
Cost-Optimization of the IPv4 Zeroconf Protocol

Henrik Bohnenkamp∗, Peter van der Stok†, Holger Hermanns‡,∗, Frits Vaandrager§
∗Dept. of Computer Science, University of Twente, Enschede, The Netherlands. Email: bohnenka@cs.utwente.nl

†Philips Research Laboratories, Eindhoven, The Netherlands. Email: Peter.van.der.Stok@philips.com
‡Dept. of Computer Science, Saarland University, Saarbrücken, Germany. Email: hermanns@cs.uni-sb.de

§Nijmeegs Inst. v. Informatica en Informatiekunde, University of Nijmegen, The Netherlands. Email: Frits.Vaandrager@cs.kun.nl

Abstract

This paper investigates the tradeoff between reliability
and effectiveness for the IPv4 Zeroconf protocol, proposed
by Cheshire/Adoba/Guttman in 2002, dedicated to the self-
configuration of IP network interfaces. We develop a sim-
ple stochastic cost model of the protocol, where reliability
is measured in terms of the probability to avoid an address
collision after configuration, while effectiveness is viewed
as the average penalty perceived by a user. We derive an
analytical expression for the user penalty which we use to
derive optimal configuration parameters of the network, re-
stricting to those parameters which are under the control
of a consumer electronics manufacturer. In particular we
show that minimal cost and maximal reliability are quali-
ties that cannot be achieved at the same time.

1 Introduction

Future generations of consumer electronic products such
as DVD players, microwaves, TV-sets etc., are envisioned
to be connected via a home local network, based on the In-
ternet Protocol (IP) suite. Hand-held devices, laptops and
wearable computers are additionally supposed to be able
to form and communicate over so-called ad-hoc networks.
To enable communication among appliances, each will be
equipped with an IP network interface, making it possible
to connect them as nodes to a network.

A prime requirement for the economical success of these
types of networking is that their initialization and mainte-
nance must rely on at most a minimal degree of user inter-
vention. They must be self-configuring. When integrating a
new appliance into an existing network, the requirement to
be self configurable is of particular importance. Prior to be-
ing usable inside the network, the interface must be config-
ured with a unique IP address. One solution to achieve this
assumes a running (usually manually configured) DHCP
server, which is responsible for attributing IP addresses dy-

namically. This is suboptimal for home networks, due to
the need for manual intervention, and because this solution
is not robust in case of a failure or unplugging of the DHCP
server. In ad-hoc networks, a DHCP server is generally not
even available. The ideal solution is a distributed “plug-and-
play” solution, where the selection of a unique IP number
is taken care of solely by the embedded control software of
the individual appliance to be connected to the net.

In this paper, we study a simple protocol which has
been proposed in the Internet-Draft [2] to perform the above
“plug-and-play” task. This algorithm uses randomization to
automatically configure an interface with an IPv4 address in
the currently unassigned spectrum of addresses of the net-
work. In the following, we address this protocol as the ze-
roconf protocol.

The major criterion for the assignment of IP numbers
to interfaces is that the chosen IP number must be unique
within a given network context. For ad-hoc networks and
most home networks the network context can be consid-
ered to be link-local, i.e., no routers are present within
the network.1 The Internet Assigned Number Authority
(IANA) has allocated 65024 IP addresses for the purpose
of communication between nodes (called hosts in the se-
quel) on a single link: spanned by the addresses 169.254.1.0
to 169.254.254.255. These IP-numbers are supposed to be
used in a local network only, therefore they are never al-
lowed to be routed.

The basic idea of the zeroconf protocol is easy to explain.
A host that wants to configure a new IP link-local address
randomly selects an IP address U out of the 65024 available
names. It then broadcasts a message to the network “Who is
using the address U?” We call such a message a probe. If a
probe is received by a host that is already using address U ,
it will broadcast a reply indicating that U is in use. Upon
receipt of this reply, the new host will start from scratch:
it randomly selects a new address, broadcasts a new probe,
etc. It may occur that a probe does not arrive due to message

1The link-local network can be connected to other IP nets via one or
more routers, but link-local IP-addresses are not passed over these routers.

1



loss or a busy host, or that a reply gets lost. Therefore, to
increase reliability, a host is required to send n probes, each
time followed by a listening period of a certain length r.
Only when during the total period of n · r seconds no reply
message has been received, a host may start to use its new IP
address. It is important to realize that when a host decides to
use a new link-local IP address after sending four requests,
it may still be possible that some other host in the network
is using the same address, for instance, because all probes
got lost. Such a situation, which is called address collision,
may, in the worst case, force a host to kill active TCP/IP
connections. This is highly undesirable.

The draft [2] suggests to set the length of the listening
period to r = 2 seconds for unreliable (wireless) networks,
and r = 0.2 seconds for reliable ones, but no precise ar-
gument justifying these values is given. The suggestion is
based on assumptions of round-trip delays of the underlying
physical network. Likewise, the number of probe transmis-
sions is set to n = 4, but the influence of a variation of this
number is not treated.

From a user perspective, it is desirable that the self-
configuration of a device takes a minimal amount of time.
For a hand-held device user, for instance, a configuration
time of 8 seconds may seem barely acceptable, in particu-
lar if in combination with a perceived high risk of breaking
existing connections, caused by address collisions.

On the other hand, decreasing the duration r of the lis-
tening periods may increase the probability of an address
collision, and so does a decrease in the number n of probe
transmissions: while sending less probes takes less time, it
decreases the chance that a host will discover that an IP ad-
dress is already in use. Thus, a trade-off has to be made by
the manufacturer between the goal of reliably assigning a
(locally) unique IP address, and the goal of not disturbing
the user too much. This is the principal issue addressed
in this paper, and we do so by addressing the following
questions: “Is it actually needed to send n = 4 probes?”;
“Are there variations of the protocol which behave equiva-
lently except that configuration takes less time?”; “What is
the probability that an address collision occurs in the initial-
ization phase for a given variation of n and r?”; and “What
is the optimal number of probes for a given scenario?”

