
Compositional Abstraction in
Real-Time Model Checking?

Jasper Berendsen and Frits Vaandrager

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
{J.Berendsen, F.Vaandrager}@cs.ru.nl

Abstract. The idea to use simulations (or refinements) as a composi-
tional abstraction device is well-known, both in untimed and timed set-
tings, and has already been studied theoretically and practically in many
papers during the last three decades. Nevertheless, existing approaches
do not handle two fundamental modeling concepts which, for instance,
are frequently used in the popular Uppaal model checker: (1) a parallel
composition operator that supports communication via shared variables
as well as synchronization of actions, and (2) committed locations. In
this paper, we describe a framework for compositional abstraction based
on simulation relations that does support both concepts, and that is
suitable for Uppaal. Our approach is very general and the only essential
restriction is that the guards of input transitions do not depend on ex-
ternal variables. We have applied our compositional framework to verify
the Zeroconf protocol for an arbitrary number of hosts.

1 Introduction

In this paper, we describe a framework for compositional abstraction based on
simulation relations that is suitable for the Uppaal model checker [4]. The
idea to use simulations (or refinements) as a compositional abstraction device
is well-known, both in untimed and timed settings, and has already been stud-
ied theoretically and practically in many papers during the last three decades,
see for instance [28,23,19,26,22,20,1,27,16,17,14,12,21]. Nevertheless, when we
attempted to apply these existing approaches to fight state space explosions in
a model of an industrial protocol [13], we ran into the problem that these ap-
proaches do not handle two fundamental modeling concepts that are frequently
used in Uppaal.

The first concept is a parallel composition operator that supports commu-
nication via both shared variables and synchronization of actions. Models for
reactive systems typically either support communication via shared variables
(TLA [24], Reactive Modules [3], etc), or communication via synchronization of
actions (CCS [29], I/O automata [26], etc). We are only aware of two studies of
compositionality in which the two types of communication are combined [25,17].

? Research supported by NWO/EW project 612.000.103 Fault-tolerant Real-time Al-
gorithms Analyzed Incrementally (FRAAI) and DFG/NWO bilateral cooperation
project Validation of Stochastic Systems (VOSS2).

It is well known that both types of communication can be defined in terms of
each other. A shared variable can be modeled as a separate process/automaton
that communicates with its environment via read/write synchronization actions.
However, in this approach the evaluation of, for instance, an integer expression
may involve a sequence of interactions with shared variable automata. This blows
up the state space and makes it more difficult to understand the model. Con-
versely, synchronization of actions can be modeled in a shared variable setting
using some auxiliary flag variables and handshake transitions of the synchroniz-
ing automata. But again this blows up the state space and makes it harder to
understand the model. The Uppaal model checker supports both shared vari-
ables and synchronization of actions, and this feature is extremely helpful for
building tractable models of complex systems.

When combining shared variables and synchronization of actions, one has to
deal with the scenario, illustrated in Figure 1, in which the transitions involved
in a synchronization assign different values to a shared variable. One simple

c?

v := v+2

c!

v := 1

Fig. 1. Combining shared variables and synchronization of actions

(but restrictive) approach, pursued in [25], is to impose syntactic conditions
which ensure that the scenario does not occur: for each shared variable only
one automaton gets write permission, and the other automata may read the
variable but not assign a new value to it. A slightly more general approach is
taken in [17], where the variables of each automaton are classified as readable
and/or writable. Two automata may share writable variables, but in this case
a synchronizing transition may only occur if both automata assign the same
values to these variables. In practice, this means that multi-writer variables can
only be updated via internal (non-synchronizing) transitions. In our opinion, the
approach of [17] is basically flawed since parallel composition is not associative
[6]; as a result a connection with the standard Uppaal semantics cannot be
established.

In this paper, we present a very general approach that is also consistent with
actual the treatment of synchronization in Uppaal. Uppaal deals with the
situation of Figure 1 by first performing the assignment on the output transition
c!, followed by the assignment on the input transition c?. This means that after
occurrence of the synchronization transition v will have the value 3. Following
Uppaal, we describe synchronization of automata by a rule of the form

r
c!−→ r′ s[r′] c?−→ s′

r‖s τ−→ r′[s′]‖s′
(1)

2

Here s[r′] denotes state s but with the shared variables updated according to r′,
and r′[s′] denotes state r′ but with the shared variables updated according to s′.
In Uppaal, a synchronization may only occur if the guards of both transitions
hold, and only if this is the case the assignments are carried out. This means that
if we add a guard v 6= 1 to the rightmost transition in Figure 1, synchronization
will be possible starting from any state satisfying this predicate. In a semantics
with rule (1), however, synchronization will no longer be possible since after the
assignment on the output transitions has been performed, the guard of the input
transition no longer holds1. In order to rule out this scenario (which we have
never observed in practical applications), our approach imposes the restriction
that guards of input transitions do not refer to external (shared) variables.

The second modeling concept, which is not handled by any existing frame-
work but needed for industrial applications, is the notion of a committed location.
In Uppaal, locations of a timed automata can be designated as committed. If one
automaton in a network of automata is in a committed location, time may not
progress and the next transition (if any) has to start from a committed location.
Committedness is useful to specify that certain transitions need to be executed
atomically without intervening transitions from other components. Also, exclud-
ing certain behavior with committed locations may lead to serious reductions in
the state space of a model [7]. In this paper, we present a compositional se-
mantics for committedness. This is achieved by distinguishing, at the semantic
level, between committed and uncommitted transitions. Our rules for describing
committed locations involve negative antecedents and are similar to the rules
that have been proposed in the process algebra literature to describe priorities
[9,11,30,2]: a component may only perform a uncommitted τ -transition if other
components may not perform a committed transition. Although there are some
subtle differences at the technical level, basically our results show that one may
view committedness as a form of priority.

We define the semantics of timed automata in terms of timed transition sys-
tems (TTSs). These are labeled transition systems (LTSs) equipped with a bit
of additional structure to capture relevant information about state variables,
committedness of transitions, and real-time behavior. On TTSs we define the
operations of parallel composition and a CCS style restriction operator. An im-
portant sanity check for our definitions is that, for any network of timed au-
tomata, the (noncompositional) Uppaal semantics (as defined in the Uppaal
4.0 help menu) is isomorphic to the (compositional) semantics obtained by as-
sociating TTSs to the timed automata in the network, composing these TTSs
in parallel, applying a restriction operator, and then considering the underlying
LTS. That is, if N = 〈A1, . . . ,An〉 is a network of timed automata then

LTS(N) ∼= LTS((TTS(A1)‖ · · · ‖TTS(An))\C).

A key lemma needed to prove this result is associativity of parallel composition.

1 Adding an antecedent s
c?−→ does not solve this problem in the general case with

nondeterminism.

3

We define an abstraction relation on TTSs in terms of timed step simulations.
These induce a behavioral preorder � that is somewhere in between strong and
weak simulation. If T1 � T2, then T2 can either mimic the transitions of T1

or (in case of an internal transition) do nothing, but it may not add internal
transitions that are not present in T1. We establish that T1 � T2 implies T1‖T3 �
T2‖T3. We briefly summarize the use of our compositional framework in the
verification of the Zeroconf protocol for an arbitrary number of hosts [5]. Without
our techniques, Uppaal can only verify instances with three hosts.

Section 2 introduces timed transition systems. In Section 3, we define timed
step simulations and establish that the induced preorder is compositional. Sec-
tion 4 presents networks of timed automata and defines their semantics both non-
compositionally (as in Uppaal) and compositionally in terms of TTSs. Also, the
consistency of the two semantic definitions is established and we briefly discuss
the application of our framework. Finally, Section 5 discusses some extensions
and future research. An appendix summarizes some of the notational conventions
used in the paper.

2 Timed Transition Systems

In this section, we introduce the semantic model of timed transitions systems
(TTSs). Basically, a TTS is a labeled transition system equipped with a bit of ad-
ditional structure to support shared variables and committed transitions: states
are defined as valuations of variables, and transitions may be committed, which
gives them a certain priority in a parallel composition. TTSs can be placed in
parallel and may communicate by means of shared variables and synchronization
of actions. Like in CCS [29], two transitions may synchronize when their actions
are complementary, leading to an internal transition in the composition.

Just to fix notation, we first recall the definition of a labeled transition system
in Section 2.1. Since we consider systems that communicate via shared variables,
we find it convenient to model states as functions that map state variables to val-
ues in their domain. Section 2.2 introduces a basic vocabulary for overriding and
updating of functions that we need to describe shared variable communication.
After these preliminaries, Section 2.3 presents the definition of a timed transi-
tion system. Next, Section 2.4 defines the operations of parallel composition and
restriction, and establishes some key properties of these operations, in particular
associativity of parallel composition. Finally, Section 2.5 discusses in some more
detail why in our approach committedness is an attribute of transitions rather
than states.

Throughout this paper, we write R≥0 for the set of nonnegative real numbers,
N for the set of natural numbers, and B = {1, 0} for the set of Booleans. We let
d range over R≥0, i, j, k, n over N, and b, b′, . . . over B.

2.1 Labeled Transition Systems

We consider labeled transition systems with several types of state transitions,
corresponding to different sets of actions. We assume a set C of channels and

4

let c range over C. The set of external actions is defined as E , {c!, c? | c ∈ C}.
Actions of the form c! are called output actions and actions of the form c? are
called input actions. We let e range over E . We assume the existence of a special
internal action τ , and write Eτ for E ∪ {τ}, the set of discrete actions. We let
α range over Eτ . Finally, we assume a set of durations or time-passage actions,
which in this paper are just the nonnegative real numbers in R≥0. We write Act
for Eτ ∪ R≥0, the set of actions, and let a, a′, . . . range over Act .

The following definition is standard, except maybe for our specific choice of
a universe of transition labels.

Definition 1 (LTS). A labeled transition system (LTS) is a tuple

L = 〈S, s0,−→〉,

where S is a set of states, s0 ∈ S is the initial state, and −→⊆ S × Act × S is
the transition relation. We let q, r, s, t . . . range over states, and write s

a−→ t if
(s, a, t) ∈−→. We refer to s as the source of the transition, and to t as the target.
We say that an a-transition is enabled in s, notation s

a−→, whenever s
a−→ t, for

some t. A state s is reachable iff there exist states s1, . . . sn such that s1 = s0,
sn = s and, for all i < n there exists an a s.t. si

a−→ si+1.

