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Abstract. The biphase mark protocol is a convention for represent-
ing both a string of bits and clock edges in a square wave. The pro-
tocol is frequently used for communication at the physical level of the
ISO/OSI hierarchy, and is implemented on microcontrollers such as the
Intel 82530 Serial Communications Controller. An important property
of the protocol is that bit strings of arbitrary length can be transmit-
ted reliably, despite differences in the clock rates of sender and receiver
(drift), variations of the clock rates (jitter), and distortion of the signal
after generation of an edge. In this article, we show how the protocol can
be modelled naturally in terms of timed automata. We use the model
checker Uppaal to derive the maximal tolerances on the clock rates, for
different instances of the protocol, and to support the general paramet-
ric verification that we formalized using the proof assistant PVS. Based
on the derived parameter constraints we propose instances of BMP that
are correct (at least in our model) but have a faster bit rate than the
instances that are commonly implemented in hardware.
Keywords. biphase mark protocol, formal methods, model checking,
theorem provers, timed automata.

1 Introduction

The biphase mark protocol (BMP) is a fundamental protocol that is widely
used in applications where data written by one device is read by another. It is
used, for instance, in microcontrollers such as the Intel 82530 Serial Communi-
cations Controller [24], in some optical communications and satellite telemetry
applications, and for communication between consumer electronics devices. A
variation of biphase mark, called “Manchester”, is used in the Ethernet. The
first rigorous, formal analysis of (some instances of) the protocol was carried out
by Moore [27] using the Boyer-Moore theorem prover Nqthm [10]. Moore used
the biphase mark protocol to illustrate a formal, logical model of asynchronous
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communication. We refer to [27] for additional information and references on
BMP.

In this article, we present the results of our efforts to model and analyze the
biphase mark protocol using the verification tools Uppaal and PVS. Our model
generalizes Moore’s model, since it incorporates “clock jitter” and the distortion
in the signal due to the presence of an edge is not limited to the time-span of the
cycle during which the edge was written. We use Uppaal [26], a model checker
for networks of timed automata, to automatically prove correctness of several
instances of the protocol and to find error scenarios based on some incorrect
instances. These experiments suggest constraints on the model parameters that
are necessary for correctness. Using the proof assistant PVS [28] we establish
that these constraints are in fact sufficient for correctness. Our main objective
for this article is to demonstrate that the timed automata framework [2] allows
for natural, straightforward modeling and analysis of this type of physical level
communications protocols. Methodologically, our results are interesting since we
use two different tools — the model checker Uppaal and the proof assistant PVS
— in a combined manner to analyze a single system. Both tools play a vital and
complementary role in our analysis. As a byproduct of our efforts, we manage to
find instances of BMP that are correct (at least in our model) but have a faster
bit rate than the instances that are commonly implemented in hardware.

Outline. Section 2 contains an informal presentation of the protocol. In Sec-
tion 3 we present our Uppaal model and the parameter constraints that we
inferred by trying to verify several instances of the protocol with Uppaal model
checker. Section 4 describes a straightforward encoding of the (semantics of) the
Uppaal model within the higher order logic input language of the proof assis-
tant PVS. Section 5 reports on the formalization with PVS of the (manual) proof
that the parameter constraints are sufficient for correctness. In Section 6, we in-
vestigate the consequences of the derived parameter constraints. In particular,
we show how to syntesize the instance of BMP with the fastest bit rate given an
upper bound on the time needed for the signal to stabilize after occurrence of
an edge. Finally, Section 7 discusses related work and draws some conclusions.

The full Uppaal and PVS sources are available at the URL

http://www.cs.ru.nl/ita/publications/papers/fvaan/BMP.html.

2 Informal Description of the Protocol

Essentially, the biphase mark protocol is just a convention for representing both
a string of bits and clock edges in a square wave. In the protocol (see Figure 1,
taken from [27]) each bit of a message is encoded in a cell, which consists of a
number of clock cycles and which is logically divided into a mark subcell and a
code subcell. A typical configuration is 16 cycles for the mark subcell and another
16 for the code subcell. The signal, which at any time is either high or low, always
changes value right at the beginning of a cell. In addition, if the signal encodes
a “1” the value also changes right at the beginning of the code subcell. If a cell
encodes a “0” then the signal remains constant throughout the cell. In order to
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Fig. 1. Biphase mark terminology.

decode the bit string again from the square wave, a decoder waits for an edge
that marks the beginning of a cell and then samples the wire after a specified
number of clock cycles (the sampling distance). If the value just after the edge
agrees with the sampled value then the decoder assumes a “0” has been sent,
otherwise it assumes a “1” has been sent.

A clear advantage of BMP over, say, the naive scheme in which a “1” is en-
coded by a high signal and a “0” by a low signal, is that BMP “synchronizes”
the clocks of coder and decoder at the beginning of each cell. In a setting with
unreliable clocks, a decoder might not see the difference between the naive en-
coding of 10000 consecutive 1’s, and the naive encoding of 10001 consecutive 1’s.
If BMP is used this problem does not arise, except of course when clocks become
excessively (depending on the other parameters of the protocol, usually 4 or 5
orders of magnitude worse than common clock crystals provide) unreliable.

Proving correctness of physical implementations of BMP is nontrivial due
the combination of at least three factors:

1. A physical system can not generate a perfect square wave. Edges will not be
vertical or square: an electrical signal changes continuously and may even
“ring” before stabilizing at its new level. In our model we will assume that
the value of the signal is nondeterministically defined (reading may produce
any value) during some bounded interval after the coder generates an edge.

2. If a signal is constant throughout a clock cycle then we may assume that
sampling of this signal by the decoder yields the correct value. However, if
the value changes during a clock cycle then any value may come out as we do
not know at which point during the cycle sampling takes place. In our model
we will assume that the decoder samples the signal nondeterministically at
some point during each clock cyle.

3. Physical clocks drift (that is, their rate may be too high or too low) and
exhibit jitter (that is, their rate may change over time). In our model we
will assume that the clock rates of sender and receiver are contained in an
interval, so that subsequent clock ticks may be separated by any length of
time in that interval.
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As a consequence of these complications, one can easily imagine scenarios in
which, for instance, a decoder altogether misses an edge and completely garbles
the remainder of the signal (in Section 3.10 we will present such scenarios). In
this article we identify the precise constraints on the various parameters of the
protocol (lengths of clock cycles, time before signal stabilizes, et cetera) that
must be met in order to ensure correctness.

3 Uppaal Model and Analysis

In this section, we describe the model that we constructed of the biphase mark
protocol and the analysis results that we obtained using the timed model check-
ing tool Uppaal. For a detailed account of Uppaal we refer to [26] and to
http://www.uppaal.com.

3.1 Architecture

Figure 2 presents the overall architecture of our Uppaal model. The model

edge
WireCoder Sampler Decoder

Clock

new out

tick

get put

in w

Tester

tock

s Clock2

Fig. 2. Architecture of the Uppaal model.

consists of a network of 7 timed automata (shown as rectangles), which commu-
nicate via shared variables (circles) and synchronization actions (labeled arrows).
Automaton Clock models the hardware clock at the coding side. The automa-
ton Coder models the encoding process: based on a sequence of bits (which
is received via variable in) and the tick events from the Clock automaton, it
generates edge events that determine a square wave. Within our model, the
environment (which is represented by the tester) places a new bit in variable
in whenever the Coder is willing to accept a get event. The Wire automaton
nondeterministically transforms the perfect square wave from the Coder into
a signal whose value, stored in variable w, is nondeterministically defined dur-
ing a specified interval after the coder generates an edge. Automaton Clock2,
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which is similar to Clock, models the hardware clock at the decoding side. The
Sampler automaton periodically copies (samples) the value of variable w into
variable new. The Boolean variable s is used to coordinate the sampler and
clock. Automaton Decoder models the decoding process. If at the occurrence
of a clock tick automaton Decoder observes that the value of new has changed
it starts counting a specified number of clock ticks and then compares the value
of new after those ticks with the value it had before. Depending on the outcome
it places either a 0 or a 1 in register out and informs the environment about
the fact that a new bit has become available via a put action. The automaton
Tester, finally, nondeterministically selects bits, places them in register in upon
request and checks whether the sequence of bits delivered via register out agrees
with the sequence entered via register in. Whenever it observes a discrepancy,
the Tester automaton jumps to a designated error location. Hence, in order to
establish correctness we must prove that the error location can not be reached.