The answers to these questions depend on the cost of
having to wait versus the cost of address collisions. As
a particularity of our approach, we treat costs as abstract,
dimension-less entities which provide a common quantita-
tive scale for very different aspects of user (dis)satisfaction
such as experiencing waiting time as well as experiencing
the consequences of an address collision (i.e., broken con-
nections). We model the initialization phase of the protocol
as a stochastic cost model, namely a family of discrete-time
Markov reward models. We provide an analytical evalua-
tion of the model and address the above question based on

our analytical insight. Our model abstracts away from many
details, but allows us to exhibit the trade-off in the protocol
design very clearly. The core of this approach is to find (i)
the number of probes n that have maximally to be sent and
(ii) the optimal length r of the waiting period such that the
overall (mean) cost of the protocol is minimal. The model
sets all important parameters and costs in relation to each
other.

The benefits of our approach are the following: first, we
can gain insight into the interplay between the different con-
figuration parameters. Moreover, we can derive configura-
tion parameters for the protocol, depending on the reliabil-
ity of the underlying network technology and the cost of an
address collision. Finally, we are able to assess the sensitiv-
ity of the measures of interest of our model to variations in
the input parameters.

Related Work. In [7], a more detailed model of the zeroconf
protocol is described and analyzed using the model checker
Uppaal [1, 4]. In this work, the emphasis is on what hap-
pens in a setting in which multiple hosts simultaneously re-
quest an IP address. The analysis takes place in a setting of
timed automata and does not take probabilistic aspects into
account.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the zeroconf protocol in greater detail.
Section 3 introduces the model of the initialization mech-
anism of the protocol, while Section 4 derives an analytic
cost function and evaluates it for specific scenarios. In Sec-
tion 5 we discuss how the address collision probability can
be obtained from the model. In Section 6 we give a final as-
sessment of the protocol parameters chosen for the zeroconf
protocol. Section 7 concludes the paper.

2 The IPv4 zeroconf protocol

This section describes the details of the zeroconf proto-
col as proposed in [2]. The core of the protocol comprises
two parts. The first deals with the collision-avoiding as-
signment of an IP address to an interface during initializa-
tion, while the second part deals with the collision detection
and address defense mechanisms during normal operation,
which is a network maintenance task. Since the focus of this
paper is on the initialization phase of the zeroconf protocol,
we will describe only the first part.

We consider a fresh host h intending to connect to an ex-
isting IP network. First, the host h selects an IP address U
randomly out of the reserved address space 169.254.1.0 to
169.254.254.255. Before h can use the address to config-
ure its interface, it must achieve certainty that the address
is not already in use by another host on the same link-local
network. To find this out, host h uses the address resolu-
tion protocol (ARP), which is part of the IP suite [5]. The



ARP is used to find the hardware address of an interface
connected to the link-local network that has been config-
ured with a given IP address. When an arbitrary host on
the network wants to determine the hardware address of a
given IP address X , it sends out an ARP packet (which is
broadcasted to every interface connected to the local link)
containing X . This ARP packet is, figuratively speaking,
the question “What is the hardware address that belongs to
IP number X?”, addressed to all other hosts on the link.
The host with the interface configured with address X then
sends a message to the querying host which contains the
hardware address of the interface. If no host is configured
with address X , there will be no answer.

The ARP mechanism is utilized by the zeroconf proto-
col to determine whether the chosen address U is already in
use. Host h sends out so-called ARP probes. ARP probes
are specially crafted ARP packets containing the randomly
chosen IP number U . The question broadcasted on the net
is then “What is the hardware address that belongs to IP
number U?”. Then, if some host h′ has an interface con-
figured with address U , it broadcasts the hardware address
of its interface. In this case, however, the hardware address
is not of interest, but only the fact that an answer has been
sent. This is a clear indication for h that U is already in use
and should not be used by the newcomer h. Then h must
choose another address randomly and start anew. If, on the
other hand, no answer has been received for U , this indi-
cates that U is not yet in use. The protocol requires that n
ARP probes have to be sent out by h, unless a response to
at least one of them has been received. After each probe, r
seconds have to elapse before the next probe is allowed to
be sent. Consequently, before host h can configure its inter-
face with an unused IP address, at least n · r seconds have
to pass. [2] sets n = 4 and fixes r ∈ {2, 0.2}.

3 Modeling the zeroconf protocol

3.1 A family of discrete-time Markov reward
models

The model of the zeroconf protocol is expressed in
terms of a family of discrete-time Markov reward models
(DRMs). A Markov reward model is basically a Markov
chain equipped with a reward structure, the latter assigning
rewards, bonuses, or dually costs, to the states and/or transi-
tions of the chain. We consider the cost interpretation here.
We deal with a family of DRMs, since we consider differ-
ent Markov chains for different values of n ∈ {1, 2, 3, . . .},
where n is the number of ARP probes needed to be sent
before a decision of acceptance of the chosen IP address is
made.

In our modeling efforts we focus on a model of a sin-
gle representative host, which is assumed to be freshly con-

nected to the local link. The link itself and all other hosts on
the link are described in an abstract way: by probabilities.
We assume that there are m hosts already connected to the
network, and that, during the process of self-configuration
of the host, other devices are neither added nor removed
from the network, nor trying to acquire a new IP address.

