two
cryptographers can deduce who it is.

Anonymity I

void mai n(var%2 ch, var% cn) {

I nt % whopai d;

whopai d: =3;
first:=coin;
right:=first;

int9% first; int% right;

into? left;

I nt % i ;

=1
while (i) do
{
left :=1if (i=3) then first el se coin;
if (i=1) then { cn:=right; cn:=left };
if ((left=right)+(i=whopaid)) then ch:=1 el se ch: =0;
right:=left;
o= +1
}

Crypto no. 2 paid:

write(0)_cn, 1/4 write(0)_cn, 1

write(1) cn,

ert 0) ch, 1/2

write(1) ch, 1

write(1) _cn, /4

write(0)_cn, /4
write(1)_cn,

write(1) ch, 1

write(0) ch, 1
write(0)_ch, 1

write(1)_cn, 1/4

write(0)_cn,

Crypto no. 3 paid:

write(0)_cn, 1/4 write(0)_cn, 1

write(1) cn,

° write(1) ch, 1/2 ‘

ert 0) ch, 1/2

write(1) ch, 1

write(1) _cn, /4

write(0)_cn, /4
write(1)_cn,

write(1) ch, 1

write(0) ch, 1
write(0)_ch, 1

write(1)_cn, 1/4

write(0)_cn,

° write(1) ch, 1/2 ‘

Biased coins (3 /%), Crypto no. 2 paid:

write(0)_ch, 1/3

write(0)_cn, 1/9

write(1)_cn, 4/9

write(1)_cn, 2/9 write(1)_ch, 1

write(0)_cn, 2/9

a write(0)_ch, 213
| ez d o)
write(0) ch, 1 @ }

‘Wo write(0)_ch, 1

Prob(0,0,1,0,1) = o= Vs. =

27 27

‘ Many Dining Cryptographers I

It is straightforward to model more cryptographers, e.g.:

crypt. PRISM APEX
3 4 7
4 4 8
5 7 8
6 39 9
7 95 9
8 282 10
9 964 10
10 > 1h 11
15 OOM 13

50 OOM 56
100 OOM 125

‘ Summary and Future Work I

e \erification of probabilistic programs

e First fully automated verification of anonymity in Dining
Cryptographers protocol

Future work:

e Symbolic state-space representation, predicate abstraction, ...

e Support for pointers
e Analysing probabilistic strategies
e Automatic counterexample generation

e Case studies: anonymity for electronic voting protocols, ...