3.2 Model Parameters

Figure 3 lists the parameters that are used in the model (constants in Uppaal
terminology) and gives an example instantiation. The domain of all parameters
is the set of natural numbers. Constant cell specifies the size of a cell in terms

cell 16
mark 8
sample 11
min 89
max 100
edgelength 89

Fig. 3. Parameters of the Uppaal model.

of the number of clock cycles. Similarly, mark and sample specify the size of the
mark subcell and the sampling distance, respectively. This specific configuration
is used in the Intel 82530 Serial Communications Controller [24]. Constants min
and max specify the minimum and maximum number of time units in a clock
cycle (say, measured in nanoseconds); we assume 0 < min ≤ max. Constant
edgelength specifies the number of time units needed for the signal to stabilize
after occurrence of an edge. The values listed for min, max and edgelength are
not meant to be realistic — our model’s clocks are much worse than any that
are used in real machines [14].

3.3 First Clock

Timed automaton Clock models the hardware clock at the coding side. The
automaton, which is displayed in Figure 4, only has a single location and a
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x <= max

x >= min
tick!

x := 0

Fig. 4. Clock.

single transition. The automaton performs a synchronization action tick! when
its clock x has reached a value between min and max, and then returns to its
initial state by resetting x.

3.4 The Coder

We worked hard to make all the timed automata as simple as possible. As a
result of our efforts, all automata in our model have at most 5 locations.1 The
automaton Coder, displayed in Figure 5, is one of the two timed automata in
our model with 5 locations. The automaton Coder describes how the biphase
mark protocol encodes a string of bits and clock edges into a square wave. In its
initial location C0 the automaton immediately (the location is urgent) jumps
via a get? transition to location C1, thereby telling the environment that it is
about to fetch a new bit from the in register. In the location C1, which is also
urgent, an edge is generated and the automaton jumps, depending on the bit
that is being transmitted, either to location C2 (in case in = 1) or to location
C3 (in case in = 0). A local integer counter n is used to count clock ticks.
Upon entering location C2 the automaton waits until mark clock ticks have
occurred, and then generates an edge and jumps to location C3. In location C3
the automaton waits until cell clock ticks have occurred and then jumps back
to its initial location to transmit the next bit. In our model, we assume that
there is always a next bit to transmit. It should not be difficult to generalize our
work to a setting where sometimes the environment has no more bits available
for transmission.

3.5 The Wire

The Wire automaton, displayed in Figure 6, is introduced to model our as-
sumption that it takes edgelength time before an electric signal stabilizes after
occurrence of an edge. The Boolean variable v is toggled when an edge? event
occurs. Thus, v evolves according to the perfect square wave that is generated
by the Coder. There is also another Boolean variable w, whose values reflect

1 Actually, the number of locations is not a good measure of complexity since in the
presence of integer variables each timed automaton is trivially equivalent to one
with just a single location. Without introducing any additional integer variables or
coding tricks we could have easily reduced the number of locations of the Coder
automaton to 3 if Uppaal would have permitted us to decorate transitions with
multiple synchronization labels, as in the tool Kronos [11].
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Fig. 5. Coder.

the actual observations that can be made on a physical wire. In the initial loca-
tion W0 the wire is stable and the values of v and w agree. Upon occurrence of
an edge? the Wire automaton moves to the unstable location W1 in which w
can be assigned any value at any time. After being unstable for edgelength time
units, the system moves back again to the stable location W0 and the value of
w settles to v. For the parameter assignments for which the BMP is correct the
Coder never generates an edge if the Wire is in location W1. We will prove
this by establishing that location W2 is unreachable in the full system for any
of the parameter assignments that we consider.

We find it convenient to give names to all the transitions in an automaton.
This is achieved by misusing the broadcast primitive in Uppaal: the broad-
cast actions fuzz ! and settle! do not synchronize with actions from any other
automaton, but are just there to give transitions a name.

In our model we assume instantaneous message delivery: edges generated by
the Coder may be detected instantaneously by the Decoder. We claim that the
constraints on the parameters that we derive in this paper to ensure correctness
are not affected when we introduce a fixed transmission delay for all edges.
However, we do not formally prove this claim in this article.

3.6 The Sampler

The Sampler automaton, displayed in Figure 7, only has a single location and
a single transition. The transition copies (samples) the value of the wire variable
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W2

W1
z <= edgelength

W0

w := 1 - w
fuzz!

edge?
z := 0,
v := 1 - v

z == edgelength
w := v

settle!

edge?

Fig. 6. Wire.

w to a variable new that is used as input for the decoder. To ensure that the
sample transition occurs exactly once during every clock cycle we use an auxiliary
Boolean variable s: if s = 0 then the sampler may sample and if s = 1 then the
(decoder) clock may tick. Only the samples taken during the mark and sample
clock cycles are actually used in the protocol, though.

s == 0

new := w,
s := 1

Sample!

Fig. 7. Sampler.

3.7 Second Clock

The Clock2 automaton, displayed in Figure 8, models the hardware clock at the
decoding side. This automaton is exactly the same as the Clock at the coder
side, except that it also reads/writes variable s to ensure strict alternation of
the sample and tock actions.

y <= max
y >=min && s==1

tock!

y := 0,
s := 0

Fig. 8. Clock2.

3.8 The Decoder

The Decoder automaton, shown in Figure 9, models in a straightforward man-
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D2

D1D0 new != old
tock?

old := new

put!
m := 0

m == sample - 1
tock?

out := (new != old),
m := m + 1,
old := new

m < sample - 1
tock?

m := m+1
new == old
tock?

Fig. 9. Decoder.

ner the decoding of the (sampled) wire signal into a bit string. The automaton
uses a local Boolean variable old to record wire values it has seen earlier. Like
the Coder automaton, the activity of the Decoder automaton is driven by
clock ticks. In the initial location D0, each clock tick causes the automaton to
compare the most recent value that has been sampled from the wire (new) with
the value stored in old. As long as these values remain the same no action is
taken. But as soon as the values of old and new become different, the automa-
ton concludes that an edge has occurred, moves to location D1, and toggles the
value of old. In location D1 the automaton waits until sample clock ticks have
occurred (counted using a local integer variable m) and then jumps to location
D2. If at that point in time new equals old then output variable out is assigned
the value 0, otherwise out is assigned the value 1 (cf Figure 1). In a subsequent
transition that occurs immediately, the environment is informed that a new out-
put has been produced (via a put! synchronization) and the Decoder returns
to its initial location.

3.9 The Tester

Figure 10 depicts the Tester automaton, the seventh and last component of
the model. This automaton is not part of the biphase mark protocol but just
a highly nondeterministic environment of the protocol that has been designed
to test its correctness. If the protocol (the Coder in fact) asks for a new bit,
the Tester puts a nondeterministically selected bit in shared variable in. The
Tester remembers which bits it has sent to the protocol; in and buf store the
most-recent two bits sent. If a third bit is requested by the Coder the overflow
location T3 is reached We will prove that for all parameter assignments for which
the protocol operates correctly, there is at most one bit that has been accepted
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in := 1
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in := 0
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put?
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buf := in,
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out == buf
put?

out != buf
put?

get!

Fig. 10. Tester.

by the Coder but not yet delivered by the Decoder. While searching for error
scenarios that arise for parameter assignments that do not satisfy the constraints,
we will encounter instances of our model in which two bits can be inside the
protocol. We felt no need to model a tester that can handle situations in which
three or more bits are sent but not yet received. Whenever the protocol (the
Decoder) produces an output, the Tester checks whether this is the expected
value. If it is correct, the Tester forgets the value, otherwise it jumps to a special
Error location. If the protocol is correct then the Error location can not be
reached.

3.10 Uppaal Analysis Results

The set of reachable symbolic states of our model is relatively small, and for all
properties and parameter assignments that we tried, Uppaal managed to estab-
lish validity or produced a counterexample within a second (running Upppaal
version 3.4.7 on a standard PC). Some basic well-formedness properties that
we tested are that the system contains no deadlocks, the coder never starts an-
other voltage transition (edge) while the Wire automaton is still in its unstable
location, and that there are never more than two bits in transit in the protocol:

A[] not (deadlock or Wire.W2 or Tester.T3).

But the key correctness property, of course, is that the Tester never enters the
Error location:

A[] not (Tester.Error).
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Whether these properties hold depends on the specific choice of the parameter
values. Through playing with different parameter assignments, and replaying the
error traces in the simulator, we discovered that there appear to be essentially
three different scenarios that may lead the Tester to the Error location: (1)
the decoder may miss the edge at the beginning of a cell, (2) the decoder may
sample too early, or (3) it may sample too late.