2.2 Notations for Functions

We write dom(f) to denote the domain of a function f . If also X is a set,
then we write f dX for the restriction of f to X, that is, the function g with
dom(g) = dom(f)∩X such that g(z) = f(z) for each z ∈ dom(g). For functions
f and g, we let f B g denote the left-merge, the combined function where f
overrides g for all elements in the intersection of their domains.2 Formally, we
define f B g to be the function with dom(f B g) = dom(f) ∪ dom(g) satisfying,
for all z ∈ dom(f B g),

(f B g)(z) ,

{
f(z) if z ∈ dom(f)
g(z) if z ∈ dom(g)− dom(f)

We define the dual right-merge operator by f Cg , gBf . Two functions f and g
are compatible, notation f♥g, if they agree on the intersection of their domains,
that is, f(z) = g(z) for all z ∈ dom(f)∩dom(g). For compatible functions f and
g, we define their merge by f‖g , f B g. Whenever we write f‖g, we implicitly
assume f♥g. We write f [g] for the update of function f according to g, that is,
f [g] , (f C g) d dom(f).

The following elementary properties of B, ‖, .[.] and ♥ are used frequently
in proofs.

2 Essentially, this is the overriding operator “⊕” from Z [32]. On finite domains, the
operator is also defined in VDM[18], where it is written †. We prefer not to use a
symmetric symbol for an asymmetric (non commutative) operator.

5

Lemma 1. For all functions f , g and h,

(f B g) B h = f B (g B h) (2)
f♥g ⇔ g♥f (3)
f‖g = g‖f (4)

f♥g ∧ (f‖g)♥h ⇔ f♥g ∧ f♥h ∧ g♥h (5)
f‖(g‖h) = (f‖g)‖h (6)

f♥g ⇔ f = f [g] (7)
f ♥ g[f] (8)

f B g = f‖g[f] (9)
f♥g ⇒ f [h]♥g[h] (10)

(f B g)[h] = f [h] B g[h] (11)
f [g][h] = f [h B g] (12)

Proof. The proofs are straightforward from the definitions. Here we only prove
(2), the associativity of B. The other proofs are easier and left to the reader.
Write X = dom(f), Y = dom(g) and Z = dom(h). For arbitrary z ∈ X ∪Y ∪Z:

((f B g) B h)(z) =

{
(f B g)(z) if z ∈ X ∪ Y

h(x) if z ∈ Z − (X ∪ Y)

=


f(z) if z ∈ X

g(z) if z ∈ Y −X

h(z) if z ∈ Z − (X ∪ Y)
(13)

(f B (g B h))(z) =

{
f(z) if z ∈ X

(g B h)(z) if z ∈ (Y ∪ Z)−X

=


f(z) if z ∈ X

g(z) if z ∈ ((Y ∪ Z)−X) ∩ Y

h(z) if z ∈ ((Y ∪ Z)−X) ∩ (Z − Y)
(14)

Now observe that (13) and (14) are equivalent since, by elementary set theory,

((Y ∪ Z)−X) ∩ Y = (Y ∪ Z) ∩X ∩ Y

= (Y ∪ Z) ∩ Y ∩X = Y ∩X = Y −X,

((Y ∪ Z)−X) ∩ (Z − Y) = (Y ∪ Z) ∩X ∩ Z ∩ Y

= (Y ∪ Z) ∩ Z ∩X ∩ Y

= Z ∩ (X ∪ Y) = Z − (X ∪ Y). ut
2.3 Timed Transition Systems

We assume a universal set V of typed variables, with a subset X ⊆ V of clock
variables or clocks. Clocks have domain R≥0. We let y range over V and x over

6

X . A valuation for a set V ⊆ V is a function that maps each variable in V to an
element in its domain. We let u, v, w, . . . range over valuations, and write Val(V)
for the set of valuations for V . For valuation v ∈ Val(V) and duration d ∈ R≥0,
we define v⊕d to be the valuation for V that increments clocks by d, and leaves
the other variables untouched, that is, for all y ∈ V ,

(v ⊕ d)(y) ,

{
v(y) + d if y ∈ X
v(y) otherwise

A subset P ⊆ Val(V) of valuations is called a property over V . Let W ⊇ V and
v ∈ Val(W). We say that P holds in v, notation v |= P , if vdV ∈ P . A property
P over V is left-closed w.r.t. time-passage if, for all v ∈ Val(V) and d ∈ R≥0,
v ⊕ d |= P ⇒ v |= P . We say that property P over V does not depend on a set
of variables W ⊆ V if, for all v ∈ Val(V) and u ∈ Val(W), v |= P ⇔ v[u] |= P .
We write {y1 7→z1, . . . , yn 7→zn} for the valuation that assigns value zi to variable
yi, for i = 1, . . . , n.

The state variables of a TTS are partitioned into external and internal vari-
ables. Internal variables may only be updated by the TTS itself and not by its
environment. This in contrast to external variables, which may be updated by
both the TTS and its environment. A new element in our definition of a TTS is
that transitions are classified as either committed or uncommitted. Committed
transitions have priority over time-passage transitions and over internal transi-
tions that are not committed. Interestingly, whereas in Uppaal committedness
is an attribute of locations, it must be treated as an attribute of transitions in
order to obtain a compositional semantics. This issue will be further discussed
in Section 2.5.

We are now ready to formally define our notion of a timed transition system.

Definition 2 (TTS). A timed transition system (TTS) is a tuple

T = 〈E,H, S, s0,−→1,−→0〉,

where E,H ⊆ V are disjoint sets of external and internal variables, respectively,
V = E ∪H, S ⊆ Val(V), and 〈S, s0,Act ,−→1 ∪ −→0〉 is an LTS.

We write r
a,b−−→ s if (r, a, s) ∈−→b. The value b determines whether or not a

transition is committed. We often omit b when it equals 0. We write LTS(T) to
denote the underlying LTS of T .

We require the following axioms to hold, for all s, t ∈ S, a, a′ ∈ Act, b ∈ B,
d ∈ R≥0 and u ∈ Val(E),

s
a,1−−→ ∧s

a′,b−−→ ⇒ a′ ∈ E ∨ (a′ = τ ∧ b) (Axiom I)

s[u] ∈ S (Axiom II)

s
c?,b−−→ ⇒ s[u]

c?,b−−→ (Axiom III)

s
d−→ t ⇒ t = s⊕ d (Axiom IV)

7

A state s of a TTS is called committed, notation Comm(s), iff it enables an
outgoing committed transition, that is, s

a,1−−→ for some a. Axiom I states that in a
committed state neither time-passage steps nor uncommitted τ ’s may occur. The
axiom implies that committed transitions always have a label in Eτ . Note that a
committed state may have outgoing uncommitted transitions with a label in E .
The reason is that, for instance, an uncommitted c!-transition may synchronize
with a committed c?-transition from some other component, and thereby turn
into a committed τ -transition.

In general, the states of a TTS constitute a proper subset of the set of all
valuations of the state variables. This feature is used to model the concept of
location invariants in timed automata: if a timed automaton has, for instance, a
location invariant x ≤ 1 then this automaton may never reach a state in which
x > 1; semantically speaking states in which x ≤ 1 does not hold simply do
not exist. In a setting with shared variable communication, complications may
arise if one component wants to update a shared variable in a way that violates
the location invariant of another component. In Uppaal, a state transition is
only possible if in all location invariants hold in the target state. Our position
is that models in which state transitions may violate location invariants are bad
models. Therefore, and also because it simplifies the technicalities of our paper,
we postulate in Axiom II that if the external variables of a state are changed,
the result is again a state.

Axiom III states that enabledness of input transitions is not affected by
changing the external variables. This is a key property that we need in order to
obtain compositionality, we will discuss this axiom in more detail in the next
subsection. Axiom IV, finally, asserts that if time advances with an amount d, all
clocks also advance with an amount d, and the other variables remain unchanged.

2.4 Composition and Restriction

This subsection introduces the operations of parallel composition and restric-
tion on TTSs. In our setting parallel composition is a partial operation that is
only defined when TTSs are compatible: the initial states must be compatible
functions and the internal variables of one TTS may not intersect with the vari-
ables of the other. We can avoid the restriction on the internal variables via a
straightforward renaming procedure, but this would complicate the definitions.

From now on, if we have multiple indexed systems (TTSs, or later timed
automata), then we use the indices also to denote the components of individual
systems. For example, we let Ei denote the set of external variables of Ti.

Definition 3 (Parallel composition). Two TTSs T1 and T2 are compatible if
H1∩V2 = H2∩V1 = ∅ and s0

1♥s0
2. In this case, their parallel composition T1‖T2

is the tuple T = 〈E,H, S, s0,−→1,−→0〉, where E = E1 ∪ E2, H = H1 ∪ H2,
S = {r‖s | r ∈ S1 ∧ s ∈ S2 ∧ r♥s}, s0 = s0

1‖s0
2, and −→1 and −→0 are the least

relations that satisfy the rules in Fig. 2. Here i, j range over {1, 2}, r, r′ range
over Si, s, s′ range over Sj, b, b′ range over B, e ranges over E and c over C.

The external and internal variables of the composition are simply obtained
by taking the union of the external and internal variables of the components,

8

r
e,b−−→i r′

r‖s e,b−−→ r′ B s
EXT

r
c!,b−−→i r′ s[r′]

c?,b′
−−−→j s′ i 6= j

Comm(r) ∨ Comm(s) ⇒ b ∨ b′

r‖s τ,b∨b′
−−−−→ r′ C s′

SYNC

r
τ,b−−→i r′ Comm(s) ⇒ b

r‖s τ,b−−→ r′ B s
TAU

r
d−→i r′ s

d−→j s′ i 6= j

r‖s d−→ r′‖s′
TIME

Fig. 2. Rules for parallel composition of TTSs

respectively. The states (and start state) of a composed TTS are obtained by
merging the states (resp. start state) of the components (in the sense of Sec-
tion 2.2). The interesting part of the definition consists of the transition rules.
Rule EXT states that an external transition of a component induces a corre-
sponding transition of the composition. The component that takes the transition
may override some of the shared variables. Observe that, since r′ B s = r′‖s[r′]
by Lemma 1(9), and since s[r′] is a state of T3−i by Axiom II, it follows that
r′ B s is a state of T . Similarly, rule TAU states that an internal transition
of a component induces a corresponding transition of the composition, except
that an uncommitted transition may only occur if the other component is in an
uncommitted state. Rule SYNC describes the synchronization of components.
If Ti has an output transition from r to r′, and if Tj has a corresponding input
transition from s, updated by r′, to s′, the composition has a τ transition to
r′ C s′. The synchronization is committed iff one of the participating transitions
is committed. However, an uncommitted synchronization may only occur if both
components are in an uncommitted state. By Axiom II for Tj it follows that in
rule SYNC s[r′] is a state of Tj , and by r′ C s′ = r′[s′]‖s′ and Axiom II for Ti

it follows that in rule SYNC r′ C s′ is a state of T . Rule TIME, finally, states
that a time step d of the composition may occur when both components perform
a time step d. Observe that r♥s and Axiom IV for both T1 and T2 imply r′♥s′.