The DRM family we consider is parametric in n, and
its common structure is depicted in Figure 1. Costs are as-
sociated with transitions (given in parentheses in Figure 1;
whenever no costs are indicated they are set to zero). We
will now describe the model and the purpose of the costs in
detail. Common to all of DRM are the states start, er-

“Address unused”

start 3rd

ok

2nd1st

1 − p3

1 − p2

1 − p1

1 − q

1 − pn

(n(r + c))

nth
q (r + c) p2 (r + c) p3 (r + c)p1 (r + c)

error
pn (E)

“Address erroneously accepted”

Figure 1. Structure of the DRM family

ror, and ok. Moreover, there are states 1st, 2nd, 3rd,
. . . , nth. In the initial state, start, the host randomly se-
lects an IP address from the provided address range. There
are now two possibilities, which we model by two transi-
tions outgoing from start. Either the IP address is already
in use (represented by a transition to state 1st), or the IP
address is not in use yet (represented by a transition to state
ok). The transition to 1st has probability q, the one to ok
1− q. The probability q depends on the number m of IP ad-
dresses in use by other hosts on the net. Assuming that each
host possesses a single IP address we have q = m/65024.

State ok models the case that the chosen address is not
in use yet. The host will then send n ARP probes, as speci-
fied by the protocol. Due to our assumption about the static
nature of the network during the protocol run no host will
send an ARP reply in response to these probes, so after n · r
seconds the host may start using the new IP address. Send-
ing an ARP probe and receiving a reply incurs some cost,
for two reasons. (i) The network is a limited resource and its
use should be accounted for. Therefore, for each ARP probe
sent we charge a certain cost c. (ii) Since sending an ARP
probe also means to wait for a certain time r, we also charge
a cost of r to each ARP probe sent. Therefore, we attach the
cost n · (r + c) to the transition from start to ok. If, on
the other hand, the system moves to state 1st, then the host
will send an ARP probe, and listen for r seconds. To model
the costs incurred, we attach the cost r + c to the transition
from state start to state 1st. In this state, the host is ask-
ing to acquire an IP number which is already used by some



other member of the network. But for different reasons, that
member may not reply within r time units: either the probe
got lost, or the host that ought to reply is busy, or the reply
packet gets lost. To account for this, we assume that with a
certain probability p1 there will be no reply in response to
the first ARP probe, and the protocol moves to state 2nd, in
which a second ARP probe will be sent, which again costs
r + c. If, however, all goes well the protocol will receive an
ARP reply indicating that the selected IP address is already
in use. In that case the model returns to the initial state
start and starts all over again. This happens with proba-
bility 1 − p1. The behavior in states 2nd, 3rd, . . . , nth is
very similar to that in state 1st, only the probabilities of not
receiving a reply to one of the previously sent out probes are
p2, p3, . . . , pn. If in state nth the nth and last ARP probe
still remains unanswered, the host will decide to start using
the new IP address even though there is an address collision.
In this case, the protocol has clearly reached an undesirable
state, because the maintenance mechanism will later have
to launch a costly protocol to re-establish the integrity of
the IP numbers. Therefore we attach some (high) cost E to
the transition from nth to error. This cost is an abstract
value for the average burden incurred by the user due to the
interrupt of the network service.

The above model abstracts away from a few details con-
sidered in [2]: (a) a host may decide not to retry IP addresses
that failed before; (b) if the number of collisions a host has
experienced so far exceeds 10 then it must limit the rate at
which it probes for new addresses to maximally one address
per minute.

3.2 No-answer probabilities

In the above description of the model the probabilities
p1, p2, . . . , pn were left unspecified. These probabilities,
representing the probability of not receiving an answer in
round 1, . . . , n of the protocol have a decisive influence on
the characteristics of the model, and we must provide rea-
sonable values for them. In this section we will consider
this problem.

There is certainly some interdependency between the
probabilities pi and r, the length of a listening period. For
example, p1 is the probability, that no reply to the first ARP
probe sent arrives within the first listening period. Intu-
itively one would assume that, the shorter r is, the higher
p1, and the longer r, the lower p1. If we assume a certain
round-trip delay d for an underlying network, then we can
be quite sure that p1 = 1, if r < d. If r > d, then p1 < 1
seems reasonable, but there might still be the possibility that
the reply packet does not arrive.

A similar reasoning applies to p2, i.e., there might be
a positive probability that the second ARP probe remains
unanswered in the second listening period. However, it

might be the case that the reply to the first ARP probe ar-
rives in the second listening period, and this possibility must
also be taken into account. So p2 should be the probability
that neither the reply to the second nor the reply to the first
ARP probe is received in the second listening period. Con-
sequently, p3 must be the probability that no reply for the
first, the second, or the third ARP probe is received in the
third listening period, and so on for p4, p5, . . . , pn.

As a first conclusion, it is reasonable to assume that pi is
actually a function in r, pi(r). How do we define the pi(r)?
Consider first a random variable X which denotes the time
that a reply to an ARP probe is received, once this probe has
been sent. As usual, FX(t) = Pr{X ≤ t}. We also know
that Pr{t1 ≤ X ≤ t2} = FX(t2)−FX(t1). We define now
the function P : (IN × IR+) → [0, 1] as:

P (i, r) =
i∏

j=1

(
1 − FX(jr) − FX((j−1)r)

1 − FX((j−1)r)

)
, (1)

and we set pi(r) = P (i, r). A few remarks about (1) are in
order. The expression FX(jr) − FX((j−1)r) denotes the
unconditional probability that a reply packet is received in
the interval [(j−1)r, jr). The quotient in the above equa-
tion is equal to the probability that a reply packet is received
in the interval [(j−1)r, jr), given that it has not yet ar-
rived in the interval [0, (j−1)r). We have to take this side-
condition into account, since in state ith we know that no
reply has arrived before. The complement (1−· · · ) appear-
ing in the product in (1) is then the probability that the reply
on the (i − j + 1)-th ARP probe does not arrive in interval
[(j−1)r, jr), given that it has not arrived in [0, (j−1)r).
The product over j = 1, . . . , i is then the probability that
no reply to any of the i ARP probes sent out earlier arrives
in interval [(j−1)r, jr). Although it does not appear in the
model, we define p0(r) = P (0, r) = 1. Note that P is not
a distribution function or density in r. Note further that by
defining P (i, r) as in (1), we silently assume that the ARP
probes and the respective replies behave stochastically inde-
pendent from each other. This is a simplification—usually
this assumption is not justified, since error situations might
have some persistence. As a consequence, the probability
that a packet gets lost might increase in the case that the
previous packet was lost (error bursts). Our model does not
take this possibility into account.