The first error scenario is illustrated in Figure 11. In this scenario, the coder

Sampling at very beginning long clock cycle

v

new
w

Coder start transmission of 1
Coder completes mark phase maximally fast

max max

Sampler samples at very end long clock cycle

mark * min

edgelength

Fig. 11. First error scenario: decoder misses edge at beginning of cell.

transmits a 1 and passes through the mark phase (location C2) maximally fast.
This means that mark · min time units after the edge event that marks the
beginning of the cell we already see the edge event that marks the end of the
mark phase (the line labeled v in Figure 11). We assume that after the first
edge the wire remains unchanged maximally long, that is edgelength time units,
whereas after the second edge the wire immediately takes the new value (the
line labeled w in Figure 11). Now the decoder may altogether miss the voltage
change on the wire if it (1) operates maximally slow for two clock cycles, (2)
samples at the very beginning of the first clock cycle, just before the value of w
changes, (3) samples again at the very end of the second cycle, right after the
value of w has changed again. In order to avoid this error scenario, the following
constraint on the parameters must be met, which ensures that an edge at the
beginning of a cell will always be detected by the decoder:

mark ·min > 2 ·max + edgelength (1)
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The second error scenario, in which the decoder samples too early, is illus-
trated in Figure 12. In this scenario, the Coder operates maximally slow whereas
the decoder operates maximally fast. The Coder transmits a 1 and remains in

min

mark * max edgelength

(sample − 1) * min

Coder starts transmission of 1 Coder completes mark phase maximally slow

Decoder receives 0
High voltage sampled at beginning clock cycle

Sampling at end of cycle, right after edge is generated

v
w
new

Fig. 12. Second error scenario: decoder samples too early.

the mark phase maximally long, that is mark · max time units elapse between
the two edge events (line labeled v in Figure 12). This time, the wire immedi-
ately takes on the new value after the first edge, and sticks to the previous value
maximally long after the second edge (line labeled w in Figure 12). The decoder
immediately detects the first edge and operates maximally fast. This means that
the clock cycle in which it samples the value that will determine whether a 0 or
a 1 will be decoded starts after (sample− 1) ·min time units. If we assume that
sampling takes place at the very beginning of this clock cycle, then the wrong bit
(namely 0 instead of 1) will be decoded if the sampling takes place right before
w changes its value for the second time. In order to avoid this error scenario, the
following constraint on the parameters must be met:

(sample− 1) ·min > mark ·max + edgelength (2)

This constraint ensures that the decoder will not sample too early.
The third error scenario, in which the decoder samples too late, is illustrated

in Figure 13. In this scenario the Coder operates maximally fast whereas the
decoder is maximally slow: at the point where the decoder samples the coder
has already started with the transmission of the next bit. In order to avoid this
error scenario, the following constraint on the parameters must be met, which
ensures that the decoder does not sample too late:

cell ·min > (sample + 2) ·max + edgelength (3)
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Sampling at very beginning clock cycle

Coder start transmission of 0
Coder completes transmission maximally fast

max max

edgelength

v

new
w

cell * min

sample * max

Sampling at very end of cycle, 1 received
Decoder detects edge

Fig. 13. Third error scenario: decoder samples too late.

An obvious question that arises is whether the three constraints introduced
above are enough to ensure correctness: is the error location unreachable for all
parameter assignments that satisfy constraints (1), (2) and (3)? This question
can not be answered using Uppaal, since Uppaal can only compute the set of
reachable states for a fixed parameter assignment, and there are infinitely many
parameter assignments that satisfy the three constraints. Using deductive veri-
fication and the theorem prover PVS, we will establish in the next two sections
that the three constraints together indeed guarantee correctness.

4 Translating the Uppaal Model into PVS

For the verification of the correctness of the biphase mark protocol with the
given parameter constraints in a symbolic fashion we use the theorem prover
PVS, which is a higher-order logic theorem prover developed by SRI [28]. We
employ a framework in PVS that provides us with the standard definitions for
automata and a guideline as to how to translate automata from Uppaal to PVS.
The translation is intended to ensure that the PVS model closely resembles the
Uppaal model, so that it is easy to validate and to propagate changes from one
model to the other.

An automaton in Uppaal consists of a number of locations, some state vari-
ables and clocks, and transitions (labeled arrows) from one location to another;
the transitions may also be labeled with assignments to the state variables and
clocks, and they may be annotated with guards. Our translation deals with each
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of these parts of the automaton in turn, yielding a PVS model containing loca-
tions, state variables, and transitions. The translation of the automata in our
Uppaal model from diagrams into our PVS framework in general proceeds as
follows:

1. The locations and state variables of the Uppaal model are modeled in PVS
as enumerations and records, respectively.

2. Anonymous transitions (transitions not labeled with an action label) need
to be labeled to distinguish them. There are none in the Uppaal model we
have, since all of its transitions are labeled.

3. Our approach focuses on local translations — each automaton is translated
into PVS with no regard for the context it will be placed in. Shared variables
complicate this, because they require that two independently translation au-
tomata synchronize on an otherwise invisible action (i.e. assignments to the
shared variables). Therefore we make that synchronization explicit. Shared
variables are replaced by local variables whose values are synchronized via
a parameter of the transition. For instance, the get! action is replaced by a
get!(b) where b is the value generated by the tester and read by the coder.

4. The union of the sets of events of all the automata in the system is used as
the global set of events. Explicit time delay is included as delay(d).

5. For each automaton, we define a local state and a local transition relation,
as well as the local initial state. The local transition relation must deal with
the global set of events — this is because our translation is a simple one and
does not take into account which events are relevant for which automata. No
change should occur in response to events not used locally in the automaton.

6. The parallel composition of the automata is constructed by hand. The global
state is a record containing the local states of each automaton. The global
initial state is exactly the product of the local initial states.

7. The global transition relation applies each local transitions to the appropri-
ate local state; since all local transitions are given the global event, synchro-
nization on shared events in the run is obtained.

We will perform each of these steps for the model of the biphase mark protocol
in the following sections. There is one place where we diverge from the Uppaal
model in Section 3: we translate the product automaton of the sampler and the
second clock, instead of translating each individually. The reason for doing so
is that the shared variable s, which ensures strict alternation of actions in the
automata, is not used in a way that our shared-variable translation can deal with.
It is, in the end, simpler to translate the product automaton than to invent a
complicated translation that can deal with the shared variable.

4.1 Merging Automata

The product automaton of the sampler and the second clock is easy to calculate,
and yields an Uppaal diagram like the one in Figure 14. We use this automa-
ton instead of the two separate ones because both automata write to the shared
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S0

y <= max

S1

y <= max

new := w

Sample!

y >= min

tock! y := 0

Fig. 14. Product of automata for sampler and decoder clock.

variable s, which makes our simple-and-straightforward translation to PVS in-
applicable.

In this merged automaton, we have two locations, that represent the state
s = 0 and s = 1 of the separate automata; again, Sample! and tock! events occur
in turn, with no more than max time between tock!s.

4.2 Removing Shared Variables

There are a few shared variables in the Uppaal model, as shown in Figure 2.
These are:

– in, between coder and tester.
– w, between wire and sampler.
– new, between sampler and decoder.
– out, between decoder and tester.
– s, the variable shared between the sampler and the second clock, is not

needed, since we use the product of those two automata instead.

Each of the uses, (reads or writes), of one of these shared variables can be
changed into a parameterized event so that all variables become local. Consider
in, shared between the coder and the tester. The tester nondeterministically sets
the value of in on several transitions labeled with get!. These can be replaced
by a parameterized get!(b) that represents the shared assignment in := b. In the
coder, there is only one transition labeled get?, and the (shared) value of in is
used in urgent transitions immediately afterwards. We replace it by get?(b), and
save the value in a local variable in. It is straightforward to prove that the values
of both local variables in in the two automata are always equal, which is what
we would expect of a shared variable.

Similarly, the value w that is read from the wire by the sampler can be added
as a parameter to the action Sample!. The wire’s local transition allows a Sample!
transition with parameter b only when the wire variable w has the value b. The
sampler’s transition tock! triggers a read of the value of new in the decoder. We
can add the value of new as a parameter to it and use that value where needed.