In order to prove that the composition of two TTS is again a TTS, we need
the following technical lemma, which states that a state of the composition is
committed iff one of the component states is committed.

Lemma 2. Let T1 and T2 be compatible TTSs. Let r ∈ S1 and s ∈ S2 such that
r♥s. Then Comm(r‖s) ⇔ Comm(r) ∨ Comm(s).

Proof. ⇒ Suppose that Comm(r‖s). Then there exists a transition of the form
r‖s a,1−−→ r′‖s′. Since the transition is committed, it can only be established
using rules EXT, TAU or SYNC. Clearly, if it is established using rule
EXT or TAU with i = 1 then Comm(r). Similarly, if it is established using
rule EXT or TAU with i = 2 then Comm(s). In both cases Comm(r) ∨
Comm(s), as required. Now suppose that the transition r‖s a,1−−→ r′‖s′ is
established using rule SYNC. Assume w.l.o.g. that i = 1. Then there are

9

transitions r
c!,b−−→1 r′′ and s[r′′]

c?,b′

−−−→2 s′′ such that b ∨ b′. By Axiom III,

s
c?,b′

−−−→2. Hence either Comm(r) or Comm(s), as required.
⇐ Now suppose Comm(r) ∨ Comm(s). W.l.o.g. assume that Comm(r). Then,

using Axiom I, we know that r
a,1−−→, for some a ∈ Eτ . By application of either

rule EXT or rule TAU, this implies r‖s a,1−−→. Hence Comm(r‖s). ut

One can check that composition is a well-defined operation on TTSs.

Lemma 3 (Composition well-defined). Let T1 and T2 be compatible TTSs.
Then T1‖T2 is a TTS.

Proof. Since E1∩H1 = ∅ and E2∩H2 = ∅ (T1 and T2 are TTSs), and E1∩H2 = ∅
and E2 ∩ H1 = ∅ (T1 and T2 are compatible), E ∩ H = ∅. By definition, S ⊆
Val(V) and s0 ∈ S. We check that T1‖T2 satisfies the four axioms for a TTS.
Suppose r ∈ S1, s ∈ S2 and r♥s.

1. Assume that r‖s a,1−−→ ∧r‖s a′,b−−→. In order to prove Axiom I, we must estab-
lish that a′ ∈ E ∨ (a′ = τ ∧ b). By Lemma 2, either Comm(r) or Comm(s).
By Axiom I for T1 and T2, this implies that either r or s has no outgoing
time-passage transitions. Hence, by rule TIME, also r‖s has no outgoing
time-passage transitions, that is a′ ∈ Eτ . Assume a′ = τ . It suffices to prove
that b = 1. Since a′ = τ either rule TAU or rule SYNC has been used
to prove r‖s a′,b−−→. Assume w.l.o.g. that i = 1. If rule TAU is used and
Comm(r) then b = 1 by Axiom I for T1. If rule TAU is used and Comm(s)
then b = 1 by definition. If rule SYNC is used then Comm(r) ∨ Comm(s)
implies b = 1.

2. Let r‖s ∈ S and let u ∈ Val(E). In order to prove Axiom II, we must
show that (r‖s)[u] ∈ S. By Lemma 1(10), r[u]♥s[u] and by Lemma 1(11),
(r‖s)[u] = r[u]‖s[u]. Since T1 and T2 are compatible, r[u] = r[udE1] and
s[u] = s[udE2]. By Axiom II for T1 and T2, r[udE1] ∈ S1 and s[udE2] ∈ S2.
Hence (r‖s)[u] ∈ S.

3. In order to prove Axiom III, suppose r‖s c?,b−−→ and u ∈ Val(E). We must

establish that (r‖s)[u]
c?,b−−→. By rule EXT, either r

c?,b−−→ or s
c?,b−−→. As-

sume w.l.o.g. that r
c?,b−−→. As in the previous case, we may infer r[u]♥s[u],

(r‖s)[u] = r[u]‖s[u], and r[u] = r[udE1]. Hence, by Axiom III for T1, r[u]
c?,b−−→.

Using rule EXT, we obtain (r‖s)[u]
c?,b−−→.

4. Axiom IV for T1‖T2 follows trivially from Axiom IV for T1 and T2 and rule
TIME. ut

Commutativity and associativity are highly desirable properties for parallel
composition operators. However, associativity becomes nontrivial in a setting
with both shared variables and synchronization of actions. In [6], we have shown
that the composition operator defined in [17] is not associative. The parallel
composition operator defined in this paper is both commutative and associative.
Commutativity is immediate from the symmetry in the definitions.

10

Theorem 1 (Commutativity). Let T1 and T2 be compatible TTSs. Then
T1‖T2 = T2‖T1.

Proof. Straightforward, using the symmetry in the definitions. ut

The proof of associativity is involved since there are many cases to consider.
The proof heavily relies on Lemma 1.

Theorem 2 (Associativity). Let T1, T2 and T3 be pairwise compatible TTSs.
Then (T1‖T2)‖T3 = T1‖(T2‖T3).

Proof. Observe that, since T1, T2 and T3 are pairwise compatible, T1‖T2 is
compatible with T3, and T1 is compatible with T2‖T3 (use Lemma 1(5)). Let
TL = (T1‖T2)‖T3 and TR = T1‖(T2‖T3). It is easy to see that TL and TR agree
on all components, except for the transition relations. In order to prove that the
set of transitions of TR is contained in the set of transitions of TL, we distin-
guish 13 cases. The converse inclusion follows by a symmetric argument. The
13 cases correspond to the different ways in which an outgoing transition of a
state r‖(s‖t) of TR may be proved using the rules of Figure 2: a transition of
the composed system may either be labeled by an external action originating
from one of the components (3 cases), or by a τ originating from one of the
components (3 cases), or by a τ that is the result of a synchronization between
2 components (6 cases, depending on who does the output and who does the in-
put), or by a time-passage action (1 case). The various cases are denoted below
in self-explanatory notation.

– Case (e • •). In this case r
e,b−−→1 r′ and, by application of rule EXT,

r‖(s‖t) e,b−−→R r′ B (s‖t). Applying rule EXT twice gives a corresponding L-

transition (r‖s)‖t e,b−−→L (r′B s)B t. In fact, the R and L-transitions coincide
since, by definition of ‖ and associativity of B, r′ B (s‖t) = (r′ B s) B t.

– Case (• e •). In this case s
e,b−−→2 s′ and, by double application of rule EXT,

r‖(s‖t) e,b−−→R (s′ B t) B r. Via another double application of rule EXT we

derive the corresponding L-transition (r‖s)‖t e,b−−→L (s′ B r) B t. The two
transitions coincide since, by associativity of B, definition of ‖, and commu-
tativity of ‖,

(s′Bt)Br = s′B(tBr) = s′B(t‖r) = s′B(r‖t) = s′B(rBt) = (s′Br)Bt.

– Case (• • e). In this case t
e,b−−→3 t′ and, by double application of rule

EXT, r‖(s‖t) e,b−−→R (t′ B s) B r. Via application of rule EXT we derive

the corresponding L-transition (r‖s)‖t e,b−−→L t′ B (r‖s). The two transitions
coincide since, by associativity of B, definition of ‖, and commutativity of ‖,

(t′ B s) B r = t′ B (s B r) = t′ B (s‖r) = t′ B (r‖s).

11

– Case (τ • •). In this case r
τ,b−−→1 r′, Comm(s‖t) ⇒ b and, by application of

rule TAU, r‖(s‖t) τ,b−−→R r′ B (s‖t). By Lemma 2 and propositional logic,

Comm(s‖t) ⇒ b ⇔ (Comm(s) ⇒ b) ∧ (Comm(t) ⇒ b).

Thus, by applying rule TAU twice, we may derive the corresponding L-
transition (r‖s)‖t τ,b−−→L (r′ B s) B t. The two transitions coincide since, as in
case (e • •), r′ B (s‖t) = (r′ B s) B t.

– Case (• τ •). Similar to the previous case.
– Case (• • τ). Similar to the pre-previous case.

– Case (!c ?c •). In this case we have r
c!,b−−→1 r′, s[r′]

c?,b′

−−−→2 s′, and Comm(r)∨
Comm(s‖t) ⇒ b ∨ b′. By rule EXT, s[r′]‖t[r′] c?,b′

−−−→ s′ B t[r′] and, since
s[r′]‖t[r′] = (s‖t)[r′] by Lemma 1(11), application of rule SYNC gives

r‖(s‖t) τ,b∨b′

−−−−→R r′ C (s′ B t[r′]). By Lemma 2 and propositional logic,

Comm(r) ∨ Comm(s‖t) ⇒ b ∨ b′ ⇔

(Comm(r) ∨ Comm(s) ⇒ b ∨ b′) ∧ (Comm(t) ⇒ b ∨ b′).

Thus, by applying rule SYNC, we may derive a transition r‖s τ,b∨b′

−−−−→ r′Cs′,

and, by subsequent application of rule TAU, (r‖s)‖t τ,b∨b′

−−−−→L (r′ C s′) B t.
The R and L-transition coincide since, by definition of C and Lemma 1,

r′ C (s′ B t[r′]) = (s′ B t[r′]) B r′ = s′ B (t[r′] B r′) =
= s′ B (r′ B t) = (s′ B r′) B t = (r′ C s′) B t.

– Case (?c !c •). In this case s
c!,b−−→2 s′ and by rule EXT, s‖t c!,b−−→ s′ B t.

