
A New Perspective on Conformance Testing
Based on Apartness⋆

Frits Vaandrager�

Institute for Computing and Information Sciences,
Radboud University, Nijmegen, the Netherlands

f.vaandrager@cs.ru.nl

Abstract. We revisit the classic problem of black box conformance test-
ing and present a generalization of the k-completeness result of Vasilevskii
and Chow, phrased entirely in terms of properties of the observation/prefix
tree induced by a test suite, in particular in terms of apartness relations
between states. The original result of Vasilevskii and Chow is then a
corollary of our result. Also k-completeness results for other test methods
that have been proposed in the literature, such as the Wp-method and
the HSI-method, follow from our characterization. Based on the apartness
relations in the observation tree, we may determine whether some test is
redundant or can be shortened.

Keywords: conformance testing · finite state machines · Mealy ma-
chines · apartness · observation tree · k-complete test suites

1 Introduction

In this note, we revisit the classic problem of black box conformance testing.
We consider the simple setting in which both the specification and the black
box implementation can be described as (deterministic, complete) finite state
machines (a.k.a. Mealy machines). In this setting, we refer to a sequence of inputs
σ as a test. Given a specification S, we say that an implementation M passes
test σ if σ triggers the same outputs in M and S. Otherwise, we say that M
fails test σ. Implementation M conforms to specification S if it passes all tests.
In our setting this means that M and S have equivalent behavior. The task of a
tester of a black box implementation M is to find a test σ (if it exists) such that
M fails σ. Figure 1 shows an example (taken from [11]). Here the test σ = aba
triggers outputs 010 in the specification, but outputs 011 in the implementation.
Thus, M fails test σ and implementation M does not conform to specification S.

Ideally, given a specification S, a tester would like to compute a finite set of
tests T , called a test suite, that is complete in the sense that, for any implementa-
tion M, M will pass all tests in T if and only if M conforms to S. Unfortunately,
such a test suite does not exist: for any finite test suite T the number of inputs
⋆ Research supported by NWO TOP project 612.001.852 “Grey-box learning of Inter-

faces for Refactoring Legacy Software (GIRLS)”.

http://orcid.org/0000-0003-3955-1910

2 F. Vaandrager

s0s0 s1s1

s2s2

q0q0 q1q1

q2q2

a/0

b/1

a/1

b/1

a/0

b/1
b/1

a/0

a/1
b/1

a/0

b/1

Fig. 1: A specification S (left) and a faulty implementation M (right).

in tests will be bounded by some number n. Thus, for any specification S and
any n we may construct an implementation M that behaves exactly like S for
the first n inputs, but behaves differently from that point onwards. Even though
this M does not conform to S, it will pass all tests in T .

In two classic papers, Vasilevskii [20] and Chow [3] independently showed
that, for any specification S and any natural number k, a finite test suite T
can be constructed that is k-complete in the sense that, for any implementation
M with at most k more states than S, M passes T if and only if M conforms
to S. The so-called W -method proposed by Vasilevskii [20] and Chow [3] for
constructing a k-complete test suite is actually quite simple:

– First, construct a state cover for S: a finite, prefix closed set of input sequences
A such that every state of S is reached by some sequence in A. For example,
the set A = {ϵ, a, b} is a state cover for the specification S from Figure 1,
since s0 is reached by the empty sequence ϵ, s1 is reached by a, and s2 is
reached by b.

– Next, construct a characterization set for S: a nonempty, finite set of input
sequences W , such that for each pair of inequivalent states s and t, W
contains a separating sequence for s and t. Here a separating sequence for s
and t is a sequence σ such that when σ is applied in s the resulting outputs
are different from those when σ is applied in t. Two states s and t of S are
equivalent if there exists no separating sequence for them. For example, aa is
a separating sequence for all pairs of distinct states of S since in s0 it triggers
outputs 01, in s1 it triggers outputs 10, and in s2 it triggers outputs 00. Thus
W = {aa} is a characterization set for S.

– Finally, a k-complete test suite T is defined by T = A · I≤k+1 · W , where
I≤k+1 is the set of all input sequences with length less than or equal to k + 1,
and “·” denotes concatenation of sequences, extended to sets of sequences by
pointwise extension.

Intuitively, in the simple case with k = 0, input sequences A · W test whether all
states of the specification are present in the implementation, and input sequences
A·I ·W test whether all transitions produce the correct output and lead to the cor-

A New Perspective on Conformance Testing 3

rect target state. If we apply the W -method to construct a 0-complete test suite for
the specification of Figure 1, we obtain T = {aa, aaa, baa, aaaa, abaa, baaa, bbaa}.
We can always omit tests that are a prefix of another test: if an implementation
fails on a prefix of a test then it will also fail on the full test. Thus we can omit
tests aa, aaa and baa, and obtain a 0-complete test suite with 4 tests. Indeed,
the implementation from Figure 1 fails the test abaa.

Numerous variations and improvements of the W -method have been proposed
in the literature; we refer to [9,4,11] for overviews and further references. Still,
for all these methods it is unclear how to (1) establish whether certain tests are
redundant or can be shortened (for instance, in the example test suite T , abaa
can be replaced by the shorter aba without compromising 0-completeness), (2)
compute which tests should be selected first in order to maximize the likelihood
that bugs will be discovered, and related (3) quantify how performing some test
will reduce our uncertainty whether an implementation conforms to a specification.