Finally, the value of out is written by the decoder when it does a put! action,
and the tester reads the value immediately. Here too, adding a parameter to pass
the value put by the decoder removes the need for a shared variable.
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4.3 Representing Events

The collection of events in PVS is represented by an abstract datatype — this
means that we automatically have axioms that the events are distinct, as one
would expect from an enumeration of all the distinct kinds of events. The PVS
code is shown in Figure 15. We see the four parameterized actions, two actions
without parameters, the two broadcast actions with no parameters (settle and
fuzz), and the additional delay event representing the passage of time. Note
that delay is parameterized by a posreal, i.e. a positive and non-zero amount of
time. This means that in our PVS model, there are no events which delay by zero
time. This is a subtle difference with the Uppaal semantics, where zero delays
are possible (they do not change the state or the value of any clocks though, so
their deletion from the PVS model does no harm).

BMActions : DATATYPE BEGIN

delay(d:posreal) : delay? % Time delay

tick : tick? % Sender clock tick

tock(w:bool) : tock? % Sampler clock tick

get(b:bool) : get? % Get message bit

put(b:bool) : put? % Message bit received

edge : edge? % Coder inverts wire value

fuzz : fuzz? % Wire during edge

settle : settle? % Wire stabilizes to value

sample(w:bool) : sample? % Sample from wire

END BMActions

Fig. 15. PVS Datatype for the Events of the biphase mark protocol.

4.4 Local States and Transitions

The aim of the translation into PVS is to prove that the parameter constraints
that have been deduced in Section 3.10 are correct, i.e. that all choices of param-
eters within those constraints yield a correct protocol. We attempt to remain as
close as possible to the Uppaal model, so that it is intuitively clear that the PVS
model represents the diagrams accurately. To this end we will do the following
for each automaton: define an enumeration of the locations of the automaton (if
it has more than one) so that we can refer to those locations by name; define
a record that holds the location of the automaton and its local variables and
clocks; define a transition relation on the local state where the primary selec-
tion is by event. This means that the transition relation is written in PVS like
“if event is delay, then do this; else, if event is get, then do this ; . . . ” — the
uniformity of expression defining the transition relation is important in partially
automating proofs over the automaton.

The remainder of this section shows the translation of specific automata —
the Clock, the Coder — in more detail.
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The Clock: The clock has only one location, and a single clock named x, so the
record structure for the state of the clock is very simple: a single field for the
clock x, as can be seen in Figure 16. One might argue that this representation
could be simplified, down to identifying the state of the Clock with the value of
the clock variable x, but we believe that consistency in structure is important
for the automation of proofs.

There are two different transitions that the clock can take: time can pass
(subject to the location invariant), or the clock can tick (subject to the transition
guard). The PVS code for this does a case distinction on the event in order to
determine whether a given state-transition is allowed. The PVS code for the
transition is shown in Figure 16. The PVS code defines a record type ClockState

ClockState : TYPE+ = [# x:Time #] ;

ClockTransition(s:ClockState,a:BMActions,s_:ClockState) : bool =

CASES a OF

delay(d) : s_‘x <= max AND s_ = s WITH [ x:= s‘x+d ],

tick : s‘x >= min AND s_ = s WITH [ x:=0 ]

ELSE s_ = s

ENDCASES ;

Fig. 16. PVS code for the Clock’s state and transition relation.

(the [# #] indicate a record) with a single field x for the clock. The transition
relation for the clock is named ClockTransition and is a function of three
variables, yielding a Boolean value. The parameters are s and s_, the local from
state and the local to state, while a is the global event that occurs; the transition
relation must state whether the transition from local state s to s_ when the
system performs an action a is allowed. The transition relation is defined using
a CASES statement, where we can list the events that change the local state of
the clock. We see the use of the ELSE clause in the CASES expression in order to
deal with “all-the-events-not-mentioned-yet.” The CASES statement is required
to be total by PVS, so we use the ELSE clause to make it so. It is important
to state that the state stays the same (s_ = s) when unhandled events occur,
since otherwise the state is allowed to change nondeterministically when other
automata perform an action.

The two events that are relevant for the Clock automaton are handled by
writing the precondition (either the location invariant or the transition guard)
in conjunction with an expression stating how the local variables should be
updated. The update expression is typically written as s_ = s WITH [ E ]. The
expression s WITH [ E ] has the value of the record s with the fields named in
E updated by assignment; we read this as calculating the new state based on s
and asserting that state s_ is that state. For the delay event, we need to check
that the location invariant is not violated by a delay of d time, and the clock
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x must advance by d for the transition to be acceptable. In a similar vein, the
transition for tick conjoins the transition guard with the resetting of clock x.

Coder: The structure of the coder is far complex than that of the Clock. There
are only 3 event types (get, edge, tick) that need to be handled, but since the
event labels occur multiple times in the diagram the expressions stating legality
of a particular state-transition are more complex. The presence of urgent loca-
tions adds the delay event to the list-of-events-to-handle. In Figure 17 we see
that in has become iv — this is because in is a reserved word in PVS. The value

CoderLocations : TYPE+ = { c0, c1, c2, c3, c4 } ;

CoderState : TYPE+ = [#

loc : CoderLocations,

n : below[cell],

iv : bool

#] ;

Fig. 17. PVS code for the Coder’s state.

iv is represented by a Boolean value; 0 or 1 would serve as well, but require an
additional type definition. State component n is declared to be below[cell],
which means n < cell; PVS requires that we prove this (which is trivial and done
automatically with typecheck-prove).

The transition relation for the Coder is fairly straightforward. Delay events
cannot happen when the Coder is in locations c0, c1 or c4 since these are urgent
locations (and recall that delays are non-zero in our PVS model), but the state
of the coder must stay the same when delay actions do occur otherwise. The
PVS code is shown in Figure 18.

The event get? can only occur when the Coder is in location c0, and it is
accompanied by a change in location and saving the parameter value to a local
variable. This is straightforward enough. The edge! event can occur in one of
three places; we write a disjunction of the transition expressions for each of those
three distinct transitions. Each one of those transition expressions — as usual
— checks that the initial location is correct, checks the guard on the transition,
and states what the resulting state must be. Finally tick? occurs in four places
in the diagram, and each of these is dealt with similarly.

Other Automata: The other automata in the system (the wire, the sampler with
the second clock, the decoder and the tester) are all straightforward to translate
— the state consists of a few fields for the local variables, and the transitions
are all of types similar to what we have already described. The complete PVS
specification for the automata can be obtained from the URL mentioned in the
introduction.
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CoderTransition(s:CoderState,a:BMActions,s_:CoderState) : bool =

CASES a OF

delay(d) : ( s‘loc = c2 OR s‘loc = c3 ) AND s_ = s,

get(b) : s‘loc = c0 AND s_ = s WITH [ loc:=c1, iv:=b ],

edge : ( s‘loc = c1 AND s‘iv AND

s_ = s WITH [ loc:=c2 ] ) OR

( s‘loc = c1 AND NOT s‘iv AND

s_ = s WITH [ loc:=c3 ] ) OR

( s‘loc = c4 AND

s_ = s WITH [ loc:=c3 ] ) ,

tick : ( s‘loc = c2 AND s‘n < mark-1 AND

s_ = s WITH [ n:=s‘n+1 ] ) OR

( s‘loc = c2 AND s‘n = mark-1 AND

s_ = s WITH [ loc:=c4, n:=s‘n+1 ] ) OR

( s‘loc = c3 AND s‘n < cell-1 AND

s_ = s WITH [ n:=s‘n+1 ] ) OR

( s‘loc = c3 AND s‘n = cell-1 AND

s_ = s WITH [ loc:=c0, n:=0 ] )

ELSE s_ = s

ENDCASES ;

Fig. 18. PVS code for the Coder’s transition relation.

4.5 Global States and Transitions

The global state of the entire system is of course the product of all the local
states of the constituent automata. The easiest way to achieve this in PVS is
to define a new record with one field for each of the constituent automata, as
shown in Figure 19. This global state contains no global variables, and hence
the composition of the transition relations is straightfoward as well.

GlobalState : TYPE+ = [#

now : Time,

clock : ClockState,

coder : CoderState,

wire : WireState,

sampler : SamplerState,

decoder : DecoderState,

tester : TesterState

#] ;

Fig. 19. Global state of the system model of the biphase mark protocol.

The transition relation for the global state is the conjunction of the local
transitions for each automaton applied to the local states; the event a is passed
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to each local transition, along with the relevant local state. By having a struc-
tured and straightforward representation of the global state, the global transition
becomes straightforward as well and we can later apply some automation to the
calculation of next-states in the executions of the global automaton. The global
transition relation is shown in Figure 20.