Moreover, r[s′ B t]
c?,b′

−−−→1 r′, and Comm(r) ∨ Comm(s‖t) ⇒ b ∨ b′. Since ‖
is commutative, rule SYNC gives r‖(s‖t) τ,b∨b′

−−−−→R (s′ B t) C r′. As in the
previous case,

Comm(r) ∨ Comm(s‖t) ⇒ b ∨ b′ ⇔

(Comm(r) ∨ Comm(s) ⇒ b ∨ b′) ∧ (Comm(t) ⇒ b ∨ b′).

Also observe that, by Lemmas 1(12) and 1(7),

r[s′ B t] = r[t][s′] = r[s′].

Thus, by applying rule SYNC and using commutativity of ‖, we may derive

a transition r‖s τ,b∨b′

−−−−→ s′ C r′, and, by subsequent application of rule TAU,

(r‖s)‖t τ,b∨b′

−−−−→L (s′ C r′) B t. The R and L-transition coincide since,

(s′ B t) C r′ = r′ B (s′ B t) = (r′ B s′) B t = (s′ C r′) B t.

– Case (!c • ?c). Similar to cases (?c !c •) and (!c ?c •).

12

– Case (?c • !c). Similar to cases (?c !c •) and (!c ?c •).
– Case (• !c ?c). Similar to case (?c !c •).
– Case (• ?c !c). Similar case (!c ?c •).
– Case (d d d). In this case, r

d−→1 r′, s
d−→2 s′, and t

d−→3 t′, for some d ∈ R≥0,

and, by double application of rule TIME, r‖(s‖t) d−→R r′‖(s′‖t′). By another
double application of rule TIME we may derive the equivalent L-transition
(r‖s)‖t d−→L (r′‖s′)‖t′. ut

The next definition introduces a standard restriction operator, very similar
to the one in CCS [29]. The restriction operator internalizes a set of channels so
that no further TTSs may synchronize on it.

Definition 4 (Restriction). Given a TTS T and a set C ⊆ C of channels, we
define T \C to be the TTS that is identical to T , except that all transitions with
a label in {c!, c? | c ∈ C} have been removed from the transition relations.

We write Σ(T) for the set of channels that occur in transitions of T . Using
this notation, we can formulate restriction laws, as in CCS [29][p80]:

Lemma 4 (Restriction laws).

1. T \C = T if Σ(T) ∩ C = ∅
2. T \C\C ′ = T \(C ∪ C ′)
3. (T ‖T ′)\C = T ‖(T ′\C) if Σ(T) ∩ C = ∅

2.5 Committed States versus Committed Transitions

In TTSs committedness is an attribute of transitions. This contrasts with the
Uppaal syntax, where committedness is defined as an attribute of locations,
which are part of the state. So why don’t we follow Uppaal? This would have
the additional advantage that the rules of Figure 2 can be simplified to those
of Figure 3. The problem has to do with the definition of committedness for
composed states. There appears to be a choice between defining r‖s to be com-
mitted if r and s are committed, or defining r‖s to be committed if r or s
is committed. In order to see that both choices are wrong, consider the four
TTSs in Fig. 4, each consisting of only two states, where a ⊂ inside a state
indicates that is is committed. In the conjunctive scenario, there is no transition
((q‖r)‖s)‖t τ−→ ((q‖r′)‖s)‖t, even though this is allowed according to Uppaal. In
the disjunctive scenario, there is a transition ((q‖r)‖s)‖t τ−→ ((q′‖r)‖s′)‖t, which
is not allowed according to Uppaal.

3 Compositional Abstraction

In our approach, timed step simulations capture what it means that one TTS
is an abstraction of another. In this section, we formally define timed step sim-
ulations, establish compositionality of the induced preorder, and briefly discuss
possible applications of this result.

13

r
e−→i r′

r‖s e−→ r′ B s
EXT

r
τ−→i r′ Comm(s) ⇒ Comm(r)

r‖s τ−→ r′ B s
TAU

r
c!−→i r′ s[r′]

c?−→j s′ i 6= j

r‖s τ−→ r′ C s′
SYNC

r
d−→i r′ s

d−→j s′ i 6= j

r‖s d−→ r′‖s′
TIME

Fig. 3. Oversimplified rules for parallel composition of TTSs

t’

t

s’

s

r’

r

q’

q

c!c?tauc!

Fig. 4. A problem with committed states

A timed step simulation relates the states of two TTSs that have the same
external interface, that is, the same sets of external variables. Initial states must
always be related. Also, related states must agree on their external variables, and
the relation must be preserved by consistently changing the external variables. If
the low level system does a step, then either this can be simulated by an identical
step in the high level system that preserves the relation, or the low level step
is an internal computation step that preserves the simulation relation. Finally,
high level committed states may only be related to low level committed states.

Definition 5 (Timed step simulation). Two TTSs T1 and T2 are compara-
ble if they have the same external variables, that is E1 = E2. Given comparable
TTSs T1 and T2, we say that a relation R ⊆ S1 × S2 is a timed step simulation
from T1 to T2, provided that s0

1 R s0
2 and if sR r then

1. sdE1 = rdE2,
2. ∀u ∈ Val(E1) : s[u] R r[u],
3. if Comm(r) then Comm(s),
4. if s

a,b−−→ s′ then either there exists an r′ such that r
a,b−−→ r′ and s′ R r′, or

a = τ and s′ R r.

14

We write T1 � T2 when there exists a timed step simulation from T1 to T2.

It is straightforward to prove that � is a preorder on the class of TTS,
that is, � is reflexive and transitive. Our first main theorem states that � is a
precongruence for parallel composition. This means that timed step simulations
can be used as a compositional abstraction device.

Theorem 3. Let T1, T2, T3 be TTSs with T1 and T2 comparable, T1 � T2, and
both T1 and T2 compatible with T3. Then T1‖T3 � T2‖T3.

Proof. Observe that, since T1 and T2 are comparable, T1‖T3 and T2‖T3 are com-
parable as well. Let T13 = T1‖T3 and T23 = T2‖T3. Let Q be a timed step
simulation from T1 to T2. Define relation R ⊆ S13 × S23 by

q‖s R r‖s′ ⇔ (q Q r ∧ s = s′).

We show that R is a timed step simulation from T13 to T23. First observe that
(s0

1‖s0
3) R(s0

2‖s0
3) because s0

1 Q s0
2. For arbitrary (q‖s, r‖s) ∈ R, we prove that the

four conditions in the definition of a timed step simulation are satisfied.

1. From qdE1 = rdE2 follows that (q‖s)dE13 = (r‖s)dE23.
2. Pick u ∈ Val(E13) and let u′ = udE1. Since Q is a timed step simulation,

q[u′] Q r[u′]. Since T3 is compatible with T1 and T2, q[u′] = q[u] and r[u′] =
r[u]. Thus q[u] Q r[u] and therefore, by definition of R, q[u]‖s[u] R r[u]‖s[u].
Hence (q‖s)[u] R(r‖s)[u], using Lemma 1(11).

3. We derive

Comm(r‖s) ⇒ Comm(r) ∨ Comm(s) (by Lemma 2)
⇒ Comm(q) ∨ Comm(s) (Q a timed step simulation)

⇒ Comm(q‖s) (by Lemma 2)

4. Assume that q‖s a,b−−→ q′‖s′. Via a case distinction on the rule instance from
Figure 2 used to construct this transition, we establish that either there exists
a transition r‖s a,b−−→ r′‖s′′ such that q′‖s′ R r′‖s′′, or a = τ and q′‖s′ R r‖s.
– Rule EXT with i = 1. Then a ∈ E , q

a,b−−→1 q′ and s′ = s[q′]. Since

Q is a simulation, there exists a transition r
a,b−−→2 r′ such that q′ Q r′.

Let s′′ = s[r′]. Then r‖s a,b−−→ r′‖s′′. Since q′ Q r′, we know that q′dE1 =
r′dE2. Hence s′ = s[q′] = s[r′] = s′′ and we may infer q′‖s′ R r′‖s′′, as
requested.

– Rule EXT with i = 3. Then a ∈ E , s
a,b−−→3 s′ and q′ = q[s′]. Let s′′ = s′

and r′ = r[s′]. Then r‖s a,b−−→ r′‖s′′. Let u = s′dE1. Since T3 is compat-
ible with T1 and T2, q[s′] = q[u] and r[s′] = r[u]. Because Q is a simu-
lation, q[u] Q r[u]. Hence, q[u]‖s′ R r[u]‖s′. This implies q′‖s′ R r′‖s′′, as
requested.

15

– Rule TAU with i = 1. Then a = τ , q
a,b−−→1 q′, Comm(s) ⇒ b and s′ =

s[q′]. Since Q is a simulation, either there exists a transition r
a,b−−→2 r′

such that q′ Q r′, or q′ Q r.

• In the first case, let s′′ = s[r′]. Then r‖s a,b−−→ r′‖s′′ by rule TAU.
Since q′ Q r′, we know that q′dE1 = r′dE2. Hence s′ = s[q′] = s[r′] =
s′′ and we may infer q′‖s′ R r′‖s′′, as requested.

• In the second case, where q′ Q r, observe that qdE1 = rdE2 = q′dE1.
s′ = s[q′] = s[q] = s. Hence q′‖s′ R r‖s, as requested.

– Rule TAU with i = 3. Then a = τ , s
a,b−−→3 s′, Comm(q) ⇒ b, and q′ =

q[s′]. Since Q is a simulation, Comm(r) ⇒ b. Let s′′ = s′ and r′ = r[s′].

Then r‖s a,b−−→ r′‖s′′. Let u = s′dE1. Since T3 is compatible with T1 and
T2, q[s′] = q[u] and r[s′] = r[u]. Because Q is a simulation, q[u] Q r[u].
Hence, q[u]‖s′ R r[u]‖s′. This implies q′‖s′ R r′‖s′′, as requested.

– Rule SYNC with i = 1. Then a = τ and, for some c ∈ C, b1, b2 ∈ B, and
q̂ ∈ S1, q

c!,b1−−−→1 q̂, s[q̂]
c?,b2−−−→3 s′, b = b1 ∨ b2, Comm(q) ∨Comm(s) ⇒ b,

and q′ = q̂[s′]. Since Q is a simulation, there exists a state r2 ∈ S2

such that r
c!,b1−−−→2 r2 and q̂ Q r2. Moreover, Comm(r) ∨ Comm(s) ⇒ b.

Since q̂ Q r2, it follows that q̂dE1 = r2dE2. Since T3 is compatible with
T1 and T2, this implies that s[q̂] = s[r2]. Let s′′ = s′ and r′ = r2[s′].