Now, the question arises how FX should be chosen.
Preferably, it should be based on measurements. For now
we do not have measurements available. However, we will
later define distributions to demonstrate the concept. The
distributions are not accurate in the sense that they describe
the reality in detail, but they address an important issue,
which we will explain now. Normally, distribution func-
tions are monotonically increasing functions from 0 to 1,
i.e., if F is a distribution function, then 0 ≤ F (0) ≤ 1,
and limt→∞ F (t) = 1. However, if we assume that



limt→∞ FX = 1, we implicitly assume that a reply to
an ARP probe is only delayed (perhaps for a long time),
but will always arrive eventually. The real loss of pack-
ets (perhaps caused by electro-magnetic interference on a
radio based network) is not taken into account. A way to
incorporate the possibility of packets losses is to consider
defective distributions, i.e., non-negative, monotonously in-
creasing functions D(t) such that limt→∞ D(t) = l < 1.
Then 1−l is the probability that a reply is never received.
Apparently, F (t) = 1

l D(t) is a distribution function, and
D(t) = lF (t) is the probability that a reply arrives and that
it arrives in the interval [0, t). We will see an example of
such a distribution in Section 4.3.

3.3 Abstract costs

Our treatment of costs deserves some explicit discussion.
From a certain point of view, we are facing three types of
cost: time, network usage, and the cost for an error that is
charged when an IP address is erroneously accepted. How-
ever, we deliberately blur such a threefold distinction, in
order to provide a uniform way of modeling the customers
perspective on each of the above. For us, cost is a quantity
that weighs the influence of unwanted behavior on the user.
Technically, a cost ζ is incurred if a transition with cost ζ
is traversed. Each path through the DTMC has a so-called
total cost, which is the sum of the costs of all transitions on
the path.

The first type of cost in our model is time, more par-
ticularly, the time to wait for a response to an ARP probe.
This is expressed by the cost parameter r in the model, and
we assume a one-to-one correspondence between time and
cost, i.e., if the waiting time is two seconds, then we set
r = 2.

As mentioned in Section 3.1, we must account for the
network usage of the protocol, since it is a limited resource.
We introduce therefore a second cost parameter c, which we
call the postage for an ARP probe. It is difficult to quantify
the postage in advance, but in Section 4.5 we will estimate
a value for it.

The third type of cost is the cost E of erroneously accept-
ing an IP address, even if it is already in use. This happens
in case that all ARP probes remain unanswered. It is dif-
ficult to assign values for E a priori, since many different
aspects play a role here. From a technical point of view, ac-
cepting an IP address that is in use requires eventually the
reconfiguration and re-establishment of interfaces and con-
nections, respectively, not only of the wrongly configured
host, but perhaps even of the other host that got the IP num-
ber first. Other aspects are the user dissatisfaction with the
product, when a reconfiguration becomes necessary. De-
spite the problem to quantify all these different “sources”
of cost, we will estimate a value for E in Section 4.5.

4 The mean cost of a protocol run

Now that we have described our model of the zeroconf
protocol, we can turn our attention to its analysis. Our cen-
tral measure of interest is the mean total cost that is incurred
during initialization, i.e., on the way from state start to
one of the absorbing states, ok, or error. Once we have
a way to analyze this cost as a function C(n, r) in the pa-
rameters n and r, we are interested to determine values for
the integer number n and the listening time r such that the
mean total cost is minimal.

4.1 Cost function

Since the structure of the DRM family we consider pos-
sesses a simple repetitive structure, it is possible to derive
an analytic expression that describes the mean total cost as
a function C(n, r) in the parameters n and r and the co-
efficients c, p1(r), . . . , pn(r), q, and E. This section dis-
cusses how we derive this cost function. We define the prob-
ability matrices Pn = (p(n)

ij )i,j=1,...,n+3 and cost matrices

Cn = (c(n)
ij )i,j=1,...,n+3, for n = 1, 2, . . ., where the matrix

entries are defined as follows:

p
(n)
1,2 = q

p
(n)
1,n+3 = 1 − q

p
(n)
i1 = 1 − pi−1(r) for i = 2, . . . , n + 1

p
(n)
i,i+1 = pi−1(r) for i = 2, . . . , n + 1

p
(n)
ii = 1 for i = n + 2, n + 3

c
(n)
1,n+3 = n · (r + c)

c
(n)
i,i+1 = r + c for i = 1, . . . , n

c
(n)
n+1,n+2 = E

All other entries of Pn and Cn are zero. Note that the en-
tries of both matrices depend on the length of the listening
period r (cf. Section 3.2). The relation between states of the
DRM and indices of the matrices is shown in the following
table:

State start 1st ··· nth error ok
row(·) 1 2 ··· n+1 n+2 n+3

Matrix Pn takes only probabilities into account, while ma-
trix Cn describes the costs attached to transitions in the
model. Note that, if pij = 0, then also cij = 0. Fur-
thermore, we assure that cii = 0, for i = n + 2, n + 3.
Otherwise the mean total cost would not be finite, because
an absorbing state would allow to add costs unboundedly.