In order to be able address these fundamental questions, we present a new
perspective on conformance testing, drawing inspiration from the recently de-
veloped L# learning algorithm [19]. Actually, given the natural duality between
learning and testing, first observed by Weyuker [21], it is not surprising that
ideas regarding active learning of finite state machines can be applied in the
setting of conformance testing. A first idea from the L# algorithm that we will
use is to store the outcomes of all experiments/tests in a single data structure,
the observation tree (a.k.a. prefix tree). This allows us, for instance, to base the
choice of the next test on the set of tests executed thus far. A second idea that we
adapt from L# is the concept of apartness, a constructive form of inequality [18].
The notion of apartness is standard in constructive real analysis and goes back
to Brouwer, with Heyting giving an axiomatic treatment in [7]. The importance
of apartness for automata theory and concurrency theory was first observed by
Herman Geuvers and Bart Jacobs [6]. This insight was an inspiration for the
work of [19] and for the present note.

The main result that we present here is a generalization of the k-completeness
result of [20,3], phrased entirely in terms of properties of the observation tree, in
particular in terms of apartness relations between states. The original result of
[20,3] is then a corollary of our result. Also k-completeness results for other test
methods that have been proposed in the literature follow from our characterization.
Based on the apartness relations in the observation tree, we may determine
whether a certain test is redundant or can be shortened.

The rest of this note is structured as follows. First we recall the formal
definitions of (partial) Mealy machines, observation trees and apartness in Sec-
tion 2. Next, we present our main result in Section 3. The connections with
existing k-completeness results are discussed in Section 4. In Section 5, we discuss
implications of our results and directions for future research.

4 F. Vaandrager

2 Partial Mealy Machines and Apartness

In this preliminary section, which is largely copied from [19] (but with the word
“learning” replaced by “testing”), we formalize some of the key concepts that
play a role in our result: Mealy machines, observation trees and apartness. Since
observation trees are (a specific type of) partial Mealy machines, we need to fix
some notation for partial maps.

We write f : X ⇀ Y to denote that f is a partial function from X to Y
and write f(x)↓ to mean that f is defined on x, that is, ∃y ∈ Y : f(x) = y, and
conversely write f(x)↑ if f is undefined for x. Often, we identify a partial function
f : X ⇀ Y with the set {(x, y) ∈ X × Y | f(x) = y}. There is a partial order on
X ⇀ Y defined by f ⊑ g for f, g : X ⇀ Y iff for all x ∈ X, f(x)↓ implies g(x)↓
and f(x) = g(x).

Throughout this paper, we fix a nonempty, finite set I of inputs and a set O
of outputs.

Definition 2.1. A Mealy machine is a tuple M = (Q, q0, δ, λ), where
– Q is a finite set of states and q0 ∈ Q is the initial state,
– ⟨λ, δ⟩ : Q × I ⇀ O × Q is a partial map whose components are an output

function λ : Q × I ⇀ O and a transition function δ : Q × I ⇀ Q.
We use superscript M to disambiguate to which Mealy machine we refer, e.g.
QM, qM

0 , δM and λM. We write q
i/o−−→ q′, for q, q′ ∈ Q, i ∈ I, o ∈ O to denote

λ(q, i) = o and δ(q, i) = q′. We call M complete iff δ is total, i.e., δ(q, i) is
defined for all states q and inputs i. We generalize the transition and output
functions to input words of length n ∈ N by composing ⟨λ, δ⟩ n times with itself:
we define maps ⟨λn, δn⟩ : Q × In ⇀ On × Q by ⟨λ0, δ0⟩ = idQ and

⟨λn+1, δn+1⟩ : Q × In+1 On × Q × I On+1 × Q
⟨λn,δn⟩×idI idOn ×⟨λ,δ⟩

Whenever it is clear from the context, we use λ and δ also for words.

Definition 2.2 (Equivalence and minimality). The semantics of a state q is
a map JqK : I∗ ⇀ O∗ defined by JqK(σ) = λ(q, σ). States q, q′ in possibly different
Mealy machines are equivalent, written q ≈ q′, iff JqK = Jq′K. Mealy machines M
and N are equivalent iff their respective initial states are equivalent: qM

0 ≈ qN
0 .

Mealy machine M is minimal iff, for all pairs of states q, q′, q ≈ q′ iff q = q′.

In our testing setting, an undefined value in the partial transition map
represents lack of knowledge. We consider maps between Mealy machines that
preserve existing transitions, but possibly extend the knowledge of transitions:

Definition 2.3 (Simulation). For Mealy machines M and N , a functional
simulation f : M → N is a map f : QM → QN with

f(qM
0) = qN

0 and q
i/o−−→ q′ implies f(q) i/o−−→ f(q′).

Intuitively, a functional simulation preserves transitions and the initial state.

A New Perspective on Conformance Testing 5

Lemma 2.4. For a functional simulation f : M → N and q ∈ QM, we have
JqK ⊑ Jf(q)K.

For a given machine M, an observation tree is simply a Mealy machine itself
which represents the inputs and outputs we have observed so far during testing.
Using functional simulations, we define it formally as follows.