GlobalTransition(s:GlobalState,a:BMActions,s_:GlobalState) : bool =

s_‘now = s‘now + IF delay?(a) THEN d(a) ELSE 0 ENDIF AND

ClockTransition(s‘clock,a,s_‘clock) AND

CoderTransition(s‘coder,a,s_‘coder) AND

WireTransition(s‘wire,a,s_‘wire) AND

SamplerTransition(s‘sampler,a,s_‘sampler) AND

DecoderTransition(s‘decoder,a,s_‘decoder) AND

TesterTransition(s‘tester,a,s_‘tester)

Fig. 20. Global transition relation of the biphase mark protocol.

5 Proving Correctness, with Variations

The proof of the correctness of the biphase mark protocol was fairly straightfor-
ward, in large part thanks to the invariants turned up by the experimentation
with Uppaal. The additional verification found one omission in an invariant,
which was repaired by strengthening it; this enabled us to prove the correctness
of all instances of the protocol within the parameter space.

The proof in PVS of the correctness of the protocol and the necessity of
the given bounds on the parameters is purely symbolic, and shows that every
instance that falls within the parameter constraints suggested by the Uppaal
analysis is correct. The proof proceeds by collecting 37 invarants and verifying
each invariant in turn; together, these invariants imply the global correctness of
the protocol.

I : THEOREM

LET T = R‘states(i)‘tester IN

NOT (T‘loc = t3 OR T‘loc = error ) ;

Fig. 21. PVS code for main correctness theorem. The expressions for T represents
the state of the Tester at index i of run R, while T‘loc represents the location
the Tester is in.

The global statement of correctness is much as in the Uppaal verification:
in all executions of the automata for the biphase mark protocol, there is no state
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of the system in which the tester automaton is in state t3, or in state error. In
PVS this appears as the theorem shown in Figure 21. In the theorem, the LET
expression is substituted into the remainder of the theorem (after the IN), and
the whole theorem is implicitly universally quantified over any unbound variables
(in this case, index i and run R).

The Uppaal verification — in particular the invariants checked there —
gives a guideline for the formal verification of the protocol in PVS, but it is not
a road map. Indeed, as far as Uppaal is concerned, we need not bother with any
invariant other than that t3 and error are unreachable. This is both the strength
and the weakness of verification through Uppaal — we verify a single instance,
or several instances, and though the truth of Uppaal’s assertion that location
t3 is unreachable does not change, we cannot see how this truth is arrived at,
nor what the most general bounds of the parameters of the protocol might be.

Section 5.1 details the structure of the proof and the approach used, while
Section 5.2 shows how some automation can be introduced into the proofs in
order to shorten them and make them more understandable to the human reader.
Section 5.3 examines the effect of introducing automation into the proofs.

5.1 Structure of the Invariant Proof

With the model as given the correctness condition is expressed in terms of the
reachability of locations t3 and error. The correctness condition is given as an
invariant on the state of the system, as already shown in Figure 21. There are 37
invariants in all, each of which is proved by induction on the sequence of steps in
a run of the automaton. The invariants are grouped as follows (Figures 23 and
24 on page 23 show more detail):

– Invariants of the clock or coder in isolation, named Px (6 invariants).
– Invariants of the wire, sampler, or decoder in isolation, named Qx (6).
– Invariants of pairs of automata, named Rx (4).
– Invariants of the coder, clock and wire in parallel, named Tx (5).
– Invariants of all but the tester in parallel, named Gx (9).
– Invariants of the system as a whole, named Hx (6).
– The global correctness invariant, I (1).

These 37 invariants were checked with Uppaal on some instances of the pro-
tocol before beginning the PVS verification. In the PVS proof, some invariants
were re-ordered (since the proof of P5 needed the result of P6, for instance),
and some corollaries were introduced to make proofs shorter. In the P, Q and
R groups, each invariant was proved individually. Groups T, G and H were
proved simultaneously with the following approach (which is tailored to being
convenient in PVS — mathematically, we are merely showing that the group of
invariants is inductive):

1. For each invariant Ik to be proven in the group, define a predicate Ik(R, i)
that takes an automaton run R and an index i as parameters that asserts
the invariant property on the ith state of the run R.
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2. For each invariant Ik, write and prove a lemma Lk for the induction step of
Ik as follows (assume n invariants in the group):

I1(R, i) ∧ I2(R, i) ∧ · · · ∧ In(R, i) ⇒ Ik(R, i + 1)

3. Finally, define a lemma I for the group as a whole:

∀i . I1(R, i) ∧ I2(R, i) ∧ · · · ∧ In(R, i)

The proof of this lemma is simple: check the base case of the induction,
(i.e. that in all initial states, each invariant holds individually), and for the
induction step use lemmata L1 through Ln.

This approach can be used to find the interdependency graph of the invariants
as well, by determining which invariant-predicates are not used in each proof.
Figure 22 shows how the invariants of group G are interdependent — this also
makes clear that no smaller group could be constructed that is still provable.

G6

G1
G2

G3

G4

G5

G7

G8

G9

Fig. 22. The interdependence of lemmata in group G. An arrow from lemma
Gi to Gj means that the proof of lemma i needs the result of lemma j.

The “simple” invariants in groups P, Q and R are the sixteen invariants
shown in Figure 23. The proof of each of these is fairly straightforward: induc-
tion on the index of the state the invariant is applied to. The base case is trivial
and solved with (grind), the induction step requires checking the relevant tran-
sitions, which means that the global transition relation GlobalEffect needs to
be introduced and expanded to the local transitions. Since these steps are the
same for every proof, we define a simple strategy (scheme for automation) called
(auto-start) that starts off an inductive proof by dealing with the base cases
and the introduction of the local transitions (see Section 5.2 for more details on
the additional automation).
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Clock and Coder

P1 0 ≤ x ≤ max
P2 c0 ∨ c1 ⇒ n = 0
P3 c2 ⇒ in ∧ 0 ≤ n < mark
P4 c3 ⇒ 0 ≤ n < cell
P6 c4 ⇒ in ∧ n = mark
P5 c3 ∧ n < mark ⇒ ¬in

Wire, Sampler and Decoder

Q1 0 ≤ z
Q2 w1 ⇒ z ≤ edgelength
Q3 0 ≤ y ≤ max
Q4 d0 ⇒ m = 0
Q5 d1 ⇒ 0 ≤ m < sample
Q6 d2 ⇒ m = sample

Automaton Pairs

R1 c0 ∨ c1 ∨ c4 ⇒ x = 0
R2 s0 ∧ z > y + edgelength + max ⇒ w = new
R2 s1 ∧ z > y + edgelength ⇒ w = new
R3 d2 ⇒ y = 0
R4 w0 ⇒ v = w

Fig. 23. The “simple” invariants of at most two automata.

These sixteen invariants, along with one additional support lemma, take 204
proof steps to prove. Each invariant depends only on the invariants preceding it
in the list (hence P6 and P5 are reversed, since the naming of the invariants was
established before the proofs were begun). Additional automation can reduce the
number of steps taken considerably (i.e. by half), which we will examine shortly.

The remaining invariants are divided into four groups. The groups T, G and
H are intra-dependent, which was partly illustrated in Figure 22, while group
I contains only a single invariant. Figure 24 shows the invariants. The effort
for each intra-dependent group is far greater than the effort for the simpler
invariants listed above. The T group of five invariants requires 432 proof steps
— again, with additional automation this can be reduced considerably.

