
On Automated Verification of Probabilistic

Programs

Joël Ouaknine
Oxford University Computing Laboratory, UK

(Joint work with Axel Legay, Andrzej Murawski, James Worrell)

Lorentz Workshop, November 2007



Verification of Probabilistic Programs

• Probabilistic programs occur in a wide variety of situations:

– Randomised algorithms, e.g. Miller-Rabin primality testing

– Symmetry-breaking and fairness in distributed systems

– Achieving security goals, e.g. anonymity in electronic voting

– . . .

• Randomisation can improve complexity, even achieve goals that

deterministic algorithms cannot

• Probability makes reasoning even harder than in deterministic

settings



Verification of Probabilistic Programs

Many frameworks for modelling/reasoning about probabilistic systems,

e.g.:

• Markov chains

• Probabilistic process algebras

• PRISM

• . . .

Our goal: verify probabilistic programs.
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A Probabilistic Programming Language

• Iteration (while), conditionals (if then else), . . .

• Arrays

• Procedures (with value-passing and reference-passing parameters)

• Global and local variables

• . . .

• Randomisation

Some restrictions:

Finite datatypes

No pointers

No recursion
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Probabilistic Programs and Game Semantics

• We model probabilistic programs as probabilistic automata using

game semantics

• The probabilistic automata represent probabilistic strategies for the

programs

• Allows us to model open programs (modules with indeterminate

components). Enables compositional reasoning



Probabilistic Program Equivalence

• Two programs P1 and P2 are equivalent if no context can distinguish
them: P1

∼= P2 iff

∀C . Prob(C[P1] terminates) = Prob(C[P2] terminates)

– A context is a program with a ‘hole’ in it, such that C[Pi] are
closed programs of type com

Note that ‘distinguishing’ is a probabilistic notion: contexts can
do statistical sampling

Theorem [MO 05]. Two programs are equivalent if the probabilistic
automata representing their respective strategies accept the same
probabilistic languages

Language equivalence for probabilistic automata is decidable in
polynomial time [Tzeng 92]
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paid, otherwise the NSA paid.

Anonymity: If one of them paid, then neither of the other two
cryptographers can deduce who it is.
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Anonymity

void main(var%2 ch, var%2 cn) {

int%4 whopaid; int%2 first; int%2 right; int%2 left; int%4 i;

whopaid:=3;

first:=coin;

right:=first;

i:=1;

while (i) do

{

left := if (i=3) then first else coin;

if (i=1) then { cn:=right; cn:=left };

if ((left=right)+(i=whopaid)) then ch:=1 else ch:=0;

right:=left;

i:=i+1

}

}
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Many Dining Cryptographers

It is straightforward to model more cryptographers, e.g.:
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# crypt. PRISM APEX

3 4 7

4 4 8

5 7 8

6 39 9

7 95 9

8 282 10

9 964 10

10 > 1h 11

15 OOM 13

50 OOM 56

100 OOM 125



Summary and Future Work

• Verification of probabilistic programs

• First fully automated verification of anonymity in Dining

Cryptographers protocol

Future work:

• Symbolic state-space representation, predicate abstraction, . . .

• Support for pointers

• Analysing probabilistic strategies

• Automatic counterexample generation

• Case studies: anonymity for electronic voting protocols, . . .