Definition 2.5 (Observation tree). A Mealy machine T is a tree iff for each
q ∈ QT there is a unique sequence σ ∈ I∗ s.t. δT (qT

0 , σ) = q. We write access(q)
for the sequence of inputs leading to q. A tree T is an observation tree for a
Mealy machine M iff there is a functional simulation f : T → M.

Figure 2 shows an observation tree for the Mealy machine displayed on the
right. The functional simulation f is indicated via state colors. By performing

t0t0

t1t1

t2t2 t3t3

t5t5

t4t4

q0q0 q1q1

q2q2

f

a/A

b/B b/B

a/
A

a/C

b/B

a/A
b/B

a/A

a/C

b/B

Fig. 2: An observation tree (left) for a Mealy machine (right).

tests, a tester may construct an observation tree T for implementation M. The
observation tree of Figure 2, for instance, may be constructed by performing
tests a, ba, and bba. There is a one-to-one correspondence between observation
trees (up to isomorphism) and finite test suites T that do not contain redundant
prefixes (i.e., if σ, ρ ∈ T with σ a prefix of ρ then we require σ = ρ.)

Suppose T is an observation tree for implementation M. If all tests, as
recorded in the tree, have passed then T is also an observation tree for S.
However, as soon as a test fails then T is no longer an observation tree for S:
there exists no functional simulation from T to S, since the observation tree
contains a state q such that the output in response to input sequence access(q)
is different for S and M.

Even though the tester constructs the observation tree T , they do not know
the functional simulation. However, by analysis of the observation tree, a tester
may infer that certain states in the tree cannot have the same color, that is,
they cannot be mapped to same states of M by a functional simulation. In this
analysis, the concept of apartness, a constructive form of inequality, plays a
crucial role [18,6].

Definition 2.6 (Apartness). For a Mealy machine M, we say that states
q, p ∈ QM are apart (written q # p) iff there is some σ ∈ I∗ such that JqK(σ)↓,

6 F. Vaandrager

JpK(σ)↓, and JqK(σ) ̸= JpK(σ). We say that σ is the witness of q # p and write
σ ⊢ q # p.

Note that the apartness relation # ⊆ Q × Q is irreflexive and symmetric. Within
conformance testing theory, a witness is commonly called separating sequence [17].
For the observation tree of Figure 2 we may derive the following apartness pairs
and corresponding witnesses:

a ⊢ t0 # t3 a ⊢ t2 # t3 b a ⊢ t0 # t2

The apartness of states q # p expresses that there is a conflict in their semantics,
and consequently, apart states can never be identified by a functional simulation:

Lemma 2.7. For a functional simulation f : T → M,

q # p in T =⇒ f(q) ̸≈ f(p) in M for all q, p ∈ QT .

Thus, whenever states are apart in the observation tree T , the learner knows
that these are distinct states in the hidden Mealy machine M.

The apartness relation satisfies a weaker version of co-transitivity, stating
that if σ ⊢ r # r′ and q has the transitions for σ, then q must be apart from at
least one of r and r′, or maybe even both:

Lemma 2.8 (Weak co-transitivity). In every Mealy machine M,

σ ⊢ r # r′ ∧ δ(q, σ)↓ =⇒ r # q ∨ r′ # q for all r, r′, q ∈ QM, σ ∈ I∗.

A tester may use the weak co-transitivity property during testing. For instance
in Fig. 2, by performing the test aba, consisting of the access sequence for t1
concatenated with the witness ba for t0 # t2, co-transitivity ensures that t0 # t1
or t2 # t1. By inspecting the outputs, a tester may conclude that t2 # t1.

3 Main Result

In this section, we describe a sufficient condition for a test suite to be k-complete,
phrased in terms of the corresponding observation tree. This tree should contain
access sequences for each state in the specification, successors for these states for
all possible inputs should be present up to depth k + 1, and certain apartness
relations between states of the tree should hold.

In order to present our condition and the proof of its correctness, we first
need to introduce some auxiliary termininology.

Definition 3.1 (Stratification). Let A ⊆ I∗ be a nonempty, finite, prefix
closed set of input sequences, and let T be an observation tree. Then A induces a
stratification of QT as follows:

A New Perspective on Conformance Testing 7

1. A state q of T is called a basis state iff access(q) ∈ A. We write B to denote
the set of basis states: B = {q ∈ QT | access(q) ∈ A}. Note that, since A is
nonempty and prefix closed, initial state qT

0 is in the basis, and all states on
the path leading to a basis state are basis states as well.

2. We write F 0 for the set of immediate successors of basis states that are not
basis states themselves: F 0 := {q′ ∈ QT \ B | ∃q ∈ B, i ∈ I : q′ = δT (q, i)}.
We refer to F 0 as the 0-level frontier.

3. For k > 0, the k-level frontier F k is the set of immediate successors of
k−1-level frontier states: F k := {q′ ∈ QT | ∃q ∈ F k−1, i ∈ I : q′ = δT (q, i)}.

We say that basis B is complete if for each σ ∈ A there is a state q ∈ B with
δT (qT

0 , σ) = q. The 0-level frontier is complete if for each q ∈ B and for each
i ∈ I, δT (q, i) ↓. For k > 0, the k-level frontier is complete if for each q ∈ F k−1

and for each i ∈ I, δT (q, i) ↓.
For each state q of an observation tree, we define the candidate set C(q) as

the set of basis states that are not apart from q: C(q) = {q′ ∈ B | ¬(q # q′)}. A
state q of an observation tree is identified if its candidate set is a singleton.

