
A Comment on Assegei’s use of Kalman Filter
for Clock Synchronization of Wireless Sensor

Networks

Faranak Heidarian

April, 2010

1 An Introduction to Kalman Filter

An alternative to the median algorithm is based on Kalman filter[1] which
addresses the general problem of trying to estimate the state x ∈ Rn of
a discrete-time controlled process that is governed by the linear stochastic
difference equation

xk = Axk−1 + Buk−1 + wk−w (1)

with a measurement z ∈ Rm that is

zk = Hxk + vk. (2)

The random variables wk and vk represent the process and the mea-
surement noise(respectively). They are assumed to be independent (of each
other), white, and with normal probability distributions

p(w) ∼ N(0, Q),

p(v) ∼ N(0, R).

In practice, the process noise covariance Q and measurement noise covari-
ance R matrices might change with each time step or measurement, however
here we assume they are constant,

The n×n matrix A in the difference equation (1) relates the state of the
previous time step k − 1 to the state at the current step k, in the absence

1



of either a driving function or process noise. The n × l matrix B relates
the optional control input u ∈ Rl to the state x. The m × n matrix H in
the measurement equation (2) relates the state to the measurement zk. We
assume A, B and H are constant.

The Kalman filter estimates a process by using a form of feedback control:
the filter estimates the process state at some time and then obtains feedback
in form of (noisy) measurements. As such, the the equations for the Kalman
filter fall into two groups: time update equations and measurement equa-
tions. The time update equations are responsible for projecting forward (in
time) the current sate and error covariance estimates to obtain the a pri-
ori estimate for the next time step. The measurement update equations are
responsible for the feedback–i.e. for incorporating a new measurement into
the a priori estimate to obtain an improved a posteriori estimate. The time
update equations can also be thought of as predictor equations, while the
measurement update equations can be thought of as corrector equations.

We define x̂−
k ∈ Rn to be our a priori state estimate at step k given

knowledge of process prior to step k, and x̂k ∈ Rn to be our a posteriori
state estimate at step k given measurement zk. We can also define a priori
and a posteriori error covariances P−

k and Pk. Then, the speific equations
for time and measurement updates are presented below in Table 1 and Table
2.

Table 1: Discrete Kalman filter time update equations

x̂−
k = Ax̂k−1 + Buk−1 (3)

P−
k = APk−1A

T + Q (4)

2 Synchronization Algorithm

The implementation of Kalman filter on sensor nodes is shown in linsting 1.
The code is used by CHESS on their WSN simulator and is based on the
formulas of [2].

2



Table 2: Discrete Kalman filter time update equations

Kk = P−
k HT (HP−

k HT + R)−1 (5)

x̂k = Ax̂−
k + Kk(zk −Hx̂−

k ) (6)

Pk = (I −KkH)P−
k (7)

Listing 1: the algorithm of Kalman filter implemented in C in CHESS

1 f loat ka lmanFi l te r ( ) {
f loat x=0;// est imated value o f the o f f s e t

3 f loat A=1;// s t a t e t r a n s i t i o n matrix
f loat int Q=1;// no i s e covar iance o f p roc e s s

5 f loat H = 1 ; //measurement updating f a c t o r
double R=0.0001; // no i s e covar iance

7 f loat P; // e r r o r covar iance o f measurement
f loat K; //Kalman gain

9 P=1;// i n i t i a l e s t imate o f e r r o r covar iance matrix
//We assume that nNeighbors i s at l e a s t 3

11 for ( int i =0; i<nNeighbors ; i++) {
// time update ”PREDICT” equat ions

13 x=A∗x ;
P= A∗P∗A+Q; //Assegei , Eq 4 .29

15 //measurement update ”CORRECT”
// f i r s t s tep : compute Kalman gain

17 i f (P+R==0) {
K=P;

19 } else {
K=P∗H/((H∗P∗H)+R) ; //Assegei , Eq 4 .34

21 }
// second step : update es t imate with measurement

23 x=x+K∗( phaseError [ i ]−(H∗x ) ) ; //Assegei , Eq 4 .31
//update the e r r o r covar iance

25 P=(1−K∗H)∗P; //Assege i , Eq 4 .32
}

27 return x ;
}

3



It is not easy(possible?) to analyze the algorithm of Kalman filter, using
Uppaal or any other formal model checker, as a key parameter of the algo-
rithm, the error covariance, is a real value between 0 and 1, which necessitate
floating point computations.

However, we looked deeply into the code of Kalman filter implemented
by CHESS for clock synchronization of wireless sensor networks and found a
serious bug in it. We noticed that the covariance matrix is initialized every
time the function is called (listing 1, line 9), which cancels out the learning
ability of Kalman filter.

We a made small program in C++ to simulate the behavior of a network
of 4 nodes with clique topology on which Kalman filter is used for synchro-
nization.

Network Size 4
Slot Size 30

Guard Time 6
Tick Length[0] 100000
Tick Length[1] 99999
Tick Length[2] 99999
Tick Length[3] 100000

Table 3: The Specification of a Sample 4-Node WSN running Kalman Filter

For the setting of table 3, the network crashed in the second frame after
node 2 could not receive the massage of node 1, because of inappropriate slot
number. The error scenario is summarized in table 4.

Sender Receivers
0 1 2 3

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
0 0 0 0 0
1 1 1 0 1

Table 4: An Error Scenario of a 4-Node WSN running Kalman Filter

4



References

[1] G. Welch and G. Bishop, “An Introduction to Kalman Filter”, TR 95-
041. Technical report, Department of Computer Science, University of
North Carolina at Chapel Hill, 2002.

[2] F. A. Assegei, “Decentralized frame synchronization of a TDMA-based
wireless sensor network”, Masters thesis, Eindhoven University of Tech-
nology, Department of Electrical Engineering, 2008.

5