The mean total cost C(n, r) we are interested in is the
one obtained when initialising the protocol in state start.
In other words, it is the value of a(n,r)

1 , assuming a vector

a′ = (a(n,r)
1 , . . . , a

(n,r)
n+3 )T denoting the mean total costs for

states j ∈ {1, . . . , n + 3}. The values of a
(n,r)
i can be

expressed as the solution to the following system of linear



equations:

a
(n,r)
i =

n+3∑

j=1

p
(n)
ij

(
c
(n)
ij + a

(n,r)
j

)
. (2)

The meaning of this system of equations is as follows:
c
(n)
ij + a

(n,r)
j is the cost of transition i → j plus the mean

total cost of state j. So this is the total cost that incurs in
case the transition i → j is chosen. This cost is weighted
with the probability of actually taking this transition from
state i, i.e., p(n)

ij . To obtain the mean total cost of state i
we have to sum this quantity over all possible target states
j ∈ {1, . . . , n+3}. Apparently, a(n,r)

n+2 = a
(n,r)
n+3 = 0.

We can rewrite the equation system of the form (2) in a
single matrix-vector equation. Let P′

n = (p(n)
ij )i,j=1,...,n+1

be the submatrix of Pn spanned by the non-absorbing states
1, . . . , n+1, and let w = (w1, . . . , wn+1)T be a vector
satisfying wi =

∑n+3
j=1 pijcij . Then the vector a′ =

(a(n,r)
1 , . . . , a

(n,r)
n+1 )T of the mean accumulated costs for

non-absorbing states 1, . . . , n+1 is the solution to the ma-
trix equation a′ = P′

na
′+w, or better, a′ = −(P′

n−I)−1w.
P′

n−I is regular, which follows from the Perron-Frobenius-
Theorem for decomposable stochastic matrices [6].

For our particular case, we are actually only interested in
C(n, r) = a

(n,r)
1 , the mean accumulated cost of the starting

state start. Due to the simple structures of the matrices
involved, we can derive a symbolic solution for C(n, r):

C(n, r) =

(r + c)

(
n(1 − q) + q

n−1∑

i=0

πi(r)

)
+ qEπn(r)

1 − q(1 − πn(r))
, (3)

where πi(r) =
∏i

j=0 pj(r), for i = 0, . . . , n. Recall from
Section 3.2 that the πi(r) are determined by the defective
probability distribution FX describing the time to receive a
reply to an ARP probe.

4.2 Finding parameters for minimal cost

Equation (3) provides us with the principal means to look
into all the facets of C(n, r), the mean total initialization
cost of the IPv4 zeroconf protocol. It shows that C depends
on two types of parameters, namely the explicit parameters
n and r which are under the control of the designers of the
protocol, and the application specific parameters c, q, E,
and FX which can be predicted by the protocol designers to
only a very limited extent.

We can now identify two different ways to study the
function C(n, r). One may either fix the protocol by fix-
ing n and r, and then perform a sensitivity analysis with
respect to one of the remaining, application specific, param-
eters. Or one may fix an application scenario by fixing c, q,
E, and FX , and strive for an optimal setting of the proto-
col parameters n and r. The earlier approach is a standard

exercise, and we return to this strategy in Section 4.5 where
we discuss the parameters c and E, and in Section 6. Here
we instead focus on the optimization aspect. We formulate
the optimization problem as follows. For fixed c, q, E, and
FX , we intend to find the pairs (n, r) ∈ IN × IR+ such that
C(n, r) is minimal.

The parameter n is discrete, and thus we can define
C(n, r) as a family of functions {Cn}, where Cn(r) :=
C(n, r). We are interested in the shape of Cn, describing
the mean cost as a function of r when n has been fixed. The
first question of interest concerns the shape Cn of this func-
tion. Due to our assumption of a defective distribution FX

we have limr→∞ FX(r) = l. It is not difficult to verify that
in this case πi(0) = 1 and that limr→∞ πi(r) = (1−l)i, for
i = 1, . . . , n. Moreover, πn(r) falls off polynomially with
degree n. As a consequence, Cn(0) = qE, and for r → ∞,
Cn(r) is approaching the asymptote

An(r) =
(r + c)

(
n(1 − q) + q

(
1−(1−l)n

l

))

1 − q
.

Apparently, the cost function Cn is a mixture of the linearly
increasing function An and the polynomially decreasing
qEπn(r). As long as we can assume that An(r) << qE
for small r (which is realistic, since we assume E to be
rather large), we can also assume that Cn(r) first falls off
polynomially to a minimum, and increases then linearly, as
r increases.

To address the above optimization problem we are
searching for the number r

(n)
opt such that Cn(r(n)

opt) is mini-

mal. Computing r
(n)
opt is best done by numerical means. It is

possible to use the derivation of the cost function and to de-
rive the zeroes, or to compute the minimum by some other
means. From a numerical point of view this is not partic-
ularly challenging, and we will therefore not dwell on the
solution aspects of the model. All numeric results and ex-
ample plots in this paper have been computed numerically
by means of the Maple2 tool.

4.3 Example plots

In this section, we will show some sample graphs for
Cn. To do so, we first have to fix the parameters c, q, E,
as well as the probability distribution FX (cf. Section 3.2)
for the time between sending an ARP probe and receiving
a reply. As mentioned earlier, FX should be based on mea-
sured data. Since we do not heave measures at hand, and
we want to demonstrate the principle rather than to produce
exact results in a particular setting, we decide to define FX

on the basis of an exponential distribution.

FX(r) =
{

l ·
(
1 − e−λ(r−d)

)
for r ≥ d

0 otherwise,

2Maple is a registered trademark of Waterloo Maple Inc.