Example 3.2. Figure 3 shows the stratification for an observation tree for spec-
ification S from Figure 1 induced by A = {ϵ, a, b}. States from sets B, F 0, F 1

and F 2 are marked with different colors. In Figure 3, B and F 0 are complete,

00

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

F 0

F 1

F 2

B

a/0

b/1

a/1

b/1

a/0

b/1

a/0

a/1

a/0

a/0

a/0

a/1

a/1

a/0

Fig. 3: Stratification of an observation tree induced by A = {ϵ, a, b}.

but F 1 and F 2 are incomplete (since states of F 0 and F 1 have no outgoing
b-transitions). Witness aa shows that the three basis states are pairwise apart,
and therefore identified. The four F 0 states are also identified since C(2) = {0},
C(5) = {8}, C(9) = {0}, and C(12) = {1}. Two states in F 1 are identified since
C(3) = C(10) = {1}, whereas the other two are not since C(6) = C(13) = {0, 8}.

8 F. Vaandrager

Since states in F 2 have no outgoing transitions, they are not apart from any
other state, and thus C(4) = C(7) = C(11) = C(14) = {0, 1, 8}.

In the proof of our main result, we use a bisimulation relation and the well-
known fact that for (deterministic) Mealy machines bisimulation equivalence
coincides with the standard behavioral equivalence for Mealy machines from
Definition 2.2.

Definition 3.3 (Bisimulation). A bisimulation between Mealy machines M
and N is a relation R ⊆ QM × QN satisfying, for all q ∈ QM, r ∈ QN , i ∈ I,
o ∈ O,

qM
0 R qN

0 and q R r ∧ q
i/o−−→ q′ ⇒ ∃r′ : r

i/o−−→ r′ ∧ q′ R r′

We write M ≃ N if there exists a bisimulation relation between M and N .

The next lemma, a variation of the classical result of [13], is easy to prove.

Lemma 3.4. Let M and N be complete Mealy machines. Then M ≃ N iff
M ≈ N .

We are now prepared to state and prove our main result.

Theorem 3.5. Let M and S be complete Mealy machines and let T be an
observation tree for both M and S. Let A ⊆ I∗ be a state cover for S, and let
B, F 0, F 1, . . . be the stratification of QT induced by A. Let k ≥ 0. Suppose that
B and F 0, . . . , F k are all complete, all states in B and F 0, . . . , F k are identified,
and the following co-transitivity property holds

∀r ∈ B ∀t′ ∈ F k ∀t′′ ∈ F 0 ∪ · · · ∪ F k−1 : r # t′ =⇒ r # t′′ ∨ t′ # t′′ (1)

Suppose M has at most k more states than S. Then S ≈ M.

Proof. Let f be a functional simulation from T to S and let g be a functional
simulation from T to M. Define relation R ⊆ QS × QM by

(s, q) ∈ R ⇔ ∃t ∈ B ∪ F 0 ∪ · · · ∪ F k−1 : f(t) = s ∧ g(t) = q.

We claim that R is a bisimulation between S and M.

1. Since f is a functional simulation from T to S, f(qT
0) = qS

0 , and since g is a
functional simulation from T to M, g(qT

0) = qM
0 . Using qT

0 ∈ B, this implies
(qS

0 , qM
0) ∈ R.

2. Suppose (s, q) ∈ R and i ∈ I. Let s′ = δS(s, i) and q′ = δM(q, i). We need to
show that λS(s, i) = λM(q, i) and (s′, q′) ∈ R. Since (s, q) ∈ R, there exists a
t ∈ B ∪ F 0 ∪· · ·∪ F k−1 such that f(t) = s and g(t) = q. Since F 0, . . . , F k are
all complete, δT (t, i) ↓. Since f and g are functional simulations, λT (t, i) =
λS(s, i) and λT (t, i) = λM(q, i). This implies λS(s, i) = λM(q, i), as required.
Let t′ = δT (t, i). Since f and g are functional simulations, f(t′) = s′ and
g(t′) = q′. In order to prove (s′, q′) ∈ R, we consider two cases:

A New Perspective on Conformance Testing 9

(a) t′ ∈ B ∪ F 0 ∪ · · · ∪ F k−1. In this case, since f(t′) = s′ and g(t′) = q′,
(s′, q′) ∈ R follows directly from the definition of R.

(b) t′ ∈ F k. We first show that basis B has the same number of states as S.
Since all states from basis B are identified, and since the apartness
relation is irreflexive, all basis states are pairwise apart. Let q and q′ be
two distinct states in B. Since q # q′, we may conclude by Lemma 2.7
that f(q) ̸≈ f(q′). Thus in particular f(q) ̸= f(q′) and so f restricted to
B is injective.
Let u be a state of S. Since A is a state cover for S, there exists a σ ∈ A
with δS(qS

