
On Automated Verification of Probabilistic

Programs

Joël Ouaknine
Oxford University Computing Laboratory, UK

(Joint work with Axel Legay, Andrzej Murawski, James Worrell)

Lorentz Workshop, November 2007

Verification of Probabilistic Programs

• Probabilistic programs occur in a wide variety of situations:

– Randomised algorithms, e.g. Miller-Rabin primality testing

– Symmetry-breaking and fairness in distributed systems

– Achieving security goals, e.g. anonymity in electronic voting

– . . .

• Randomisation can improve complexity, even achieve goals that

deterministic algorithms cannot

• Probability makes reasoning even harder than in deterministic

settings

Verification of Probabilistic Programs

Many frameworks for modelling/reasoning about probabilistic systems,

e.g.:

• Markov chains

• Probabilistic process algebras

• PRISM

• . . .

Our goal: verify probabilistic programs.

Verification of Probabilistic Programs

Many frameworks for modelling/reasoning about probabilistic systems,

e.g.:

• Markov chains

• Probabilistic process algebras

• PRISM

• . . .

Our goal: verify probabilistic programs.

A Probabilistic Programming Language

• Iteration (while), conditionals (if then else), . . .

• Arrays

• Procedures (with value-passing and reference-passing parameters)

• Global and local variables

• . . .

• Randomisation

Some restrictions:

Finite datatypes

No pointers

No recursion

A Probabilistic Programming Language

• Iteration (while), conditionals (if then else), . . .

• Arrays

• Procedures (with value-passing and reference-passing parameters)

• Global and local variables

• . . .

• Randomisation

Some restrictions:

• Finite datatypes

• No pointers

• No recursion

Probabilistic Programs and Game Semantics

• We model probabilistic programs as probabilistic automata using

game semantics

• The probabilistic automata represent probabilistic strategies for the

programs

• Allows us to model open programs (modules with indeterminate

components). Enables compositional reasoning

Probabilistic Program Equivalence

• Two programs P1 and P2 are equivalent if no context can distinguish
them: P1

∼= P2 iff

∀C . Prob(C[P1] terminates) = Prob(C[P2] terminates)

– A context is a program with a ‘hole’ in it, such that C[Pi] are
closed programs of type com

Note that ‘distinguishing’ is a probabilistic notion: contexts can
do statistical sampling

Theorem [MO 05]. Two programs are equivalent if the probabilistic
automata representing their respective strategies accept the same
probabilistic languages

Language equivalence for probabilistic automata is decidable in
polynomial time [Tzeng 92]

Probabilistic Program Equivalence

• Two programs P1 and P2 are equivalent if no context can distinguish
them: P1

∼= P2 iff

∀C . Prob(C[P1] terminates) = Prob(C[P2] terminates)

– A context is a program with a ‘hole’ in it, such that C[Pi] are
closed programs of type com

– Note that ‘distinguishing’ is a probabilistic notion: contexts can
do statistical sampling

Theorem [MO 05]. Two programs are equivalent if the probabilistic
automata representing their respective strategies accept the same
probabilistic languages

Language equivalence for probabilistic automata is decidable in
polynomial time [Tzeng 92]

Probabilistic Program Equivalence

• Two programs P1 and P2 are equivalent if no context can distinguish
them: P1

∼= P2 iff

∀C . Prob(C[P1] terminates) = Prob(C[P2] terminates)

– A context is a program with a ‘hole’ in it, such that C[Pi] are
closed programs of type com

– Note that ‘distinguishing’ is a probabilistic notion: contexts can
do statistical sampling

• Theorem [MO 05]. Two programs are equivalent if the probabilistic
automata representing their respective strategies accept the same
probabilistic languages

Language equivalence for probabilistic automata is decidable in
polynomial time [Tzeng 92]

Probabilistic Program Equivalence

• Two programs P1 and P2 are equivalent if no context can distinguish
them: P1

∼= P2 iff

∀C . Prob(C[P1] terminates) = Prob(C[P2] terminates)

– A context is a program with a ‘hole’ in it, such that C[Pi] are
closed programs of type com

– Note that ‘distinguishing’ is a probabilistic notion: contexts can
do statistical sampling

• Theorem [MO 05]. Two programs are equivalent if the probabilistic
automata representing their respective strategies accept the same
probabilistic languages

• Language equivalence for probabilistic automata is decidable in
polynomial time [Tzeng 92]

The Dining Cryptographers

Agree!
Disagree!

Agree!
Disagree!

C 2 C 3

C 1

Agree!
Disagree!

coin2

coin1 coin3

The Dining Cryptographers

Agree!
Disagree!

Agree!
Disagree!

C 2 C 3

C 1

Agree!
Disagree!

?

coin2

coin1 coin3

The Dining Cryptographers

Agree!
Disagree!

Agree!
Disagree!

C 2 C 3

C 1

Agree!
Disagree!

?

H
T

H
T

H
T

coin1 coin3

coin2

The Dining Cryptographers

C 2 C 3

C 1

Agree!
Disagree!

?

H
T

H
T

H
T

coin1 coin3

coin2

Agree!
Disagree!

Agree!
Disagree!

The Dining Cryptographers

C 2 C 3

C 1

Agree!
Disagree!

?

H
T

H
T

H
T

coin1 coin3

coin2

Agree!
Disagree!

Agree!
Disagree!

• Correctness: If the number of “Disagree!” is odd, then one of them
paid, otherwise the NSA paid.

Anonymity: If one of them paid, then neither of the other two
cryptographers can deduce who it is.

