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Abstract: This paper presents a formal model of the real-time service allocation unit for
the Car Periphery Supervision (CPS) system—a case study proposed by Robert Bosch
GmbH in the context of the EU IST project AMETIST. The CPS system is a hybrid
system, which is modeled in terms of timed automata. It is done by splitting the values
of nonlinear continuous variables into finite set of regions and over-approximating the
constraints on continuous variables into clock constraints. Safety properties of the timed
model have been verified using U. This is a sufficient condition for validating the
corresponding safety properties of the initial hybrid system. The difference in time scale
between the CPS components have also been taken care of by over-approximating the
timed model using the convex-hull over-approximation feature available in U.
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1. INTRODUCTION

A number of modeling and verification tools for
real-time and hybrid systems have been developed.
For instance, the tools based on the theory of timed
automata, Alur and Dill (1994), such as K
by Bozga et al. (1998) and U by Bengtsson et al.
(1995); and the theory of hybrid automata, Henzinger
(1996), such as HT by Henzinger et al. (1997).
Recent development in devising clever computational
procedures have improved the ability of verification
tools to handle industrial-size problems automatically.
Yet many essential problems, specifically in the area
of hybrid systems, remain unsolvable with these tech-
niques.

1 This work was supported by the European Community Project
IST-2001-35304 AMETIST http://ametist.cs.utwente.nl.

Two major problems are (1) the lack of adequate ab-
straction concepts for modeling large systems, Alur
et al. (2000), (2) the exploding consumption of com-
puting resources by the verification algorithms, Burch
et al. (1992).

The present paper addresses the first issue and pro-
vides evidence that correct abstraction and appropriate
over-approximation techniques in modeling of large
systems leads to verifiable models from which one can
infer properties of the original model.

This is illustrated by the real-time service allocation
case study for Car Periphery Supervision (CPS) sys-
tem (cf. Kowalewski and Rittel (2003)) proposed by
Robert Bosch GmbH in the context of the EU IST
project AMETIST. The CPS system is a hybrid sys-
tem that interacts with continuous environment via a
discrete controller. Moreover, CPS safety properties



are parametrized with free variables, which should be
determined in order to prove the safety of the system.
The CPS model presented in this paper is a timed
automata based abstraction of the system constructed
manually by dividing the environment to a finite set of
regions.

Related Work Verifying whether a hybrid system H
satisfies a property P can turn out to be undecidable
for most cases. Appropriate abstraction can extract a
finite discrete system F from H by partitioning the
state space of H into finite number of regions. The
survey by Alur et al. (2000) aims in finding a class
of hybrid systems which can be abstracted into F and
whose verification against a property P is decidable.
The survey has shown that, proving that F satisfies P
is equivalent or sufficient for proving that H satisfies
P.

The approach used in the present paper is similar to
the one of T. A. Henzinger and P. -H. Ho (1995),
where, nonlinear continuous variables of the original
hybrid system are over-approximated to define a time-
constrained automaton, and the approximated automa-
ton will satisfy strictly fewer safety properties.

Another problem that leads to the state-space blowup
in timed automata is the time scale difference between
the different components of the system. This is often
the case when an embedded system interacts with its
environment (cf. Iversen et al. (2000)). One way to
solve such problem is to use the convex-hull over-
approximation method of Halbwachs et al. (1994)
when verifying invariant properties.

Outline The organization of the paper is as follows:
Section 2 presents an informal description of the CPS
system. Next, in Section 3, the CPS system is formally
modeled in a way that the desired properties are fully
preserved and the model of the system is abstracted
to allow verification. Section 4 presents the properties
and the verification results. Finally Section 5 con-
cludes the paper and lists some directions for future
work.

An abstract of this paper appeared as Gebremichael
et al. (2003). The complete U model of the CPS
system is available via the AMETIST project web-
page.

2. CAR PERIPHERY SUPERVISION SYSTEM

Car Periphery Supervision (CPS) refers to the func-
tionality and technology for obtaining information
about the environment of a car. Applications like park-
ing assistance, pre-crash detection and blind spot su-
pervision depend on CPS for the basic operation and
information sharing. Short Range Radar (SRR) sen-
sors are mounted in-front of the car, and they scan the

environment for nearby objects. The data collected by
the sensors is sent to the computing part of CPS known
as the Electronic Control Unit (ECU). The ECU pro-
cesses the data and invoked applications based on the
data. The structure of CPS and its environment is de-
picted in Fig. 1. A detailed description of the CPS sys-
tem is given in Kowalewski and Rittel (2003), Moritz
(2000) and Thiel et al. (2001).
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Fig. 1. The CPS system and its environment

The CPS system and its environment can be viewed as
a system consisting of three parts, namely:

(1) Environment: the environment of the CPS sys-
tem is a dynamic system with moving and sta-
tionary objects in-front of the car. Object velocity
and distance are important characteristics that
determine the behavior of the CPS system in a
continuous manner. There are several restrictive
assumptions that apply to the environment in
which the CPS system is supposed to operate.
This is done to make the system more tractable.