The G group of invariants is by far the most complicated of the nests of
interdependent invariants, and while proving it the original invariants suggested
by the Uppaal tests were found to be insufficiently strong to prove the entire
nest. The invariant G1 needs the additional condition

mark ≤ n ⇒ sample ·min−mark ·max ≤ z

This condition was discovered after staring at the proofs — all of which could not
be finished because of the lack of this information — for a few days. Once that
was done, the proofs were fairly straightforward again, with only the question
of which invariants were dependent on which others.
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Coder, Clock and Wire

T5 ¬w2

T6 (c0 ∨ c1 ∨ c4) ⇒ w0

T7 c2 ∨ (c3 ∧ in) ⇒ n ·min ≤ z − x ≤ n ·max
T8 c4 ⇒ mark ·min ≤ z ≤ mark ·max
T9 c3 ∧ in ∧mark ≤ n ⇒

(n−mark) ·min ≤ z − x ≤ (n−mark) ·max

Global (except Tester)

G1 d0 ⇒ ¬c4 ∧ (v = new ∨ new = old)
G2 d1 ⇒ c2 ∨ c3 ∨ c4

G3 d2 ⇒ c3 ∧ in = out ∧ v = new ∧ new = old
G4 d0 ∧ (c0 ∨ v1 ∨ (c3 ∧mark ≤ n)) ⇒ v = old
G5 d0 ∧ (c2 ∨ c3) ∧ n < mark ⇒ v 6= old ∧ z ≤ y + max + edgelength
G6 d1 ∧ (¬in ∨ c2 ∨ c4) ⇒

v = old ∧ (m ·min ≤ z − y ≤ (m + 2) ·max + edgelength
G7 d1 ∧ c3 ∧ in ⇒ v 6= old ∧

m ·min−mark ·max ≤ z − y
≤ (m + 2) ·max−mark ·min + edgelength

G8 d2 ∧ ¬in ⇒ sample ·min ≤ z < cell ·min
G9 d2 ∧ in ⇒ sample ·min−mark ·max ≤ z < (cell−mark) ·min

Global

H1 d1 ∨ d2 ⇒ t1
H2 d0 ∧mark ≤ n ⇒ t0
H3 d0 ∧mark > n ⇒ c0 ∨ t1
H4 c3 ⇒ t0 ∨ t1
H5 c1 ∨ c2 ∨ c4 ⇒ t1
H6 c0 ⇒ t0

Global Correctness

I ¬(t2 ∨ t3 ∨ error)

Fig. 24. Invariants for three or more automata in parallel.
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Although invariants H4, H5 and H6 can be proved easily from H1–H3 and
the G invariants, it turned out that H1–H3 need the later H invariants in their
proofs, which made this a new (though simple) nest of interdependent invariants.

Finally, I is an almost trivial conclusion of H1–H3 and H6.

PVS Command Count Note

EXISTENCE-TCC 1 Inserted by PVS
BETA 1 Reduce function application
INDUCT 2 For invariant I

SKOLEM 2 Manual instantiation
NAME 2 Introducing abbreviations
TYPEPRED 3 Needed for min < max
INST? 3 Automatic instantiation
ASSUMING-TCC 3 Inserted by PVS
IFF 5 Split boolean equivalence.
SUBTYPE-TCC 9 Inserted by PVS
AUTO-START 18 Partially automated strategy
GRIND 23 Prove automatically
HIDE 25 Sequent management
COMMENT 41 Sequent management
SKOLEM! 45 Automatic instantiation
REVEAL 49 Sequent management
LEMMA 62 Using invariants
INST 67 Manual instantiation
CASE 93 Introducing facts
GROUND 115 Decision procedures
PROPAX 124 Trivial decision procedures
REPLACE 131 Rewriting
LIFT-IF 139 Changing CASES to IF

DELETE 149 Sequent management
SPLIT 236 Changing IF to a split case
USE 265 Using invariants
EXPAND 728 Using definition
FLATTEN 748 Simplify sequent
ASSERT 1224 Simplify sequent

Total: 4313

Fig. 25. Proof statistics for first attempt at invariants.

Initial proof statistics, of the hand-made proof with little automation, are
shown in Figure 25 (these are entirely dependent on the PVS user that creates
them, though). The statistics show that all the proofs together use only 28 dif-
ferent proof commands, one of which is a locally defined strategy for the purpose
of initiating automaton invariant proofs (auto-start). Four are sequent man-
agement commands not immediately relevant for the proofs themselves (these
are (name),(hide), (reveal) and (delete)). Three are proof commands au-
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tomatically used by PVS for proving TCCs, (Type-Check Conditions, normally
inserted by PVS when it cannot automatically deduce the type of an expression).
One proof command is inserted by PVS automatically to finish a trivial proof
(one of the form P ⇒ P ). This leaves 19 different commands that are actually
typed by the user; the vast majority are (assert) and (flatten), which follow
from the habits of the PVS user who made these particular proofs.

It should be clear that the amount of effort to do the proofs is enormous
compared to the effort involved in the Uppaal verification. The main reason
for this is that initially it is not clear how each proof should proceed, and there
is little support built in to PVS for the kind of proofs that need to be done.
Eventually, we see that the structures of the proofs are remarkably regular, and
can develop some reusable automation for dealing with them.

There are several existing implementations of additional automation for proofs
in a specific framework, both in PVS and outside of PVS. One example of far-
ranging automation is ACL2, which is a highly automated first order theorem
prover which has been used for the mechanical verification of microprocessors
[29]. Similar (but much smaller-scale) microprocessor verification has been done
in PVS, although with no automation [15]. Protocol verification using roughly
the same framework as we have used here can be found in [12]. Automation of
PVS proofs in a specific context is mentioned briefly in [17], Section 6.6.1; it
is a shame that such improvements have not percolated into the standard PVS
distribution. The TAME modeling environment [5] offers automation for timed
automata models in PVS.

5.2 Introducing Automation to the Proofs

With the statistics of Figure 25 as a baseline, we can attempt to slim down the
proofs by introducing additional automation. Two examples that occur quite
frequently in the proofs are:

– Using (case) to split up an implication. The PVS command (split)
splits a sequent with an implication as follows:

(A ⇒ B) ` C becomes B ` C ∧ ` A

This throws away the fact that A holds in the left branch of the proof; hence,
we often use (case) and (assert) in order to achieve:

(A ⇒ B) ` C becomes A,B ` C ∧ ` A

By creating a tiny strategy (split*) that does this automatically, we achieve
two things:
1. The proof becomes shorter (in terms of user-entered steps)
2. It becomes clearer where this technique is used, i.e. it distinguishes these

frivolous uses of (case) from ones where real new facts are introduced.
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– Splitting a CASES statement. When confronted by a large CASES statement
in a sequent (which is common in the proof of the biphase mark protocol,
since we have many automata with fairly large transition relation expres-
sions), it is often desirable to split it into one sequent for every case in the
expression. This has the effect of examining each transition individually.
Typically, the sequent appears as:

{-1} CASES R!1‘events(i!1) OF
delay(d) : P1
tick : P2

...

This can be reduced to a collection of sequents, one for each case in the
expression, each with a specific event and transition predicate. For instance,
the second sequent to prove here would be

{-1} tick?(R!1‘events(i!1))
{-2} P2

...

This can be achieved by using (lift-if) to change the CASES statement
into a collection of nested IFs, and then using (split) to split the IF state-
ment repeatedly, with the liberal application of (flatten) and (assert) to
massage the sequent into basic shape (or prove particular subgoals automat-
ically). Automating this process in a single prover command (auto-step)
gives us:
1. Shorter proofs
2. A more uniform structure of the proofs

We gain additional flexibility by automatically expanding local transition
statements and by using the names of local transitions, instead of formula
numbers. A typical application of the resulting strategy is to expand and sim-
plify the local transition for the Coder with (auto-step (’c "Coder"))).

After re-doing the proofs with the additional automation (and with the
knowledge that the first run of a proof in PVS is nearly always a bit messy),
the proof statistics become much smaller. For invariant groups P, Q, R and T
results are shown in Figure 26.

This 79% reduction in the number of proof steps is partly attributable to
the increased automation afforded by the (auto-step) command. Some of the
reduction can be attributed to the difference between finding a proof (the ini-
tial proof attempt) and polishing a proof for presentation. While applying the
increased automation to the proof we also have the benefit of knowing how
the proof is supposed to go, and we can judiciously prune the proof of less-
than-optimal proof explorations. Additionally, it occurs fairly regularly that it
is unclear whether some subtree in a proof can be proved easily; once the proof
is done it is clear that (grind) would have done the job as well, so the re-run
of a proof replaces whole subtrees with (grind).
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Command Before After

EXISTENCE-TCC 1 1
INDUCT 1 1
SKOLEM 1 1
SPLIT* 1
ASSUMING-TCC 2 1
TYPEPRED 3 1
COMMENT 2
GRIND 9 18
SUBTYPE-TCC 9 9
CASE 10 6
PROPAX 12 2
HIDE 13 0
SPLIT 14 9
AUTO-START 16 22
SKOLEM! 17 11
LEMMA 18 9
INST 23 14
DELETE 34 17
AUTO-STEP 35
LIFT-IF 37 1
REVEAL 38 0
REPLACE 45 18
GROUND 59 23
USE 61 55
FLATTEN 75 32
EXPAND 111 24
ASSERT 217 77

Total: 826 390

Fig. 26. Proof statistics for groups P, Q, R and T, before and after automation.
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5.3 Summary of Automation

Once the structure of the PVS proofs for the biphase mark protocol was clear,
additional automation was introduced in order to reduce the amount of steps
used in doing the proofs. The comparisons of numbers of proof steps with and
without the automation made in the previous section suggest what could have
been. Future proofs with a simular structure may also benefit from this automa-
tion, using the new proof commands that were introduced:

– (split*) Handle implications in a nicer way than (split).
– (auto-start) Start an automaton proof by introducing local transition re-

lations.
– (auto-step) Expand and rewrite a local transition relation.