10

15

20

25

30

0 1 2 3 4

Cost functions for n = 1, . . . , 8

n = 8 n = 7 n = 6
n = 5

n = 4

n = 3

r

Cost

Minimum

Figure 2. Cost functions C1, . . . , C8

where 1 − l is the probability that an ARP probe never gets
a reply, d is the round-trip delay of the considered network,
and d+1/λ is the mean time a reply is received after sending
the ARP probe, assuming that the reply does not get lost. In
the following, we choose d = 1, l = 1−10−15, and λ = 10.
For the probability q that an IP address is in use we choose
q = 1000/65024. For the cost of sending an ARP probe
we assume c = 2, and for E, the cost of an erroneously
accepted IP address, we choose E = 1035. In Figure 2, we
show some examples plots of cost functions Cn(r) for n =
1, . . . , 8. Actually, the functions for n = 1, 2 are not visible,
since their smallest values are much too large to fit into the
chosen range of the plot. As we can see, the cost functions
indeed all have a minimum. The higher n is chosen, the
smaller r(n)

opt. However, C3(r
(3)
opt) < · · · < C8(r

(8)
opt) < · · · .

The increase of the minimum of the cost function Cn(r) for
larger n is mainly caused by the postage c. If we would
set c = 0, then the optimal strategy would be to send as
many ARP probes as fast as possible, without waiting for
a reply. Then the probability that at least one reply returns
d seconds (the roundtrip delay) after sending the first ARP
probe approaches one. Since in the real world the sending
of a packet incurs some nonzero cost, this strategy is not
recommendable.

4.4 Optimal n

Up till now, we have only considered the optimal value
of r for a particular n. In this section, we want to address the
question what n should be chosen for a given r, such that
the cost is minimal. Therefore, we now define a function
N : IR −→ IN, that returns the optimal number n that min-
imizes C(n, r) for fixed r: N(r) = min{ n ∈ IN | Cn(r) =
infk∈IN{Ck(r)}}.

By means of N(r) we can now define Cmin(r) =

C(N(r), r). Cmin describes the total cost of a protocol run
under the condition that always an optimal n has been cho-
sen for a given r. Figure 4 depicts a graph of Cmin, based on
the same parameters chosen for Figure 2. Cmin is described
by the lower edge of the union of all function graphs of the
Cn. From the cost function, a rough estimate for the number

r

N(r)

2

3

4

5

6

7

1

1 32 4

Figure 3. N(r): optimal n for given r

N(r) can be derived. As we have seen above, the cost func-
tion is a mixture of a linearly increasing and a polynomially
decreasing function in r. To have the costs small, the poly-
nomial part (i.e., qEπn(r)) should approach a number close
to zero for increasing r. This can however only be achieved,
if the influence of the cost parameter E is dwarfed by πn(r).
As limr→∞ πn(r) = (1 − l)n, we have that (1 − l)nqE
should be near to zero. Therefore, the minimal value of n is
now

ν =
⌈
− log(E)

log(1 − l)

⌉
.

For all n′ < ν we can be sure that qEπn′(r) will never
approach zero. We now have another explanation why the
graphs for n = 1, 2 are not visible in Figure 2: since E =
1035 and 1 − l = 10−15, we have

⌈
− log(E)

log(1−l)

⌉
= 3, and

therefore, it is impossible to achieve a reasonable cost, if
n = 1, 2.

4.5 Cost of error

In [2], several assumptions are made about the parame-
ters of the protocol. The maximal number n of ARP probes
is set to n = 4. The waiting time r between the probes
is set to r = 2 or r = 0.2. The round-trip delay is as-
sumed to be maximally one second, the network speed min-
imally 1 Mbit/sec. No assumptions are made about the ex-
pected number of hosts on the link. We must assume that
the chosen parameters cover the worst case with respect to
speed, reliability, network size, and traffic. Up till now we
have only assumed arbitrary values for the cost variable E.



10

15

20

25

30

0 1 2 3 4

r

Cost

Figure 4. The minimal-cost function Cmin(r)

An interesting question is what values the cost parameter
E and the postage c must have such that the assumptions
made in [2] become reasonable, i.e., that n = 4 and r = 2
(r = 0.2) are the optimal choice with respect to cost min-
imization. This is addressed as follows. We choose very
pessimistic parameters for l and q, and compute E and c for
both values of r, which we will denote by Er=2, Er=0.2,
cr=2, and cr=0.2. For the loss probability l we choose
l = 1 − 10−5, which for modern networks is very high.
We assume that 1000 hosts are already connected to the
network, i.e., q = 1000/65024, and a worst-case round-
trip delay of 1 second, i.e., d = 1. The mean time un-
til a reply is received after an ARP probe has been sent is
d + 1/λ = 1.1, i.e., λ = 10. For these parameters we can
derive Er=2 = 5 · 1020 and cr=2 = 3.5 (by simple numeri-
cal approximation).

For r = 0.2 we must first realize that assuming a round-
trip delay of 1 second is not reasonable, since with n = 4,
the overall listening time has a duration of only 0.8 sec-
onds. Therefore, shorter round-trip delays must be consid-
ered. We therefore assume now d = 0.1, which is still very
pessimistic for a local net. We then also adapt the mean
time until a reply is received to d + 0.01 = d + 1/λ, i.e.,
λ = 100. Moreover, in [2] it is stated that choosing r = 0.2
is only permitted “when the link [. . . ] can be reasonably
trusted to deliver packets reliably”. We interpret this as a
hint to lower the loss probability. We assume therefore, that
1 − l = 10−10, which still is pessimistic. For the chosen
values we can derive that Er=0.2 = 1035 and cr=0.2 = 0.5.