0 , σ) = u. Since basis B is complete, there exists a state v ∈ B
with δT (qT

0 , σ) = v. Using that f is a functional simulation, we can show
by induction on the length of σ that f(v) = u. Thus f restricted to B is
surjective.
This implies that f restricted to B is a bijection between B and QS ,
which proves B has the same number of states as S.
With the same argument that we used to prove that f restricted to B
is injective, we may also show that g restricted to B is injective. Thus
g(B) contains exactly |QS | states. Now either g(B ∪ F 0) contains the
same number of states as g(B), which implies that M contains |QS |
states, or g(B ∪ F 0) contains at least one extra state. In the latter case
we may continue: either g(B ∪ F 0 ∪ F 1) contains the same number of
states as g(B ∪ F 0), which implies that we have seen all states of M, or
g(B ∪ F 0 ∪ F 1) contains at least one extra state. Etc. Since M has at
most k more states than S, we may conclude that g(B ∪ F 0 ∪ · · · ∪ F k−1)
contains all states of M.
This means that B ∪ F 0 ∪ · · · ∪ F k−1 contains a state t′′ such that
g(t′′) = q′. We claim that t′ and t′′ have the same candidate set. The
proof is by contradiction. Assume C(t′) ̸= C(t′′). We consider two cases:

i. t′′ ∈ B. Then C(t′′) = {t′′} and t′′ ̸∈ C(t′). Hence t′ # t′′. But now
Lemma 2.7 gives g(t′) ̸= g(t′′). This is a contradiction, and therefore
C(t′) = C(t′′).

ii. t′′ ∈ F 0 ∪ · · · ∪ F k−1. Let C(t′′) = {r}. Then r # t′ and ¬(r # t′′).
Therefore, by the co-transitivity assumption (1), t′ # t′′. But now
Lemma 2.7 gives g(t′) ̸= g(t′′). This is a contradiction, and therefore
C(t′) = C(t′′).

We claim that for any state u ∈ B ∪ F 0 ∪ · · · ∪ F k−1, C(u) = {r}
implies f(u) = f(r). The proof of the claim is by contradiction. Assume
f(u) = v′ ̸= v = f(r). Since f restricted to B is a bijection, there exists
an r′ ∈ B with r ̸= r′ and f(r′) = v′. Then u # r′. Let σ be a witness. By
definition of apartness λT (u, σ) ̸= λT (r′, σ). But since f is a functional
simulation and f(r′) = v′ = f(u′), λT (u, σ) = λS(v′, σ) = λT (r′, σ).
Contradiction and therefore the claim follows.
The above claim implies that f(t′′) = s′. This in turn implies that
(s′, q′) ∈ R, which completes the proof that R is bisimulation.

The theorem now follows by application of Lemma 3.4.

10 F. Vaandrager

Remark 3.6. The assumption that A is a state cover for S implies that S is con-
nected, that is, all states are reachable from the initial state. The assumptions that
B is complete and all states in B are identified, in combination with Lemma 2.7,
imply that S is minimal. Connectedness and minimality of specifications are
common assumptions in conformance testing.
Example 3.7. A simple example of the application of Theorem 3.5, is provided
by the observation tree from Figure 3 for the specification S from Figure 1.
This observation tree corresponds to a test suite T of 4 tests that is generated
by the W -method for k = 0, as described in the introduction. Note that the
co-transitivity property vacuously holds when k = 0. All other conditions of the
theorem are also met: both B and F 0 are complete and all states in B and F 0

are identified. Therefore, according to our theorem, test suite T is 0-complete. We
may slightly optimize the test suite by removing state 14 from the observation
tree (i.e., replacing test bbaa by test bba), since all conditions of the theorem are
still met for the reduced tree.
Example 3.8. Probably the most interesting condition in Theorem 3.5 is the
co-transitivity requirement. The Mealy machines S and M of Figure 4 illustrate
why we need it. Note that these machines are not equivalent: input sequence

q0q0 q1q1

q2q2

q0q0 q1q1

q2q2

q3q3

r/0

l/0

l/1

r/0

r/1

l/0
l/0

r/0

l/1

r/0

r/1

l/0

l/0
r/0

Fig. 4: A specification S (left) and a faulty implementation M (right).

rrrlll distinguishes them. Mealy machine M has one more state than S, so k = 1.
The extra state q3 of M behaves similar as state q0 of S, but is not equivalent.
Figure 5 shows an observation tree T for both S and M. One way to think of T
is that M cherry picks distinguishing sequences from S to ensure that the F 1

states are identified by a sequence for which S and M agree. Note that B, F 0

and F 1 are all complete, and all states in B, F 0 and F 1 are identified. However,
the tree does not satisfy the co-transitivity condition as t13 # t0, but neither
t0 # t6 nor t13 # t6.
Example 3.9. In 2012, Arjan Blom, then a student at Radboud University, per-
formed a security analysis of the E.dentifier2 system of the ABN AMRO bank, in

A New Perspective on Conformance Testing 11

t0t0 t1t1 t2t2

t3t3 t4t4 t5t5 t6t6

t7t7

t8t8

t9t9

t10t10

t11t11

t12t12

t13t13

t14t14

t15t15

t16t16

t17t17

t18t18

t19t19

t20t20

t21t21

t22t22

t23t23

t24t24

t25t25

t26t26

t27t27

t28t28

t29t29

t30t30

r/0

l/0

r/0

l/1
r/1

l/0

l/0
r/1

l/0
r/0

l/1
r/0

l/0
r/0

r/0

r/1

r/0

r/0

r/1

r/0

r/0

r/1

r/0

r/0

r/1

r/0

l/0

r/0

r/0

r/1

Fig. 5: Observation tree for FSMs S and M from Figure 4.

which customers use a USB-connected device – a smartcard reader with a display
and numeric keyboard – to authorise transactions with their bank card and PIN
code. He found a security vulnerability in the E.dentifier2 that was so serious
that he even made it to the evening news on Dutch national TV. He did not use
systematic testing techniques to find the vulnerability, but Chalupar et al. [1]
used model learning to reverse engineer models of the E.dentifier2, demonstrating
that this technique could have easily revealed the security problem.