We can apply rule SYNC to infer that r‖s a,b−−→ r′‖s′′. Since q̂ Q r2

and T3 is compatible with T1 and T2, it follows that q̂[s′] Q r2[s′]. This
implies q′ Q r′, which in turn implies q′‖s′ R r′‖s′, which in turn implies
q′‖s′ R r′‖s′′, as requested.

– Rule SYNC with i = 3. Then a = τ and, for some c ∈ C, b1, b2 ∈ B, and
ŝ ∈ S3, s

c!,b1−−−→3 ŝ, q[ŝ]
c?,b2−−−→1 q′, b = b1 ∨ b2, Comm(q) ∨ Comm(s) ⇒ b,

and s′ = ŝ[q′]. Since q Q r, Q is a simulation, and T3 is compatible with T1

and T2, q[ŝ] Q r[ŝ] and there exists a state r′ ∈ S2 such that r[ŝ]
c?,b2−−−→2 r′

and q′ Q r′. Moreover, Comm(r)∨Comm(s) ⇒ b. Let s′′ = ŝ[r′]. We can

apply rule SYNC to infer that r‖s a,b−−→ r′‖s′′. Since q′ Q r′, q′dE1 =
r′dE2. Since T3 is compatible with T1 and T2, it follows that ŝ[q′] = ŝ[r′].
This implies s = s′′, which in turn implies q′‖s′ R r′‖s′′, as requested.

– Rule TIME. Then a ∈ R≥0, b = 0, q
a,b−−→1 q′ and s

a,b−−→2 s′. Since Q

is a simulation, there exists a transition r
a,b−−→2 r′ such that q′ Q r′. Let

s′′ = s′. Then r‖s a,b−−→ r′‖s′′ and q′‖s′ R r′‖s′′, as requested. ut

The timed step simulation preorder � is in general not a precongruence for
restriction. The problem is that the restriction operator removes transitions: this
may affect enabledness of committed transitions and invalidate the property that
high-level committed states may only be related to low-level committed states. In
the theorem below, we explicitly add the condition needed for compositionality:
if a state is committed in T1 it should still be committed in T1\C.

16

Theorem 4. Let T1 and T2 be comparable TTSs such that T1 � T2. Let C ⊆ C.
If, for all states s of T1, Comm(s) ⇒ ∃a ∈ Eτ − {c!, c? | c ∈ C} : s

a,1−−→1 then
T1\C � T2\C.

In practice, the side condition of Theorem 4 is unproblematic, for instance
because in committed locations of components in a network only output tran-
sitions are enabled, and the corresponding input transitions are always enabled
in other components. In such a network, a committed state always enables a
committed τ -transition, which implies the side condition.

4 Networks of Timed Automata

In this section, we introduce networks of timed automata (NTA), a mathemat-
ical model for describing real-time systems inspired by the Uppaal modeling
language. We present two different definitions of the semantics of NTAs and
establish their equivalence. The first definition is not compositional and closely
follows the Uppaal semantics (as defined in the Uppaal 4.0 help menu). The
second definition constructs an LTS compositionally by first associating a TTS
to each TA in the network, composing these, applying a restriction operator,
and then considering the underlying LTS.

An NTA consists of a number of timed automata that may communicate via
synchronization of transition labels and via a global set of multi-reader/multi-
writer variables. Our model supports committed locations and a restricted form
of urgency by allowing internal transitions to be urgent.3 Our definition of timed
automata abstracts from syntactic details and the various restrictions from Up-
paal that are needed to make model checking decidable. These aspects that are
not relevant for our compositionality result. However, in order to obtain com-
positionality, we need to impose some axioms on timed automata that are not
required by Uppaal. Also, several Uppaal features have not been incorporated
within our NTA model, in particular broadcast channels, urgent synchronization
channels, and priorities. We expect that these features can be incorporated in
our approach (at the price of complicating the definitions) but it remains future
work to work out the details.

Definition 6 (TA). A timed automaton (TA) is defined to be a tuple A =
〈L,K, l0, E, H, v0, I,−→,−→u〉, where L is a set of locations, K ⊆ L is a set of
committed locations, l0 ∈ L is the initial location, E,H ⊆ V are disjoint sets
of external and hidden variables, respectively, V = E ∪ H, v0 ∈ Val(V) is the
initial valuation, I : L → 2Val(V) assigns a left-closed invariant property to each
location such that v0 |= I(l0),

−→⊆ L× 2Val(V) × Eτ × (Val(V) → Val(V))× L

3 Urgent internal transitions can be encoded in Uppaal by declaring a special urgent
broadcast channel urg, labeling urgent internal transitions by urg!, and ensuring
that no transitions carry the label urg?. Urgent internal transitions are very conve-
nient for modeling systems since they allow one to specify that a component reacts
instantaneously to some change of the external variables.

17

is the transition relation, and −→u⊆−→ is the urgent transition relation. We
let l, . . . range over locations, write l

g,α,ρ−−−→ l′ if (l, g, α, ρ, l′) ∈−→, refer to l as
the source of the transition, to l′ as the target, to g as the guard, and to ρ as the
update (or reset) function. We require:

I(l) does not depend on E (Axiom V)

l
g,c?,ρ−−−−→ l′ ⇒ g does not depend on E (Axiom VI)

∀l ∈ K ∀v ∈ I(l) ∃(l g,α,ρ−−−→ l′) : v |= g ∧ ρ(v) |= I(l′) (Axiom VII)

l
g,α,ρ−−−→u l′ ⇒ α = τ ∧ g does not depend on X (Axiom VIII)

Recall that a property P is left-closed if, for all v ∈ Val(V) and d ∈ R≥0,
v ⊕ d |= P ⇒ v |= P . In Uppaal, left-closedness of location invariants is en-
sured syntactically by disallowing lower bounds on clocks in invariants. Axiom V
asserts that location invariants do not depend on external variables. This restric-
tion is not imposed by Uppaal, but run-time errors may occur in Uppaal when
one automaton modifies external variables in a way that violates the location
invariant of another automaton. Although it may be possible to come up with a
compositional semantics for a setting without Axiom V, it is clear that the axiom
eliminates a number of technical complications. We are not aware of Uppaal
applications in which the axiom is violated. Axiom VI asserts that the guards
of input transitions do not depend on external variables. This is a key axiom
that we need for our approach to work: it ensures that the update function of an
output transition does not affect the enablesness of matching input transitions.
Axiom VII states that in a committed location always at least one transition is
possible. We need this axiom to ensure that a state in the TTS semantics of a
timed automaton is committed iff the corresponding location is committed. The
axiom is a prerequisite for what is called time reactivity in [31] and timelock
freedom in [8], that is, whenever time progress stops there exists at least one
enabled transition. Uppaal does not impose this axiom, but we would like to
argue that any model that does not satisfy it is a bad model. Axiom VIII, finally,
states that only internal transitions can be urgent and that the guards of urgent
transitions may not depend on clocks. The constraint that urgent transitions
may not depend on clocks is syntactically enforced in Uppaal by requiring that
clock variables may not occur in the guards of urgent transitions.

A network of timed automata can now be defined as a finite collection of
compatible timed automata:

Definition 7 (NTA). Two timed automata A1 and A2 are compatible if H1 ∩
V2 = H2 ∩ V1 = ∅ and v0

1♥v0
2. A network of timed automata (NTA) consists of

a finite collection N = 〈A1, . . . ,An〉 of pairwise compatible timed automata.

The operational semantics of NTAs can be defined in terms of labeled tran-
sition systems.

18

Definition 8 (LTS semantics of NTA). Let N = 〈A1, . . . ,An〉 be an NTA.
Let V =

⋃
i(Vi ∪ {loci}), with for each i, loci a fresh variable with type Li. The

semantics of N , notation LTS(N), is the LTS 〈S, s0,−→〉, where

S = {v ∈ Val(V) | ∀i : v |= Ii(v(loci))},
s0 = v0

1‖ · · · ‖v0
n‖{loc1 7→l01, . . . , locn 7→l0n},

and −→ is defined by the rules in Fig. 5. We use the convention that if an
update function ρ : Val(W) → Val(W) is applied to a valuation v ∈ Val(W ′)
with W ⊂ W ′, it only affects the variables in W , that is ρ(v) , v[ρ(vdW)].

l
g,τ,ρ−−−→i l′

s(loci) = l
s |= g

s′ = ρ(s)[{loci 7→l′}]
(∀k : s(lock) 6∈ Kk) ∨ l ∈ Ki

s
τ−→ s′

TAU

li
gi,c!,ρi−−−−→ l′i

s(loci) = li
s |= gi

lj
gj ,c?,ρj−−−−−→ l′j

s(locj) = lj
s |= gj

s′ = ρj(ρi(s))[{loci 7→l′i, locj 7→l′j}]
(∀k : s(lock) 6∈ Kk) ∨ li ∈ Ki ∨ lj ∈ Kj

i 6= j

s
τ−→ s′

SYNC

s′ = s⊕ d ∀k : s(lock) 6∈ Kk @(l
g,τ,ρ−−−→

u

i l′) : s(loci) = l ∧ s |= g

s
d−→ s′

TIME

Fig. 5. Uppaal style LTS semantics of an NTA

Definition 8 describes the semantics of an NTA in terms of an LTS. The states of
this LTS are valuations of a set V of variables. This set V contains the variables
of all TAs and also, for each TA Ai, a special variable loci to store the current
location of Ai. The set of states S only contains valuations in which the location
invariants for all TAs hold. The initial state s0 is the state where all automata
are in their initial location and all variables have their initial value.

The transition relation−→ contains two kinds of transitions: delay transitions
and action transitions. We have a delay transition s

d−→ s′ iff s contains no
committed locations, no urgent transition is enabled in s, and s′ is obtained from
s by incrementing all clocks with d and leaving the other variables unchanged,
that is s′ = s⊕d. Note that, since s′ is a state, s′ satisfies the location invariants.
In fact, since we require that location invariants are left-closed, we have that,
for all d′ ∈ [0, d], s ⊕ d′ satisfies the location invariants. Also, since the guards
of urgent transitions may not depend on clocks, we have that, for all d′ ∈ [0, d],
s⊕ d′ does not enable any urgent transition.