5 Reliability

In this section, we will consider the reliability of the ze-
roconf protocol. We consider the reliability as the probabil-

-120

-100

-80

-60

-40

-20

0
1 2 3 4

E
rr

or
pr

ob
ab

ili
ty

(l
og

10
sc

al
e)

r

n = 8

n = 7

n = 6

n = 3

n = 2

n = 1

n = 5

n = 4

Error probabilities for different n

Figure 5. Probability to reach state error

ity that an previously unused IP number has been selected
once the initialization phase has terminated. In terms of our
model this is given by the probability to end up in state ok
while the probability to end up in state error corresponds
to the complementary outcome, where the chosen number
is already in use.

Computing these probabilities is a standard problem for
discrete-time Markov chains, and the solution is described
in detail in, for example, [3]. Therefore, in the following,
we describe only briefly how to compute them.

Let the matrix Pn be as in Section 4.1, We partition
this matrix as follows. Let P′

n = (p(n)
ij )i,j=1,...,n+1,

i.e., P′
n is obtained from Pn by deleting the right-

most two columns and the bottom-most two rows.
Let en = (p(n)

1,n+2, . . . , p
(n)
n+1,n+2)

T , and on =

(p(n)
1,n+3, . . . , p

(n)
n+1,n+3)

T be the two vectors describing the
one-step absorption probabilities into the state error (en),
respectively ok (on). The matrix Pn can be reassembled
from these fragments as follows:

Pn =




P′

n en on

0 1 0
0 0 1



 .

Since Pn describes the one-step transition probabilities in
the Markov chain, it’s k-th power describes the k-step prob-
abilities, i.e., the probabilities to jump from state i to state
j in exactly k steps. We are now interested in the proba-
bilities to end up in one of the absorbing states error or
ok, given that we start in state start, in any number of
steps. Let sn = (1, 0, . . . , 0) ∈ IRn+1. We can express
the probability to jump to, say, state error in exactly k
steps, for k = 1, 2, 3, . . ., when starting in state start, as
sn(P′

n)k−1en. We are looking for the probability E(n, r)
to jump to state error in any number of steps, which is



-60

-50

-40

-30

-20

-10

0
1 2 3 4

n = 5n = 6n = 7
n = 8

n = 1

n = 2

n = 3

n = 4

Figure 6. Error probability under optimal cost
E(N(r), r)

then sn

∑∞
k=1(P

′
n)k−1en = sn(I − P′

n)−1en. The com-
plementary probability to reach state ok can be computed
in the same fashion by replacing en by on, or directly by
taking the complement 1−E(n, r).

As in Section 4.1, the simple matrix structure of P′
n al-

lows us to derive an analytic expression for the probability
E(n, r) given by

E(n, r) =
qπn(r)

1 − q(1 − πn(r))
, (4)

where πn(r) are the quantities appearing in equation (3).
To give some insight into the above equation, we first inter-
pret the denominator. If starting in state 1st, the probabil-
ity to go directly (i.e., in n steps) to state error is equal
to πn(r). Thus, the complement probability 1 − πn(r) is
the probability to take any path, except the one directly to
state error. q(1 − πn(r)) is then the probability to start
in state start, go in one step to state 1st, and to take
any path then, except the direct one to state error. So the
denominator 1 − q(1 −πn(r)) in equation (4) describes ap-
parently the probability to start in state start, and to go
directly either to state ok or to state error. We denote this
event as B. The enumerator of (4) is the probability to go
directly to state error, starting from state start. We de-
note this event as A. Then E(n, r) is the conditional prob-
ability Pr{A|B} to reach state error from state start
under the condition that one of them is reached on a di-
rect way. One might wonder if not also the detours should
be taken into account, i.e., all paths which touch the state
start more than once. However, the probabilities to reach
state start a second, third, fourth, . . . time again sum up
to one and, therefore, do not contribute to the outcome.

We have again derived an analytic expression, this time
to express the probability to reach an error state, which is

the complement of the protocol reliability. In Figure 5, we
see examples for the probability E(n, r) for n = 1, . . . , 8,
where the probability to reach state error is plotted
against the value of r. Note that the probability axis has
a logarithmic scale.

One may study the behavior of E in multiple ways. Here,
we combine it with our cost analysis of the protocol, and fo-
cus on the fragment of the parameter range of n and r that
gives optimal total costs. To do so, we consider the func-
tion E(N(r), r), i.e., we consider the case that the number
of ARP probes is always chosen with optimal total costs,
depending on r (cf. Section 4.4). In Figure 6, we see a
sample plot for E , embedded in the original graph of Fig-
ure 5. We see that the plot of E(N(r), r) has a peculiar
shape. The most important feature is that E(N(r), r) has
several maxima, which correspond to the steps of the piece-
wise constant function N(r), and is piecewise continuously
decreasing between these steps. To explain this shape, let
(a, b) be an interval of maximal size where N(r) = k for
all r ∈ [a, b]. It is not surprising that E(N(r), r) is con-
tinuously decreasing in (a, b), since the waiting time r is
increasing and influences the probability that a reply is re-
ceived in the listening period to the better. The number of
ARP probes, however, remains constant, since it is a dis-
crete quantity. Only at the jump at b, N(b+) = k − 1,
i.e., the optimal number of ARP probes to be sent is decre-
mented by 1. This has a negative effect on the error prob-
ability again, since now there is one chance less to send an
ARP probe, and in particular only a shorter overall time to
wait for replies on earlier ARP probes sent. This results
results in a sharp increase at b. In fact, since k − 1 is the
cost-optimal number of ARP probes to be sent and b is the
smallest value for which this optimum holds, this induces a
local maximum for the error function at b.