There is a trade-off, though, when doing automated proofs, between brevity
and comprehensibility. PVS’s tremendously powerful (grind) command can re-
duce many proofs to one step, once the proof has been found. Using (grind)
when it is unclear that the lemma is sound is unwise, since it takes some time
to grind its way through the proof, and then it can:

– Fail, returning you to the original proof state and requiring you to do the
proof by hand anyway, or

– Give you 64 (or some other large number) bizarrely formed subgoals to prove.

Neither of these results of (grind) are really useful for advancing the proof
itself. Therefore we feel that the use of (grind) should be restricted to those
proofs that really are trivial. Somewhere in the middle lies the ideal, of a proof
that is short enough to understand and not so thoroughly automated that it
is unbelievable. The use of the Uppaal model gives similar results: we know
something is true, but not necessarily why or whether the fact is interesting.

Consider invariant G9:

G9(R,i) : bool =

LET D = R‘states(i)‘decoder, C = R‘states(i)‘coder,

W = R‘states(i)‘wire, S = R‘states(i)‘sampler IN

D‘loc = d2 AND C‘iv =>

sample*min - mark*max <= W‘z AND W‘z < (cell-mark)*min ;

The important step in the proof of G9 is the induction step, which is proven
in the PVS lemma Gi:

Gi : LEMMA

G9(R,i) AND G3(R,i) AND G7(R,i) AND G2(R,i) AND G6(R,i) => G9(R,i+1)

The proof itself uses the earlier invariant Q3, the parameter assumption from
equation 3 (on page 12) and an additional lemma, called Gi1. The proof itself
has the following structure:

– Start with (auto-start).
– Expand G9 itself.
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– For each automaton, use (auto-step) to rewrite its local transitions and
prove trivial subcases.

– Do a little rewriting and formula manipulation, introduce the additional
invariants Q3 and Gi1 that are needed to prove each step.

Without automation, the proof of G9 took 179 steps, exploring blind alleys,
over-using (assert), and doing formula manipulation the tedious way. With a
little automation such as described in the previous section, the number of proof
steps declined to 59. In this simplified proof the structure of examining each
automaton’s local transitions was very visible. Further reflection, though, shows
that the proof can be reduced to 5 steps:

(AUTO-START T) % Deal with base case.

(LEMMA "Gi1" ("i" "j!1" "R" "R")) % Needed much later with this

(LEMMA "Q3" ("i" "j!1" "R" "R")) % particular instantiation.

(USE "SampleEarlyEnough")

(GRIND) % Let PVS do the work.

This particular proof is a good example of a type of proof commonly found in
mathematics texts: “Use lemmata Gi1, Q3 and the parameter inequalities; the
details are left to the interested reader.” In our context the interested reader is
the PVS theorem prover, which works out the details. Now, this proof might be
good for verification purposes but it is certainly not the kind of proof one can
write on first setting out to prove a property like G9. It is also not the kind
of proof you would want to present as a didactic example to show the kind of
reasoning needed in a particular domain, but again, as a succinct demonstration
of truth it is fine.

This suggests that we can distinguish three flavors of proof, created while
reasoning about the biphase mark protocol:

1. Exploratory proofs when we do not know how to prove the lemma — or even
if the lemma is true. These proofs use mostly basic commands from the PVS
proof language and are rather lengthy, although each step is very basic.

2. Polished proofs, using some automation that is built around the specific do-
main being studied and the framework that is in use. With suitable (not
overly case-specific) automation, the size of proofs can be reduced over 50%,
while their comprehensibility is improved because we can (for instance) re-
place a scattered collection of (expand), (lift-if) and (split) with a
single (consider-each-local-transition) proof command (although it is
called (auto-step) in our automation attempt).

3. Proofs that are as short as possible, for the purpose of machine verification of
the lemma. These are useful for re-checking a theory after changes have been
incorporated, or as a basis for “details are left to the reader” expositions.

6 Playing with the Parameter Inequalities

Now that we have formally derived a number of constraints on the protocol
parameters, it is interesting to explore the consequences of these results. An
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implementor of BMP will probably have limited influence on the values of min,
max and edgelength, but (s)he may freely choose the values of cell, mark and
sample. For which values of these parameters is the bit rate maximal? Are the
conventional implementation choices indeed the optimal ones?

Rather than the specific values for the lower bound min and upper bound
max on the time between clock ticks, we find it convenient to consider the ratio

ρ =
min

max
.

Since 0 < min ≤ max, ratio ρ is contained in the interval (0, 1]. If ρ = 1 we
have perfect hardware clocks, and the closer ρ gets to 0, the more unreliable the
clocks are. We also normalize the time edgelength with respect to the maximum
time between clock ticks:

E =
edgelength

max
.

So E specifies the number of clock cycles the signal may remain distorted after
occurrence of an edge. Now we can rewrite the parameter constraints (1), (2)
and (3) into:

mark · ρ > 2 + E (4)
(sample− 1) · ρ > mark + E (5)

cell · ρ > sample + 2 + E (6)

Since ρ ∈ (0, 1] and E ≥ 0, inequality (4) implies mark > 2. Using this fact in
combination with inequality (5) implies sample > 3. Substituting this in inequal-
ity (6) gives cell > 5.

6.1 Minimizing the Cell Size (Assuming E = 1)

Moore [27] assumed that the uncertain values read from the signal due to the
presence of an edge are limited to the time-span of the cycle during which the
edge was written, that is he assumed edgelength = max or equivalently E = 1.
With this additional assumption, the parameter inequalities further simplify to

mark · ρ > 3 (7)
(sample− 1) · ρ > mark + 1 (8)

cell · ρ > sample + 3 (9)

Hence with ρ close to 1 the minimal values for the other parameters are

mark = 4 sample = 7 cell = 11.

Implementors prefer to use instances of BMP with

cell = 2 ·mark (10)
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since this implies that the signal on the wire will be high approximately 50%
of the time and low 50% of the time, which is desirable from an electrical en-
gineering perspective (“DC balanced”). With this additional requirement, the
minimal values become

mark = 7 sample = 10 cell = 14.

These unconventional choices permit a faster bit rate (since fewer cycles are
spent on each bit) than the conventional choices

mark = 16 sample = 23 cell = 32, and

mark = 8 sample = 11 cell = 16.

The next lemma states that if we assume that the cell size is twice the mark
size, inequality 4 becomes redundant.

Lemma 1. Inequality (4) follows from (in)equalities (10), (5), (6), E ≥ 0 and
ρ ∈ (0, 1].

Proof. We derive:

mark · ρ
(10),(6)

> sample−mark · ρ + 2 + E
ρ∈(0,1]

≥ sample · ρ− ρ−mark + 2 + E
(5)
> mark + E −mark + 2 + E

E≥0

≥ 2 + E.

6.2 Maximizing the Clock Tolerance

By combining constraints (4), (5) and (6) we infer a lower bound on ρ, that is,
the maximal tolerance on timing:

ρ > max(
2 + E

mark
,

mark + E

sample− 1
,

sample + 2 + E

cell
) (11)

Figure 27 lists lower bounds for ρ for some example configurations, assuming
E = 1. These numbers can be easily validated using the Uppaal model checker.
Our results significantly improve on those of Moore [27], who obtained (for a
model that is less general) a lower bound of 0.95 for ρ for the 18-cycle version of
BMP, and a lower bound of 0.97 for the conventional 32-cycle version. Typical
clocks used in hardware are incorrect by less than 6 · 10−6 seconds per second
[14]. Thus,

ρ ≥ 1− 6 · 10−6

1 + 6 · 10−6
≈ 0.99999.

This means that in practice there is no need to optimize on the lower bound for
ρ.
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cell 16 32 18 11 14
mark 8 16 5 4 7
sample 11 23 10 7 10
ρ 0.91 0.82 0.73 0.91 0.93

Fig. 27. Lower bound on ρ for some example configurations (with E = 1).