19

For action transitions there are two cases: internal transitions and binary
synchronizations. We have an internal transition s

τ−→ s′ if there is an automaton
Ai that enables an internal transition l

g,τ,ρ−−−→ l′: s(loci) = l and s |= g. We
require that either l is committed or no location in s is committed. Furthermore,
s′ is obtained from s by assigning to loci the value l′, and applying the update
function ρ. We have a synchronization transition s

τ−→ s′ if there are distinct
components Ai and Aj that enable an output transition li

gi,c!,ρi−−−−→ l′i and input

transition lj
gj ,c?,ρj−−−−−→ l′j , respectively. We require that either li or lj is committed,

or no location in s is committed. State s′ is obtained from s by first applying
update ρi and then update ρj . In addition the location variables are updated.

The key step towards a compositional semantics of NTAs is the definition
below, which associates a TTS to an individual TA. Essentially this is a simplified
version of Definition 8 in which a transition is made committed iff it originates
from a committed location.

Definition 9 (TTS semantics of TA). Let A = 〈L,K, l0, E, H, v0, I,−→〉 be
a TA. The TTS associated to A, notation TTS(A), is the tuple

〈E,H ∪ {loc}, S, s0,−→1,−→0〉,

where loc is a fresh variable with type L, W = E∪H ∪{loc}, S = {v ∈ Val(W) |
v |= I(v(loc))}, s0 = v0‖{loc 7→l0}, and the transitions are defined by the rules
in Fig. 6.

l
g,α,ρ−−−→ l′ s(loc) = l s |= g s′ = ρ(s)[{loc7→l′}] b ⇔ (l ∈ K)

s
α,b−−→ s′

ACT

s′ = s⊕ d s(loc) 6∈ K @(l
g,τ,ρ−−−→

u
l′) : s(loc) = l ∧ s |= g

s
d,0−−→ s′

TIME

Fig. 6. TTS semantics of a TA

We can check that the structure that we have just defined is indeed a TTS.

Lemma 5. TTS(A) is a TTS.

Proof. Since A is a TA, E and H are disjoint. Hence, since loc is fresh, also E
and H ∪ {loc} are disjoint. By the definition of a timed automaton, v0 |= I(l0).
This implies s0 ∈ S, as required. We check that TTS(A) satisfies the four axioms
for a TTS:

– Suppose that, for some state s ∈ S, s
a,1−−→ and s

a′,b−−→. Committed transitions
can only be inferred using rule ACT, and it follows that s(loc) ∈ K. This
implies that rule TIME can not be used to establish outgoing transitions

20

from s, and thus a′ ∈ Eτ . In fact, since outgoing transitions of s can only
be established using rule ACT, it follows that b = 1. This suffices to prove
Axiom I.

– Axiom II follows directly from the fact that, by Axiom V, location invariants
do not depend on external variables.

– Axiom III follows directly from the fact that, by Axiom VI, input guards do
not depend on external variables.

– Axiom IV is immediate from rule TIME. ut

The next technical lemma asserts that a state in the TTS semantics is committed
iff the corresponding location is committed.

Lemma 6. Let A be a TA and let s be a state of TTS(A). Then s(loc) ∈ K ⇔
Comm(s).

Proof. Suppose that s(loc) ∈ K. Let l = s(loc). By Axiom VII,A has a transition
l

g,α,ρ−−−→ l′ such that s |= g and ρ(s) |= I(l′). This means that TTS(A) has a
transition s

α,1−−→ s′, where s′ = ρ(s)[{loc 7→l′}]. Hence Comm(s).
Now suppose that Comm(s). This means that s has an outgoing committed

transition in TTS(A). But such a transition can only be derived using rule ACT
provided s(loc) ∈ K. ut

We now come to our second main theorem, which states that a compositional
semantics of NTAs defined in terms of TTSs coincides (modulo isomorphism)
with the noncompositional Uppaal style semantics of Definition 8.

Theorem 5. Let N = 〈A1, . . . ,An〉 be an NTA. Then

LTS(N) ∼= LTS((TTS(A1)‖ · · · ‖TTS(An))\C).

Proof. W.l.o.g. we assume that the fresh location variable of TTS(Am) is locm.4

It follows directly from the definitions that both sides of the equation have the
same states and the same initial state. What remains is to prove that both sides
also have the same set of transitions. Since the \C operation prunes away all the
external transitions, we need to prove ⊆ as well as ⊇ for two types of transitions,
namely τ -transitions and time-passage transitions.

⊆ τ -transitions. Assume N has a transition s
τ−→N s′. Write sm = sdWm, for

1 ≤ m ≤ n. According to Definition 8, transition s
τ−→N s′ is constructed either

by rule TAU or rule SYNC.

Rule TAU For some Ai all of the following hold.

l
g,τ,ρ−−−→i l′

s(loci) = l
s |= g

s′ = ρ(s)[{loci 7→l′}]
(∀k : s(lock) /∈ Kk) ∨ l ∈ Ki

4 Without this assumption we need to drag around an isomorphism that takes care of
appropriate renamings of location variables.

21

Let s′i = ρ(si)[{loci 7→l′}] and b ⇔ (l ∈ Ki). Then, by rule ACT of the TA

semantics, si
τ,b−−→i s′i.

By associativity of parallel composition we may write TTS(Ai)‖R, where
R is the parallel composition of TTSs of all TAs except Ai. We define s =
sd(

⋃
m6=i Wm), that is, state s restricted to the variables of R. Observe that

Comm(s) ⇒ ∃m 6= i.Comm(sm) by Lemma 2
⇒ ∃m 6= i.sm(locm) ∈ Km by Lemma 6
⇒ ∃m.sm(locm) ∈ Km

⇒ l ∈ Ki by assumption above
⇒ b

Hence we can apply rule TAU for parallel composition of TTSs

si
τ,b−−→ s′i Comm(s) ⇒ b

si‖s
τ,b−−→ s′i B s

TAU

and after applying \C and LTS we obtain s
τ−→ s′, as required.

Rule SYNC For some Ai and Aj all of the following hold.

li
gi,c!,ρi−−−−→ l′i

s(loci) = li
s |= gi

lj
gj ,c?,ρj−−−−−→ l′j

s(locj) = lj
s |= gj

s′ = ρj(ρi(s))[{loci 7→l′i, locj 7→l′j}]
(∀k : s(lock) /∈ Kk) ∨ li ∈ Ki ∨ lj ∈ Kj

i 6= j

Let si = sdWi and sj = sdWj .
– Clearly si♥sj .

– Similarly to the previous case we get si
c!,(li∈Ki)−−−−−−→ s′i, where s′i = ρi(si)[{loci 7→l′i}].

– By Axiom VI, gj does not depend on Ej , therefore sj [s′i] |= gj . Further-
more, clearly sj [s′i](locj) = lj , and by TA semantics:

lj
gj ,c?,ρj−−−−−→ l′j sj [s′i](locj) = lj sj [s′i] |= gj s′j = ρj(sj [s′i])[{locj 7→l′j}] bj ⇔ (lj ∈ Kj)

sj [s′i]
c?,bj−−−→ s′j

ACT

– Comm(si) = (∃α ∈ Eτ : si
α,1−−→). By rule ACT of TA semantics:

Comm(si) ⇔ si(loci) ∈ Ki. Similarly Comm(sj) ⇔ sj(locj) ∈ Kj , and
therefore Comm(si) ∨ Comm(sj) ⇒ (li ∈ Ki) ∨ (lj ∈ Kj).

Now by parallel composition:

si
c!,(li∈Ki)−−−−−−→ s′i sj [s′i]

c?,(lj∈Kj)−−−−−−−→ s′j i 6= j
Comm(si) ∨ Comm(sj) ⇒ (li ∈ Ki) ∨ (lj ∈ Kj)

si‖sj
τ,(li∈Ki)∨(lj∈Kj)−−−−−−−−−−−−→ s′i C s′j

SYNC

By associativity of parallel composition we may write TTS(Ai)‖TTS(Aj)‖R,
where R is the parallel composition of TTSs of all TAs except Ai and Aj .

22

We define s = rd(
⋃

m/∈{i,j} Wm), the state s without the variables solely used
by Ai or Aj . By parallel composition:

Now we will proof that s′i C sj = s′d(Wi ∪Wj). First we need the following
identity, which is easy to derive:

f [g] dV = (f dV)[g] (15)

23

Now for the proof:

s′︸︷︷︸
expand

=

︷ ︸︸ ︷
ρj(ρi(s))︸ ︷︷ ︸

definition of ρj

[{loci 7→l′i, locj 7→l′j}] =

︷ ︸︸ ︷
ρi(s)︸ ︷︷ ︸

definition of ρi

[ρj(ρi(s) dVj)][{loci 7→l′i, locj 7→l′j}] =

︷ ︸︸ ︷
s[ρi(s dVi)][ρj(ρi(s) dVj)][{loci 7→l′i, locj 7→l′j}]︸ ︷︷ ︸

basic axiom

=

s[
︷ ︸︸ ︷
ρi(s dVi) C ρj(ρi(s) dVj) C {loci 7→l′i, locj 7→l′j}︸ ︷︷ ︸

disjoint domains and reordering

] =

s[
︷ ︸︸ ︷
ρi(s dVi) C {loci 7→l′i}︸ ︷︷ ︸

definitions ρi and si

Cρj(ρi(s) dVj) C {loci 7→l′i, locj 7→l′j}] =

s[
︷ ︸︸ ︷
ρi(si)[{loci 7→l′i}]︸ ︷︷ ︸

equivalent

Cρj(ρi(s) dVj) C {loci 7→l′i, locj 7→l′j}] =

s[
︷︸︸︷
s′i Cρj(ρi(s)︸ ︷︷ ︸

definition of ρi

dVj) C {loci 7→l′i, locj 7→l′j}] =

s[s′i C ρj(
︷ ︸︸ ︷
s[ρi(s dVi)] dVj) C {loci 7→l′i, locj 7→l′j}︸ ︷︷ ︸

definitions ρi and si

] =

s[s′i C
︷ ︸︸ ︷
ρj(s[ρi(s dVi)] dWj︸ ︷︷ ︸

15

)[{loci 7→l′i, locj 7→l′j}]] =

s[s′i C ρj(
︷ ︸︸ ︷
sj [ρi(s dVi)])[{loci 7→l′i, locj 7→l′j}]︸ ︷︷ ︸

by si = s d(Vi ∪ {loci})

] =

s[s′i C
︷ ︸︸ ︷
ρj(sj [ρi(si)])[{loci 7→l′i, locj 7→l′j}]︸ ︷︷ ︸

definition of ρi and ρj

] =

s[s′i C
︷ ︸︸ ︷
ρj(sj [ρi(si)[{loci 7→l′i}]︸ ︷︷ ︸

equivalent

])[{locj 7→l′j}]] =

s[s′i C ρj(sj [
︷︸︸︷
s′i])[{locj 7→l′j}]︸ ︷︷ ︸
equivalent

] =

s[s′i C
︷︸︸︷
s′j]

24

si‖sj
τ,(li∈Ki)∨(lj∈Kj)−−−−−−−−−−−−→ s′i C s′j

(si‖sj)‖s
τ,(li∈Ki)∨(lj∈Kj)−−−−−−−−−−−−→ (s′i C s′j) B s

EXT

Finally from LTS(·) we get s
τ−→ s′.