We observe that the minima of the cost function (Fig-
ure 4) do not correspond to the minima of the error func-
tion E(N(r), r)). Moreover, the lower the probability, the
higher the cost, as can be seen by comparing Figure 4 and 6.
This indicates that optimal reliability and optimal cost can
not be achieved at the same time. However, we can observe
that the error is bounded and stays roughly within the limits
of [10−35, 10−54]. So, one may draw the conclusion that,
at least for this application scenario and similar ones, the
trade-off between reliability and cost does exist, but is not
particularly substantial. Even though optimal cost implies
sub-optimal reliability, the latter is still very low in all cases
we considered.

6 Assessing the IPv4 protocol

Now that we have derived the apparatus to describe the
mean cost of a protocol run and the error probabilities, we
can come back to assess the chosen parameters proposed



in [2]. In Section 4.5, we have derived values for E and
c, such that the proposed parameters n = 4 and r = 2
(r = 0.2) yield minimal cost, assuming a worst-case sce-
nario. It is now interesting to observe how n and r change,
if we assume a bit more optimistic scenarios. The only pa-
rameters we want to keep constant are E, c, and q. All other
parameters are subject to change.

We first assume that we have a very reliable network with
a loss probability of 1 − l = 10−12 (which is met by most
modern ethernets). We also assume that the round-trip delay
is small: a realistic value is d = 1ms. For these values we
find out that the optimal parameters are n = 2, and r ≈
1.75. For these values, the probability that an address has
been erroneously accepted is E(2, 1.75) ≈ 4 · 10−22.

We see that in case of more realistic parameters the dura-
tion of a listening period and especially the number of ARP
probes sent can be chosen much smaller. So for the current
case, the waiting time will be generally only about 3.5 sec-
onds, rather than 8. Assuming less than m = 1000 hosts
will also allow one to drop the waiting time and thus the
total costs further.

7 Conclusion

This paper has presented a study of the IPv4 zeroconf
protocol, an upcoming protocol targeting at the autonomous
configuration of network interfaces with unique IP numbers
at startup time.

We have presented a quantitative cost model of the IPv4
zeroconf protocol, defined as a family of simple DRMs.
We decided to use an abstract notion of costs represented
as dimension-less entities. This notion provides a com-
mon quantitative scale for very different aspects of user
(dis)satisfaction. In the current consumer electronic mar-
ket, efforts to decrease the mean dissatisfaction (or com-
plementary, and in jargon, to increase the “fun-factor” ) of
an electronic device is a prime design goal, but difficult to
manage or optimize during the design cycle. Our study of
the mean total cost of the protocol is precisely targeting in
this direction.

The model enabled us to study analytically both the
mean total cost of running the protocol, as well as its re-
liability. By varying the various parameters of the model
we were able to put both reliability and cost in relation to
each other. The main emphasis has been to isolate optimal
values for those parameters that are under the control of the
protocol designer, namely the number n of ARP probes to
be sent, and the length r of the listening time needed to ex-
pire after sending each ARP probe. We have seen that mini-
mal cost and minimal error propability is something that can
not be achieved at the same time. In a nutshell, the lower
r is set, the lower the cost become, but also the reliability
decreases then.

The cost model we introduced is small and abstract.
Nonetheless it provides already genuine insight in the
mechanisms of the protocol. The numerical computations
to derive the results from the model are very simple (com-
puting the minima of functions), therefore, it should be
possible to concretize the model, and keep the numerical
derivations still feasible.

Another aspect to mention is that the application area of
this protocol is potentially very broad, and the whole area of
ad-hoc networks is very young and developing further with
enormous speed. This is problematic, because the quality of
the optimized protocol parameters depends to some extent
on the quality of application specific parameters (such as the
message loss probability) fed into the model. These param-
eters must be based on measurement in real world scenarios.
This however is a delicate task for the designers, since they
are developping their products for a future application pro-
files which are difficult to predict in the required degree of
detail today. A certain flair is thus indispensable, but the
analytical functions we provide are effective means to show
the influence of such design decisions in any case.

Acknowledgments. We thank Miaomiao Zhang and
Joost-Pieter Katoen for valuable comments on this pa-
per. This work is supported by STW/PROGRESS project
TES4999: Verification of Hard and Softly Timed Systems
(HaaST), and the DFG/NWO bilateral cooperation project
600.050.011.01: Validation of Stochastic Systems (VOSS).

References

[1] G. Behrmann, A. David, K. G. Larsen, O. Möller, P. Petters-
son, and W. Yi. UPPAAL - present and future. In Proc. of 40th
IEEE Conference on Decision and Control. IEEE Computer
Society Press, 2001.

[2] S. Cheshire, B. Adoba, and E. Guttman. Dy-
namic configuration of IPv4 link-local addresses.
http://www.ietf.org/internet-drafts/-
draft-ietf-zeroconf-ipv4-linklocal-
07.txt, August 2002. DRAFT.

[3] V. G. Kulkarni. Modeling and Analysis of Stochastic Systems.
Chapman & Hall, London, Glasgow, Weinheim, 1995.

[4] P. Pettersson and K. G. Larsen. UPPAAL2k. Bulletin of the Eu-
ropean Association for Theoretical Computer Science, 70:40–
44, Feb. 2000.

[5] D. C. Plummer. An ethernet address resolution protocol,
November 1982. Internet Standard 37, RFC 826.

[6] W. J. Stewart. Introduction to the Numerical Solution of
Markov Chains. Princeton University Press, 1994.

[7] M. Zhang and F. Vaandrager. Analysis of a protocol for dy-
namic configuration of IPv4 link local addresses using Up-
paal. Report NIII-R03XX, Nijmeegs Instituut voor Informat-
ica en Informatiekunde, University of Nijmegen, 2003. To
appear.