Figure 6 shows the FSM S that specifies the required behavior of the
E.dentifier2. There are three states {q0, q1, q2}, five inputs {C, D, G, R, S} and
four outputs {C, L, T, OK}. We use commas to indicate multiple transitions. For
instance, in S there is both a transition q1

C/OK−−−−→ q1 and a transition q1
R/T−−−→ q1.

We refer to Chalupar et al. [1] for a detailled explanation of the model. Note
that A = {ϵ, C, CD} is an access sequence set for S, and sequence DR is a
separating sequence for all pairs of states. Therefore, according to the W -method,
the following test suite, which comprises 18 tests, is 0-complete:1

T = {DR, CDR, CDDR,

CDR, DDR, GDR, RDR, SDR,

CCDR, CDDR, CGDR, CRDR, CSDR,

CDCDR, CDDDR, CDGDR, CDRDR, CDSDR}

1 Test CDGDR reveals the problem with the faulty implementation of the E.dentifier2
that was discovered by Arjan Blom.

12 F. Vaandrager

q0

q1

q2

D/L, G/L, R/T, S/L

C/OK G/C

C/OK, R/T

D/T, S/OK C/OK, R/OK

D/L, G/L, S/L

Fig. 6: FSM S that specifies the required behavior of the E.dentifier2.

Since we can safely omit redundant prefixes, we omit the three blue tests CDR,
CDDR and CDR. We claim that if we also omit the two green tests DR
and CDDDR, the resulting test suite T ′ with 13 tests is still 0-complete. The
argument is a bit subtle. Clearly, the three basis states are pairwise apart, using
witnesses D and R. We know the response to distinguishing sequence DR for
basis states t1 (T OK) and t2 (L OK), but not for initial state t0 (as we decided
to omit test DR). However, through test DDR, we know that in state 1 inputs
DR trigger outputs LT . Under the assumption that M has three states, state
1 must be equivalent to either state t0, t1 or t2. Therefore, the outcome of test
DR in the initial state must be LT ! Once we extend the observation tree with
the inferred outcome of test DR, all F 0 states are easily identified. Since the
basis and F 0 are complete, we may apply Theorem 3.5 to conclude that T ′ is
0-complete. Clearly, we cannot omit any other test, since then at least one F 0

state would no longer be visited, and M would no longer be uniquely determined.

Remark 3.10. Suppose observation tree T has N states. Then we can check in
O(N2) time for each pair of states of T whether they are apart or not. Using this
information, we can check in O(N2) time whether the conditions of Theorem 3.5
hold. This means that we can also check in O(N2) time whether a test can be
removed without compromising k-completeness. Note, however, that the size N
of T grows exponentially in k.

4 Deriving Previous k-Completeness Results

The k-completeness of the W -method of Vasilevskii [20] and Chow [3] is a corollary
of Theorem 3.5.

Corollary 4.1. Let S be a minimal specification, let k be any natural number,
let A be a state cover for S, and let W be a characterization set for S. Then the
test suite T = A · I≤k+1 · W is k-complete for S.

A New Perspective on Conformance Testing 13

t0t0

2211t1t1 33 44

t2t255 66 77 88

99 1010 t3t3 1212 1313

1111

C/OK D/L G/L
R/T S/L

D/TC/OK G/C R/T
S/OK

R/OK C/OK D/L G/L
S/L

R/OK

Fig. 7: Observation tree for test suite T ′ (for readability, we omitted the distin-
guishing sequence DR from the leaves in F 0)

Proof. Consider the observation tree T for S obtained by running all tests from T .
Let B, F 0, F 1, . . . be the stratification of QT induced by A. Let ρ be an element
from W . We check that the following assumptions of Theorem 3.5 hold:

1. Basis B is complete: Assume σ ∈ A. Then σρ ∈ T . Since T is constructed
by running all tests from T , this implies that T contains a state q that is
reached by input sequence σ. By definition, q ∈ B.

2. Frontier F 0 is complete: Suppose q ∈ B and i ∈ I. Since q is a basis state, q
is reached by a sequence σ ∈ A. Since σ i ρ ∈ T , δT (q, i) ↓.

3. For each 0 < j ≤ k, frontier F j is complete: Suppose q ∈ F j−1 and i ∈ I.
By induction, we may show that there exists a basis state r and a sequence
τ ∈ Ij such that q is reached from r via input sequence τ . Let σ be the access
sequence for state r. Then σ · τ · i · ρ ∈ T . This implies δT (q, i) ↓, as required.