⊇ τ -transitions. Assume s
τ−→ s′ in LTS((TTS(A1)‖ · · · ‖TTS(An))\C). By defini-

tion of LTS(·) and \C there must be a transition s
τ,b−−→ s′ in TTS(A1)‖ · · · ‖TTS(An).

By parallel composition and its associativity we see this transition is constructed
either by rule TAU or rule SYNC.

Rule TAU Some TTS(Ai) has transition si
τ,b−−→ s′i, and s′ = s[s′i], where si =

s dWi. By rule ACT of TA semantics all of the following hold:

l
g,τ,ρ−−−→i l′ si(loci) = l si |= g s′i = ρ(si)[{loci 7→l′}] b ⇔ (l ∈ Ki)

From this we have the following:
– s dWk is the part of the state s that is determined by TTS(Ak). Now we

have:
l /∈ Ki ⇒ ¬b

⇒ ¬Comm(s)
⇒ @k : Comm(sdWk) by Lemma 2
⇒ ∀k : s(lock) /∈ Kk by TA semantics

– (si |= g) ⇒ (s |= g)
– s′ = s[s′i] = s[ρ(si)[{loci 7→l′}]] = s[ρ(si)][{loci 7→l′}] = ρ(s)[{loci 7→l′}]

Finally by NTA semantics we are done:

l
g,τ,ρ−−−→i l′

s(loci) = l
s |= g

s′ = ρ(s)[{loci 7→l′}]
(∀k : s(lock) /∈ Kk) ∨ l ∈ Ki

s
τ−→N s′

TAU

Rule SYNC Some TTS(Ai) and TTS(Aj), with i 6= j synchronize on tran-

sitions: si
c!,bi−−−→ s′i, sj [s′i]

c?,bj−−−→ s′j , where si = s dWi, sj = s dWj , and
s′ = s[s′i C s′j].
and b = bi ∨ bj . By rule ACT of TA semantics all of the following hold:

li
gi,c!,ρi−−−−→ l′i si(loci) = li si |= gi s′i = ρ(si)[{loci 7→l′i}] bi ⇔ (li ∈ Ki)

lj
gj ,c?,ρj−−−−−→ l′j sj [s′i](locj) = lj sj [s′i] |= gj s′j = ρ(sj [s′i])[{locj 7→l′j}] bj ⇔ (lj ∈ Kj)

From this we have the following:
– s dWk is the part of the state s that is determined by TTS(Ak). Now we

have:

¬(li ∈ Ki ∨ lj ∈ Kj) ⇔ ¬b
⇒ ¬Comm(s)
⇒ @k : Comm(sdWk) by Lemma 2
⇒ ∀k : s(lock) /∈ Kk by TA semantics

25

– si(loci) = li ⇒ s(loci) = li
– si |= gi ⇒ s |= gi

– sj [s′i](locj) = lj ⇒ s(locj) = lj
– (sj [s′i] |= gj) ⇒ (s |= gj)

By NTA semantics:

li
gi,c!,ρi−−−−→ l′i

s(loci) = li
s |= gi

lj
gj ,c?,ρj−−−−−→ l′j

s(locj) = lj
s |= gj

r′ = ρj(ρi(s))[{loci 7→l′i, locj 7→l′j}]
(∀k : s(lock) /∈ Kk) ∨ li ∈ Ki ∨ lj ∈ Kj

i 6= j

s
τ−→N r′

SYNC

Finally ρj(ρi(s))[{loci 7→l′i, locj 7→l′j}] = s[s′i Cs′j], using the proof on page 24.

⊆ time-passage transitions. Assume a transition s
d−→ s′. By rule TIME of NTA

semantics all of the following hold:

s′ = s⊕ d ∀k : s(lock) /∈ Kk @(l
g,τ,ρ−−−→

u

i l′) : s(loci) = l ∧ s |= g (16)

We proceed our proof by induction on the number of timed automata that are
put in parallel. In case n = 1, (∀k : s(lock) /∈ Kk) ⇔ s(loc1) /∈ K1, and by TA
semantics:

s′ = s⊕ d s(loc1) /∈ K1 @(l
g,τ,ρ−−−→

u
l′) : s(loc1) = l ∧ s |= g

s
d,0−−→ s′

TIME

Finally by definition of LTS(·), we have s
d−→ s′, the transition we needed.

Now assume the theorem holds for m − 1, we will prove it holds for m. We
define s = sd(W1 ∪ · · · ∪Wm−1), the state s without the variables solely used by
Am. We define sm = sdWm.

Equation (16) implies the premises of rule TIME of TA semantics, so:

s′m = sm ⊕ d sm(locm) /∈ Km @(l
g,τ,ρ−−−→

u

m l′) : sm(locm) = l ∧ sm |= g

sm
d,0−−→ s′m

TIME

By the induction hypothesis there exists a transition s
d−→ s′ in LTS((TTS(A1)‖ · · · ‖TTS(Am−1))\C).

By definition of LTS(·) and \C, there is a transition s
d,0−−→ s′ in TTS(A1)‖ · · · ‖TTS(Am−1)

By parallel composition we get the transition we need:

sm
d−→ s′m s

d−→ s′

sm‖s
d−→ s′m‖s′

TIME

Finally from LTS(·) we get s
d−→ s′.

26

⊇ time-passage transitions. Assume s
d−→ s′ in LTS((TTS(A1)‖ · · · ‖TTS(An))\C).

By definition of LTS(·) and \C there must be a transition s
d,0−−→ s′ in TTS(A1)‖ · · · ‖TTS(An).

We proceed our proof by induction on the number of timed automata that are
put in parallel. In case n = 1, by rule TIME of TA semantics we the premises
of rule TIME of NTA semantics, so:

s′ = s⊕ d ∀k : s(lock) /∈ Kk @(l
g,τ,ρ−−−→

u

i l′) : s(loci) = l ∧ s |= g

s
d−→ s′

TIME

Now assume the theorem holds for m − 1, we will prove it holds for m. We
define s = sd(W1 ∪ · · · ∪Wm−1), the state s without the variables solely used by
Am. We define sm = sdWm.

By associativity of parallel composition we can write:

(TTS(A1)‖ · · · ‖TTS(Am−1))‖TTS(Am)

By rule TIME of parallel composition we have the transitions: sm
d,0−−→ s′m

in TTS(Am), and s
d,0−−→ s′ in TTS(A1)‖ · · · ‖TTS(Am−1).

By TA semantics all of the following hold:

sm(locm) /∈ Km @(l
g,τ,ρ−−−→

u

m l′) : sm(loc) = l ∧ sm |= g (17)

From the induction hypothesis we know there exists a transition s
d−→N s′

in the semantics of the NTA made up of automata A1, . . . ,Am−1. Now by rule
TIME of NTA semantics all of the following hold:

∀k : s(lock) /∈ Kk @(l
g,τ,ρ−−−→

u

i l′) : s(loci) = l ∧ s |= g (18)

Together equations (17) and (18) imply the premises of rule TIME of NTA
semantics, so finally:

s′ = s⊕ d ∀k : s(lock) /∈ Kk @(l
g,τ,ρ−−−→

u

i l′) : s(loci) = l ∧ s |= g

s
d−→N s′

TIME

ut

In the remainder of this section, we discuss how the previous results may help
to alleviate the state space explosion problem. Simulation preorders preserve a
rich class of properties (for instance, for Kripke structures all ∀CTL∗ properties,
see [15]), but for simplicity we limit ourselves here to verification of invariants.

Definition 10 (Invariants). Let L = 〈S, s0,−→〉 be an LTS with S ⊆ Val(V),
for some set of variables V . Let P be a property over a subset of the variables of
V . We say that P is an invariant of L, notation L |= ∀�P , iff, for all reachable
states s of L, s |= P .

By extension, we say that P is an invariant of an NTA N , notation N |=
∀�P , iff it is an invariant of LTS(N), and that P is an invariant of a TTS T ,
notation T |= ∀�P , iff it is an invariant of LTS(T).

27

Timed step simulations preserve invariant properties in one direction: if an
invariant property holds for the abstract system, we may conclude it also holds
for the concrete system.

Theorem 6. Let T1 and T2 be comparable TTSs such that T1 � T2. Let P be a
property over the external variables of T1 and T2. If T2 |= ∀�P , then T1 |= ∀�P .

Proof. Let R be a timed step simulation from T1 to T2. By a simple inductive
argument, one may prove that each reachable state of T1 is related by R to at
least one reachable state of T2. Since P holds for any reachable state of T2, P
only depends on the external variables of T2, E1 = E2, and related states agree
on their external variables, it follows that P holds for any reachable state of
T1. ut

We can lift this results to NTAs as follows. With abuse of notation write
A1‖ · · · ‖Ai ≺ B1‖ · · · ‖Bj if LTS(A1‖ · · · ‖LTS(Ai) ≺ LTS(B1)‖ · · · ‖LTS(Bj). As-
sume that A1‖ · · · ‖Ai ≺ B1‖ · · · ‖Bj , and the timed automata on the right-hand-
side are simpler than those on the left-hand-side. Then, by the definitions and
straightforward application of Theorems 3, 4 (assuming the side condition holds),
5 and 6,

〈B1, . . . ,Bj ,Ai+1, . . . ,An〉 |= ∀�P ⇒ 〈A1, . . . ,An〉 |= ∀�P

Thus, instead of model checking 〈A1, . . . ,An〉 it suffices to model check the
simpler system obtained by substituting B1, . . . ,Bj for A1, . . . ,Ai. Variations of
this result can be obtained by using the restriction laws of Lemma 4.