The Dining Cryptographers

C 2 C 3

C 1

Agree!
Disagree!

?

H
T

H
T

H
T

coin1 coin3

coin2

Agree!
Disagree!

Agree!
Disagree!

• Correctness: If the number of “Disagree!” is odd, then one of them
paid, otherwise the NSA paid.

• Anonymity: If one of them paid, then neither of the other two
cryptographers can deduce who it is.

Anonymity

void main(var%2 ch, var%2 cn) {

int%4 whopaid; int%2 first; int%2 right; int%2 left; int%4 i;

whopaid:=3;

first:=coin;

right:=first;

i:=1;

while (i) do

{

left := if (i=3) then first else coin;

if (i=1) then { cn:=right; cn:=left };

if ((left=right)+(i=whopaid)) then ch:=1 else ch:=0;

right:=left;

i:=i+1

}

}

Crypto no. 2 paid:

0

1	write(0)_cn, 1/4

6
	write(0)_cn, 1/4

10

	write(1)_cn, 1/4

11	write(1)_cn, 1/4 2

	write(0)_cn, 1

7
	write(1)_cn, 1

	write(0)_cn, 1

	write(1)_cn, 1
3

	write(1)_ch, 1
4

	write(0)_ch, 1/2

9

	write(1)_ch, 1/2

(0,1)

	write(1)_ch, 1

	write(0)_ch, 1

8
	write(0)_ch, 1

	write(1)_ch, 1/2

	write(0)_ch, 1/2

Crypto no. 3 paid:

0

1	write(0)_cn, 1/4

6
	write(0)_cn, 1/4

10

	write(1)_cn, 1/4

11	write(1)_cn, 1/4 2

	write(0)_cn, 1

7
	write(1)_cn, 1

	write(0)_cn, 1

	write(1)_cn, 1
3

	write(1)_ch, 1
4

	write(0)_ch, 1/2

9

	write(1)_ch, 1/2

(0,1)

	write(1)_ch, 1

	write(0)_ch, 1

8
	write(0)_ch, 1

	write(1)_ch, 1/2

	write(0)_ch, 1/2

Biased coins (1

3
/ 2

3
), Crypto no. 2 paid:

0

1	write(0)_cn, 1/9

6

	write(0)_cn, 2/9
12

	write(1)_cn, 2/9

14	write(1)_cn, 4/9

2
	write(0)_cn, 1

7
	write(1)_cn, 1

13
	write(0)_cn, 1

15
	write(1)_cn, 1

3
	write(1)_ch, 1

4

	write(0)_ch, 1/3

9

	write(1)_ch, 2/3

(0,1)

	write(1)_ch, 1

	write(0)_ch, 1

8
	write(0)_ch, 1

	write(1)_ch, 1/3

	write(0)_ch, 2/3

10

	write(1)_ch, 2/3

	write(0)_ch, 1/3

11 	write(0)_ch, 2/3

	write(1)_ch, 1/3

	write(0)_ch, 1

	write(1)_ch, 1

Biased coins (1

3
/ 2

3
), Crypto no. 3 paid:

0

1	write(0)_cn, 1/9

6

	write(0)_cn, 2/9
12

	write(1)_cn, 2/9

14	write(1)_cn, 4/9

2
	write(0)_cn, 1

7
	write(1)_cn, 1

13
	write(0)_cn, 1

15
	write(1)_cn, 1

3
	write(1)_ch, 1

4

	write(1)_ch, 1/3

9

	write(0)_ch, 2/3

(0,1)

	write(0)_ch, 1

	write(1)_ch, 1

8
	write(0)_ch, 1

	write(0)_ch, 1/3

	write(1)_ch, 2/3

10

	write(0)_ch, 2/3

	write(1)_ch, 1/3

11 	write(1)_ch, 2/3

	write(0)_ch, 1/3

	write(0)_ch, 1

	write(1)_ch, 1

Prob(0, 0, 1, 0, 1) = 1

27
vs. 2

27

Many Dining Cryptographers

It is straightforward to model more cryptographers, e.g.:

0

1	write(0)_cn, 1/4

13
	write(0)_cn, 1/4

24

	write(1)_cn, 1/4

25	write(1)_cn, 1/4 2

	write(0)_cn, 1

14
	write(1)_cn, 1

	write(0)_cn, 1

	write(1)_cn, 1
3

	write(1)_ch, 1
4

	write(0)_ch, 1/2

16

	write(1)_ch, 1/2
5

	write(1)_ch, 1/2

17

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

6
	write(1)_ch, 1/2

18

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

7
	write(1)_ch, 1/2

19

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

8
	write(1)_ch, 1/2

20

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

9
	write(1)_ch, 1/2

21

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

10
	write(1)_ch, 1/2

22

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

11

	write(1)_ch, 1/2

23

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

(0,1)

	write(1)_ch, 1

	write(0)_ch, 1

15
	write(0)_ch, 1

	write(1)_ch, 1/2

	write(0)_ch, 1/2

crypt. PRISM APEX

3 4 7

4 4 8

5 7 8

6 39 9

7 95 9

8 282 10

9 964 10

10 > 1h 11

15 OOM 13

50 OOM 56

100 OOM 125

Summary and Future Work

• Verification of probabilistic programs

• First fully automated verification of anonymity in Dining

Cryptographers protocol

Future work:

• Symbolic state-space representation, predicate abstraction, . . .

• Support for pointers

• Analysing probabilistic strategies

• Automatic counterexample generation

• Case studies: anonymity for electronic voting protocols, . . .