4. All states in B and F 0, . . . , F k are identified: Suppose q ∈ B ∪ F 0 ∪ · · · ∪ F k.
Then by construction of T , for each ρ ∈ W , δT (q, ρ) ↓. Now suppose r and
r′ are two distinct states in B. Then, since W is a characterization set for S,
T is an observation tree for S, A is a state cover for S, and B, F 0, F 1, . . . is
the stratification induced by A, there exists a ρ ∈ W such that ρ ⊢ r # r′.
Therefore, by the weak co-transitivity Lemma 2.8, either q # r or q # r′.
Since r and r′ were chosen arbitrarily, this implies that state q is identified.

14 F. Vaandrager

5. Co-transitivity: Suppose r ∈ B, t′ ∈ F k, t′′ ∈ F 0 ∪ · · · ∪ F k−1 and r # t′.
By the previous item, state t′ is identified, that is, there exists a r′ such
that C(t′) = r′. Since r # t′, we know that r ̸= r′. Therefore, repeating
the argument from the previous item, there exists a ρ ∈ W such that
ρ ⊢ r # r′. By construction of T , for each τ ∈ W , δT (t′, τ) ↓ and δT (t′′, τ) ↓.
Therefore, by weak co-transitivity and because C(t′) = r′, ρ ⊢ r # t′., Another
application of weak co-transitivity now gives ρ ⊢ r # t′′ or ρ ⊢ t′ # t′′.

In order to prove that test suite T is k-complete, let M be a Mealy machine with
at most k more states than S. We show that M passes T if and only if M ≈ S:

1. Assume M ≈ S. Then M and S return the same result for each test. By
definition, M passes a test σ if the resulting outputs are the same as for S.
Therefore, M passes all tests in T .

2. Assume M passes T . Then T is an observation tree for M. Thus all conditions
of Theorem 3.5 hold, and we may conclude that M ≈ S.

Via similar arguments, k-completeness of the Wp-method of Fujiwara et al
[5] and of the HSI-method of Luo et al [10] and Petrenko et al [14] also follows
from our Theorem 3.5. The UIOv-method of Chan et al [2] is an instance of the
Wp-method, and the ADS-method of Lee and Yannakakis [8] and the hybrid
ADS method of Smeenk et al [16] are instances of the HSI-method. This means
that, indirectly, k-completeness of these testing methods follows as well. The
SPY-method of Simao, Petrenko and Yevtushenko [15] changes the prefixes in the
HSO-method in order to minimize the size of a test suite, exploiting overlap in
test sequences. Following [11], we believe the SPY-method should be considered
as an optimization technique, orthogonal to the results of this article.

5 Conclusions and Future Work

We provided a sufficient condition for k-completeness in terms of apartness of
states of the observation/prefix tree induced by a test suite. Our condition can
be checked efficiently (in terms of the size of the test suite) and can be used to
prove k-completeness of several methods for test suite generation that have been
proposed in the literature.

Our characterization of k-completeness in terms of apartness triggers several
questions. For instance:

1. Closest to our work is probably the result of Moerman [11, Proposition 2,
Chapter 2], which provides sufficient conditions for a test suite of a certain
shape to be k-complete. It would be interesting to see if this result of [11]
follows from our result.

2. An intriguing question is whether it is possible to strengthen our result, that
is, if weaker conditions exist that are still sufficient for k-completeness. An
exciting perspective would be to come up with conditions that are not only
sufficient but also necessary for k-completeness.

A New Perspective on Conformance Testing 15

3. Our result suggest simple progress measures for performing a k-complete test
suite, namely the sum of the number of elements of B ∪ F 0 ∪ · · · ∪ F k and
the number of established apartness pairs required for state identification
and co-transitivity. This progress measure in a way quantifies our uncertainty
about the correctness of the implementation. A natural question then is
to search for test queries that lead to a maximal increase of the progress
measure. In order to reduce our uncertainty as fast as possible and/or to find
bugs as quickly as possible, it makes sense to give priority to these tests.

4. It will be interesting to explore if our characterization can be used to develop
efficient test suite generation algorithms, or efficient algorithms for pruning
test suites that have been generated by other methods. Of course, scalability
may become an issue: for large specifications, large input alphabets and large
values of k it may no longer be feasible to store the full observation tree
in main memory. However, for many practical benchmarks (see e.g. [12]) it
should not be a problem to handle the observation trees for k-complete test
suites for k = 2 or k = 3.

Acknowledgements. Many thanks to Joshua Moerman, Jurriaan Rot and the
anonymous reviewers for their feedback on an earlier version of this article.

References

1. Chalupar, G., Peherstorfer, S., Poll, E., de Ruiter, J.: Automated reverse engineering
using Lego. In: Proceedings 8th USENIX Workshop on Offensive Technologies
(WOOT’14), San Diego, California. IEEE Computer Society, Los Alamitos, CA,
USA (Aug 2014)

2. Chan, W.Y.L., Vuong, C.T., Otp, M.R.: An improved protocol test generation
procedure based on uios. p. 283–294. SIGCOMM ’89, Association for Computing
Machinery, New York, NY, USA (1989), https://doi.org/10.1145/75246.75274

3. Chow, T.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3), 178–187 (1978)

4. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., Yevtushenko, N.: Fsm-based
conformance testing methods: A survey annotated with experimental evaluation.
Information & Software Technology 52(12), 1286–1297 (2010). https://doi.org/10.
1016/j.infsof.2010.07.001