We have successfully used this approach in order to analyze Zeroconf [13],
a protocol for dynamic configuration of IPv4 link-local addresses that has been
defined by the IETF. Below we briefly summarize the different types of abstrac-
tions that we applied:

1. Weakening guards and location invariants of component timed automata.
Use of this type of “overapproximations” can be formally justified using
timed step simulations.

2. After weakening guards and location invariants, state variables that are not
mentioned in the global invariant and that are no longer tested in guards,
can be omitted. Again such transformations can be formally justified using
timed step simulations.

3. In order to verify instances of the protocol with an arbitrary number of hosts,
we applied the Spotlight Principle [33] and abstracted all hosts except two
into a “chaos” automaton, a very coarse abstraction with a single state that
enables every action at any time.

4. At some point, we abstracted one automaton by a composition of two au-
tomata. Unlike the other abstractions, proving correctness of this abstraction
by hand turned out to be nontrivial. With help of Thomas Chatain, we suc-
ceeded to prove existence of a timed step simulation fully automatically using
Uppaal-Tiga [10], a branch of Uppaal that is able to solve timed games
on NTAs. It turns out that a timed step simulation corresponds to a winning
strategy for a certain timed game.

28

Using our abstraction techniques, Uppaal was able to verify the Zeroconf for
an arbitrary number of hosts. Without our techniques, Uppaal can only handle
instances with three hosts. Except for the one case, which was handled using
Uppaal-Tiga, soundness of all the abstractions was proved by hand. In all
these cases the simulation proofs were trivial though, and we expect that with
the right tactics a general purpose theorem prover or proof assistant will be able
to discard these proof obligations automatically.

5 Future Work

Our framework deals with an important part of the Uppaal modeling language,
and is for instance suitable for dealing with the Zeroconf protocol. Nevertheless,
several features have not been dealt with, notably

1. Urgent channels. Our approach supports urgent internal transitions but not
general urgent channels as in Uppaal. We expect that urgent channels can
be easily incorporated in our approach, using the concept of timed ready
simulations from [16].

2. Broadcast communication. General broadcast communication, as supported
by Uppaal, does not have a neat semantics: the order in which automata
are declared influences the operational semantics of a network. It should be
possible though to identify a well-behaved subset (for instance, by requir-
ing that the variables modified by different input actions be disjoint). Once
this has been done, we expect that the results of this paper can easily be
generalized.

3. Priorities. Uppaal supports channel priorities. As we have shown, commit-
ted locations induce a priority mechanism, and we expect that channel pri-
orities can be described in an analogous manner.

Although conceptually there will be no major difficulties involved in generaliz-
ing our results to a setting which includes these features, the proofs will become
tedious and very long. Since the syntax and algorithms for Uppaal are being
extended all the time, we envisage that eventually proof assistants and theo-
rem provers will become indispensable for establishing correctness of verification
methods that combine all these features and algorithms.

Although from a theoretical viewpoint, implementing our framework is less
interesting, from a practical viewpoint it is all the more. We envisage a version
of Uppaal that maintains networks of timed automata at different levels of
abstraction, and which can automatically prove correctness of abstractions using
Uppaal-Tiga and by use of a theorem prover.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253–284, 1991.

29

2. L. Aceto, B. Bloom, and F.W. Vaandrager. Turning SOS rules into equations.
LICS’92 Special Issue of Information and Computation, 111(1):1–52, May 1994.

3. R. Alur and T.A. Henzinger. Reactive Modules. Formal Methods in System Design,
15(1):7–48, 1999.

4. G. Behrmann, A. David, and K.G. Larsen. A tutorial on Uppaal. In M. Bernardo
and F. Corradini, editors, Formal Methods for the Design of Real-Time Systems,
International School on Formal Methods for the Design of Computer, Communi-
cation and Software Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18,
2004, Revised Lectures, volume 3185 of Lecture Notes in Computer Science, pages
200–236. Springer, 2004.

5. J. Berendsen, B. Gebremichael, F.W. Vaandrager, and M. Zhang. Formal specifi-
cation and analysis of zeroconf using Uppaal. Report ICIS-R07XXX, Institute for
Computing and Information Sciences, Radboud University Nijmegen, 2007.

6. J. Berendsen and F.W. Vaandrager. Parallel composition in a paper of
Jensen, Larsen and Skou is not associative. Technical note available at
http://www.ita.cs.ru.nl/publications/papers/fvaan/BV07.html, September
2007.

7. G. Bhat, R. Cleaveland, and G. Lüttgen. Dynamic priorities for modeling real-time.
In A. Togashi, T. Mizuno, N. Shiratori, and T. Higashino, editors, FORTE, volume
107 of IFIP Conference Proceedings, pages 321–336. Chapman & Hall, 1997.

8. H. Bowman. Modelling timeouts without timelocks. In ARTS’99, 5th Interna-
tional AMAST Workshop on Real-time and Probabilistic Systems, LNCS, page 20.
Springer-Verlag, May 1999.

9. J. Camilleri and G. Winskel. CCS with priority choice. Inf. Comput., 116(1):26–37,
1995.

10. F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In M. Abadi and L. de Alfaro, edi-
tors, CONCUR, volume 3653 of Lecture Notes in Computer Science, pages 66–80.
Springer, 2005.

11. Rance Cleaveland, Gerald Lüttgen, and V. Natarajan. A process algebra with
distributed priorities. Theor. Comput. Sci., 195(2):227–258, 1998.

12. G. Frehse. Compositional Verification of Hybrid Systems using Simulation Rela-
tions. PhD thesis, Radboud University Nijmegen, October 2005.

13. B. Gebremichael, F.W. Vaandrager, and M. Zhang. Analysis of the Zeroconf pro-
tocol using Uppaal. In Proceedings 6th Annual ACM & IEEE Conference on Em-
bedded Software (EMSOFT 2006), Seoul, South Korea, October 22-25, 2006, pages
242–251. ACM Press, 2006.

14. W.O.D. Griffioen and F.W. Vaandrager. A theory of normed simulations. ACM
Transactions on Computational Logic, 2004. To appear.

15. O. Grumberg and D.E. Long. Model checking and modular verification. ACM
Trans. Program. Lang. Syst., 16(3):843–871, 1994.

16. H.E. Jensen. Abstraction-Based Verification of Distributed Systems. PhD thesis,
Department of Computer Science, Aalborg University, Denmark, June 1999.

17. H.E. Jensen, K.G. Larsen, and A. Skou. Scaling up Uppaal: Automatic verification
of real-time systems using compositionality and abstraction. In M. Joseph, editor,
Formal Techniques in Real-Time and Fault-Tolerant Systems, 6th International
Symposium, FTRTFT 2000, Pune, India, September 20-22, Proceedings, volume
1926 of Lecture Notes in Computer Science, pages 19–30. Springer, 2000.

18. C.B. Jones. Systematic Software Development using VDM. Prentice-Hall Interna-
tional, Englewood Cliffs, 1986.

30

19. B. Jonsson. A model and proof system for asynchronous networks. In Proceedings of
the 4th Annual ACM Symposium on Principles of Distributed Computing, Minaki,
Ontario, Canada, pages 49–58, 1985.

20. B. Jonsson. Simulations between specifications of distributed systems. In J.C.M.
Baeten and J.F. Groote, editors, Proceedings CONCUR 91, Amsterdam, volume
527 of Lecture Notes in Computer Science, pages 346–360. Springer-Verlag, 1991.

21. D.K. Kaynar, N.A. Lynch, R. Segala, and F.W. Vaandrager. The Theory of Timed
I/O Automata. Morgan & Claypool Publishers, 2006. Synthesis Lecture on Com-
puter Science, 101pp, ISBN 159829010X.

22. N. Klarlund and F.B. Schneider. Proving nondeterministically specified safety
properties using progress measures. Information and Computation, 107(1):151–
170, November 1993.

23. L. Lamport. What good is temporal logic? In R.E. Mason, editor, Information
Processing 83, pages 657–668. North-Holland, 1983.

24. L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

25. N.A. Lynch, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid I/O au-
tomata. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid Systems
III, volume 1066 of Lecture Notes in Computer Science, pages 496–510. Springer-
Verlag, 1996.

26. N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed al-
gorithms. In Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing, pages 137–151, August 1987. A full version is available as
MIT Technical Report MIT/LCS/TR-387.

27. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations, I: Untimed
systems. Information and Computation, 121(2):214–233, September 1995.

28. R. Milner. An algebraic definition of simulation between programs. In Proceedings
2nd Joint Conference on Artificial Intelligence, pages 481–489. British Computer
Society Press, London, 1971. Also available as Report No. CS-205, Computer
Science Department, Stanford University, February 1971.

29. R. Milner. Communication and Concurrency. Prentice-Hall International, Engle-
wood Cliffs, 1989.

30. I. Phillips. CCS with priority guards. In K.G. Larsen and M. Nielsen, editors,
CONCUR, volume 2154 of Lecture Notes in Computer Science, pages 305–320.
Springer, 2001.

31. J. Sifakis. The compositional specification of timed systems - a tutorial. In N. Halb-
wachs and D. Peled, editors, Proceedings of the 11th International Conference on
Computer Aided Verification, Trento, Italy, volume 1633 of Lecture Notes in Com-
puter Science, pages 2–7. Springer-Verlag, July 1999.

32. J.M. Spivey, editor. The Z notation: a reference manual. Prentice-Hall Interna-
tional, 1989.

33. B. Wachter and B. Westphal. The Spotlight Principle: On Process-Summarizing
State Abstractions. In A. Podelski and B. Cook, editors, Verification, Model Check-
ing and Abstract Interpretation, volume 4349 of Lecture Notes in Computer Science.
Springer, 2007. Nice, France.

31

A Notational Conventions

a actions
b Booleans
c channels
d durations (nonnegative real numbers)
e external actions
f, g, h functions (g also for guards)
i, j, k, n natural numbers
l locations
q, r, s, t states
u, v, w valuations
x clocks
y variables
E sets of external variables
H sets of internal (hidden) variables
I mappings from locations to invariants
K sets of committed locations
L sets of locations
P properties
Q,R (simulation) relations
S sets of states
V,W sets of variables
X, Y, Z sets
A, B timed automata
C universe of channels
E universe of external actions
L labelled transition systems
N networks of timed automata
T timed transition systems
V universe of variables
X universe of clock variables
B the Booleans
N the natural numbers
R the real numbers
α discrete actions
ρ update functions
τ the internal action

32