6.3 Maximizing the Edge Distortion Tolerance

From a practical perspective, it is interesting to look for the maximal value for
E, since, as we will see in the next subsection, this will allow us to optimize the
bit rate. Using inequalities (4), (5) and (6) we infer that E may take any value
as long as:

E < min(mark · ρ− 2, (sample− 1) · ρ−mark, cell · ρ− sample− 2) (12)

Figure 28 lists upper bounds for E for some example configurations, taking a
value 0.999 for ρ. If cell = 2 · max then, by Lemma 1, the minimal value for

cell 16 32 18 11 14
mark 8 16 5 4 7
sample 11 23 10 7 10
E 1.989 5.977 2.994 1.988 1.985

Fig. 28. Upper bound on E for some example configurations (with ρ = 0.999).

the right hand side of inequality (12) is reached by either the second or third
subterm of the min-expression. Since sample occurs positively in the second term
and negatively in the third term, the choice of a real number value for sample
that maximizes E for this case is the one for which the second and third term
are equal:

(sample− 1) · ρ−mark = cell · ρ− sample− 2.

The optimal (in the sense that it maximizes E) choice for sample therefore is

cell · ρ + mark + ρ− 2
1 + ρ

This optimal value is typically slightly less than 3mark−1
2 since

3mark− 1
2

− cell · ρ + mark + ρ− 2
1 + ρ

=
(1− ρ)(m + 3)

2(1 + ρ)
≥ 0

Using this observation, we may infer that (for realistic values of ρ and m, say
ρ ≥ 0.999 and m ≤ 1000):
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– if mark is odd then a strict upper bound on the value for E is 4ρmark−3mark−3
2 .

If we choose for sample the (integer) value 3mark−1
2 then E may take any

value below this upper bound.
– if mark is even then a strict upper bound on the value for E is 3ρmark−2mark−4ρ

2 .
If we choose for sample the (integer) value 3mark−2

2 then E may take any value
below this upper bound.

We write Eopt(mark) for the upper bound on the value of E for mark size mark,
and sampleopt(mark) for the optimal choice for sample given mark. In all examples
of Figure 28 with cell = 2 · max the actual value of sample equals the optimal
value (in the sense that it maximizes the upper bound on E) that we derived.

6.4 Optimizing the Bit Rate

We can now generalize the results from Section 6.1 to a setting with arbitrary
E. If we know E and ρ then in order to optimize the bit rate we need to find
the instance of BMP with the smallest cell size that is correct. To obtain this
instance, we just take the smallest m with Eopt(m) > E and then set cell to 2m,
mark to m, and sample to sampleopt(m).

Based on our model we conclude that the 14-cycle instance of BMP is prefer-
able over the 16-cycle instance that has been implemented in the Intel 82530
Serial Communications Controller. The 14-cycle version of the protocol allows
for a more than 14% faster bit rate, but has basically the same tolerance for
signal distortion following an edge. Also, the 30-cycle instance of BMP probably
is preferable over the conventional 32-cycle version: it has almost the same tol-
erance for signal distortion after an edge (E = 5.97 if ρ = 0.999) but allows for a
more than 6% faster bit rate. Note however that our model is quite abstract and
ignores various engineering realities like metastability, reflection, noise and dis-
tortion. Like Moore [27], we offer our model primarily as a catalyst for thought.
It is up to the engineers to decide whether our model is accurate enough for the
purposes at hand.

7 Related Work and Concluding Remarks

Related Work A main source of inspiration for this article has been the work of
Moore [27]. The basic modelling assumptions that we use are similar to the ones
proposed by Moore, although our model is somewhat more general: unlike Moore
we allow for clock jitter in our model, and we also drop Moore’s assumption that
the distortion in the signal due to the presence of an edge is limited to the time-
span of the cycle during which the edge was written. Moore [27] developed a
general model of asynchronous communication and used this model to verify
the correctness of 18 and 32 cycle instances of BMP. Interestingly, Moore did
not succeed in establishing correctness of the 16 cycle instance that has been
implemented by Intel. As we pointed out in Section 6.2, the bounds on timing
uncertainty found by Moore are suboptimal.
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Model checkers for timed and hybrid automata have been used successfully
to analyze various physical level communication protocols for consumer elec-
tronics devices [9,16,20,6,18]. Since these protocols typically use variations of
biphase mark (e.g. Manchester) an obvious idea was to try to recast Moore’s
work in a setting of timed or hybrid automata. A first attempt in this direction
was made by Ivanov & Griffioen [25], who automatically verified a few instances
of BMP using the model checker HyTech. Their model is somewhat restrictive,
however, since for instance sampling was only allowed at the end of a read cy-
cle. In September 1999, the first author (FV) constructed the Uppaal model
that has been described in this paper (with only a few minor differences), and
gave a presentation of this model and the derived parameter constraints during
a symposium on the occasion of the retirement of Hans Peek as professor at the
University of Nijmegen. After model and slides were made available on the web,
several researchers took up the challenge to synthesize the parameter constraints
automatically. Bensalem et al [7] propose algorithms and methods to compute
invariants of infinite-state systems. Using their approach they managed to syn-
thesize versions of the last two parameter constraints for a simplified version
of our model in which the Wire and Sampler automaton have been left out.
The first parameter constraint is not needed in the simplified model. Henzinger,
Preussig and Wong-Toi [19] succeeded to partially synthesize our parameter con-
straints for BMP (they always had to fix some parameter) by running HyTech
on a manually constructed abstraction of the model.

An independent line of research was carried out by Van Hung [23,22]. In this
work, the BMP has been modelled using Duration Calculus, and a full param-
eter analysis has been carried out with PVS. Van Hung models beginning and
end of transmission, but assumes fixed clock rates (no jitter). The parameter
inequalities discovered by Van Hung are similar to ours but with some “off by
one” differences. Apparently, these differences are caused by some counterintu-
itive property of the Duration Calculus model: if the coder generates an edge,
then the signal on the wire will be unreliable for E cycles (RR in Van Hung’s
terminology) starting from the last tick of the receiver clock. We believe our
timed automaton model is more realistic.

Conclusions A fascinating question for us is whether our results about possible
improvements of bit rates of the biphase mark protocol carry over from our
model to the real world. Although we believe that our model accurately reflects
the operation of some implementations of BPM (such as Intel 82530), there
are other implementations in which the receiver operates in a slightly different
manner. In the popular AMD 85C30 Serial Communications Controller [1], for
instance, clock information is recovered from the BPM signal using a digital
phase-locked loop (DPLL). The DPLL is driven by a clock that is nominally 16
times the data rate. The DPLL uses this clock, along with the BPM signal, to
construct a receive clock for the data. Depending on the precize timing of edges,
the receive clock counter can be adjusted. To describe this mechanism accurately
would require an adaptation of our model. Apart from investigating this issue,
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another obvious direction for future research is to carry out a similar analysis
for the Manchester encoding protocol as it is used in e.g. the Ethernet.

Uppaal has turned out to be an (almost) perfect tool for this type of ap-
plication. Modelling the biphase mark protocol in terms of networks of timed
automata is very natural, the graphical user interface helps to visualize the au-
tomata, the simulator is a great help during the initial validation of the model,
and the ability of Uppaal to generate counterexamples and to replay them in
the simulator greatly helped to increase our insight in the protocol.

Several authors have explored extensions of timed automata tools that are
able to handle parametrized timed automata and to verify/synthesize parame-
ter constraints [21,4,13]. We have arrived at the conclusion that this is probably
not the way to go. Adding the feature of parameter handling to model checkers
greatly affects performance and reduces the size of the systems that can be han-
dled. Still, generation of nonlinear constraints (like in the case of BMP) turns out
to be difficult. The ability to handle complex models is essential for the success of
model checking technology. The protocol discussed in the present article is very
simple, but even in this case adding additional features such as termination, bus
collisions, and a more accurate modelling of the hardware would probably push
Uppaal to its limits. In our experience, it is typically easy to come up with
general parameter constraints (linear or nonlinear) based on the counterexam-
ples produced by Uppaal. The challenge therefore is to verify correctness of
the parametrized system while assuming these constraints. For this, the most
promising approach in our view is via a translation of the Uppaal model to a
general purpose theorem prover such as PVS and exploitation of powerful invari-
ant generation methods such as the ones proposed by [8,7]. For practical reasons
and also because we had already a manual proof of the invariants available, we
just used PVS and not any of the additional invariant generation methods.

The proof of the correctness of the biphase mark protocol in PVS is required
since the collection of Uppaal invariants alone is not enough to establish that
the parameter constraints are necessary and sufficient for the correctness of the
protocol. The formalization in PVS revealed a small omission in the invariants
from the manual proof and enabled us to establish global correctness of the
protocol for all of its instances. Additionally, we show how a small effort in
the automation of proofs can produce great improvements in proof size and
readability.
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