5. Fujiwara, S., v. Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Software Eng. 17(6), 591–603
(1991)

6. Geuvers, H., Jacobs, B.: Relating apartness and bisimulation. Logical Methods
in Computer Science Volume 17, Issue 3 (Jul 2021). https://doi.org/10.46298/
lmcs-17(3:15)2021

7. Heyting, A.: Zur intuitionistischen Axiomatik der projektiven Geometrie. Mathe-
matische Annalen 98, 491–538 (1927)

8. Lee, D., Yannakakis, M.: Testing finite-state machines: State identification and
verification. IEEE Trans. Comput. 43(3), 306–320 (1994)

9. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines —
a survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)

https://doi.org/10.1145/75246.75274
https://doi.org/10.1016/j.infsof.2010.07.001
https://doi.org/10.1016/j.infsof.2010.07.001
https://doi.org/10.1016/j.infsof.2010.07.001
https://doi.org/10.1016/j.infsof.2010.07.001
https://doi.org/10.46298/lmcs-17(3:15)2021
https://doi.org/10.46298/lmcs-17(3:15)2021
https://doi.org/10.46298/lmcs-17(3:15)2021
https://doi.org/10.46298/lmcs-17(3:15)2021

16 F. Vaandrager

10. Luo, G., Petrenko, A., v. Bochmann, G.: Selecting test sequences for partially-
specified nondeterministic finite state machines. In: Mizuno, T., Higashino, T.,
Shiratori, N. (eds.) Protocol Test Systems: 7th workshop 7th IFIP WG 6.1 interna-
tional workshop on protocol text systems. pp. 95–110. Springer US, Boston, MA
(1995), https://doi.org/10.1007/978-0-387-34883-4_6

11. Moerman, J.: Nominal Techniques and Black Box Testing for Automata Learning.
Ph.D. thesis, Radboud University Nijmegen (Jul 2019)

12. Neider, D., Smetsers, R., Vaandrager, F.W., Kuppens, H.: Benchmarks for automata
learning and conformance testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.)
Models, Mindsets, Meta: The What, the How, and the Why Not? Lecture Notes in
Computer Science, vol. 11200, pp. 390–416. Springer (2018)

13. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
5th GI Conference. Lecture Notes in Computer Science, vol. 104, pp. 167–183.
Springer-Verlag (1981)

14. Petrenko, A., Yevtushenko, N., Lebedev, A., Das, A.: Nondeterministic state
machines in protocol conformance testing. In: Rafiq, O. (ed.) Protocol Test Systems,
VI, Proceedings of the IFIP TC6/WG6.1 Sixth International Workshop on Protocol
Test systems, Pau, France, 28-30 September, 1993. IFIP Transactions, vol. C-19,
pp. 363–378. North-Holland (1993)

15. da Silva Simão, A., Petrenko, A., Yevtushenko, N.: On reducing test length for
fsms with extra states. Softw. Test. Verification Reliab. 22(6), 435–454 (2012).
https://doi.org/10.1002/STVR.452

16. Smeenk, W., Moerman, J., Vaandrager, F.W., Jansen, D.N.: Applying automata
learning to embedded control software. In: Butler, M.J., Conchon, S., Zaïdi, F.
(eds.) Formal Methods and Software Engineering - 17th International Conference
on Formal Engineering Methods, ICFEM 2015, France, 2015, Proceedings. Lecture
Notes in Computer Science, vol. 9407, pp. 67–83. Springer (2015). https://doi.org/
10.1007/978-3-319-25423-4_5

17. Smetsers, R., Moerman, J., Jansen, D.N.: Minimal separating sequences for all pairs
of states. In: Dediu, A., Janousek, J., Martín-Vide, C., Truthe, B. (eds.) Language
and Automata Theory and Applications - 10th International Conference, LATA
2016, Proceedings. Lecture Notes in Computer Science, vol. 9618, pp. 181–193.
Springer (2016). https://doi.org/10.1007/978-3-319-30000-9_14

18. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 2 edn. (2000). https:
//doi.org/10.1017/CBO9781139168717

19. Vaandrager, F.W., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active
automata learning based on apartness. In: Fisman, D., Rosu, G. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 13243, pp. 223–243. Springer (2022),
https://doi.org/10.1007/978-3-030-99524-9_12

20. Vasilevskii, M.: Failure diagnosis of automata. Cybernetics and System Analysis 9(4),
653–665 (1973). https://doi.org/https://doi.org/10.1007/BF01068590, (Translated
from Kibernetika, No. 4, pp. 98-108, July-August, 1973.)

21. Weyuker, E.J.: Assessing test data adequacy through program inference. ACM Trans.
Program. Lang. Syst. 5(4), 641–655 (1983), https://doi.org/10.1145/69575.357231

https://doi.org/10.1007/978-0-387-34883-4_6
https://doi.org/10.1002/STVR.452
https://doi.org/10.1002/STVR.452
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-30000-9_14
https://doi.org/10.1007/978-3-319-30000-9_14
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/https://doi.org/10.1007/BF01068590
https://doi.org/https://doi.org/10.1007/BF01068590
https://doi.org/10.1145/69575.357231

	A New Perspective on Conformance Testing Based on Apartness
	Introduction
	Partial Mealy Machines and Apartness
	Main Result
	Deriving Previous k-Completeness Results
	Conclusions and Future Work