(2) Sensors: the Sensors are the interfaces through
which the CPS is informed about the behavior
of the environment. Sensors operate in discrete
time, which can either be periodic or event-
driven. The sensor component includes not only
the equipment for sending and receiving radar
signals but also a processor for basic data pro-
cessing and control. Typically, the sensors that
are situated in-front of the car return the distance
to a nearest object (from their perspective) ap-
proaching the car.

(3) ECU: the Electronic Control Unit is a board
computer that performs a collection of tasks
running on top of the OSEK operating system
(http://www.osek-vdx.org/). These tasks are
used to control the operation of the sensors,
and to deliver accurate and on-time information
about the environment to the applications.

3. FORMAL MODELING

Each of the three parts of the CPS system are operating
in different modes. The environment is a dynamic and
continuously changing system. The sensors operate on
a discrete time scale, while ECU tasks are real-time
tasks. An appropriate model for this system would be



a hybrid automaton. However, proving correctness of
a system using hybrid automata is difficult, if at all
possible.

Another approach is to abstract from the unnecessary
details of the model and transform it into a timed au-
tomata model, while preserving the desired properties.
In this section, the CPS system is modeled in timed
automata, and relevant properties are verified using
U. This model consists of six timed automata
that are put in parallel. The structure of the system is
shown in Fig. 2. The boxes represent the timed au-
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Fig. 2. Decomposition of CPS in timed automata.

tomata, the thin arrows represent the communication
via shared variables, and the thick arrows represent the
multiparty action synchronization.

3.1 CPS Environment

The environment is a collection of several objects
moving with different velocities at different distances
in-front of the car. An object i in the environment has
the approaching velocity vi and the angle θi relative to
the direction of the car’s movement (see Fig. 1).

Relative Velocity Let T = R
+ denote the time do-

main and let di denote the distance to an object i from
the middle of the front of the car. Then the relative
velocity of an object is defined as the function ḋi :
T → R and it is given by the difference between the
velocity of the object and the velocity of the car (vcar):

ḋi = vi cos(θi) − vcar

The CPS system only tracks the objects that are close
enough to the car. The distances to the remote objects
and their velocities do not affect the behavior of the
CPS system.

Regions As will be described in more detail in Sec-
tion 3.2, the sensors in the CPS system scan for a
nearest object, and return the distance to it. This can
be given as:

d(t) = min
∀i

(di(t))

The area in-front of the car is divided into twelve
regions (see Kowalewski and Rittel (2003) for details).
These regions are ordered in descending order and
numbered from -1 to 9 (see Table 1).

Table 1. CPS regions

Region name Region number (e)
FAR -1

PreCV 0

RGi 1...8

PreCrash 9

Assumptions The environment that can be handled
by the limited capacity of the sensors and other com-
ponents of the CPS is rather small. The following three
criteria restrict the behavior of the environment that
the CPS system can interact with.

(1) An object can approach the car with a relative
velocity in the range from 13m/s to 56m/s.

(2) Only one object is present in the environment.
(3) The CPS system will be externally reinitialized

when an object reaches the last region. In other
words, the system terminates after the crash.

Environment behaviors outside the above assumptions
have rare occurrence. Extra recovery treatments as
in Kowalewski and Rittel (2003), which are not in-
cluded in the current model, could be used to cope
with such behaviors.

Timed Automaton of the Environment Figure 3 shows
a timed automaton model of the CPS environment,
which is based on the allowed relative velocity defined
above. The automaton has four locations which corre-
spond to the regions names in Table 1. Initially objects
are far from the car (in location FAR and e:=-1). If an
object comes closer to the car it will reach the location
PreCV.

PreCV
x<=zpreCV_maxFAR

RG
x<=CVStepmaxPreCrash

e:=PreCVReg, x:=0

x>=zpreCV_min
e:=firstRReg, x:=0

x>=CVStepmin,
e<lastRReg e++, x:=0

x>=CVStepmin,
e>=lastRReg

x:=0,e++

Fig. 3. CPS environment template

The constants zpreCV max and zpreCV min are time
bounds on the transition of the environment from
PreCV to RG0. These time bounds are calculated from
velocity bounds and the length of the PreCV region.
Other time bounds shown in Fig. 3 are calculated
in a similar manner. This method of substituting the
maximal and minimal velocity constraints into clock
constraints is done in accordance with the method
of T. A. Henzinger and P. -H. Ho (1995).

An object has to cross all the regions up-to the
PreCrash region. (e ≥ lastRReg) before it can go
into PreCrash. As soon as the object is in PreCrash,
an immediate action has to be taken by the ECU. The
clock x is reset to measure the amount of time that
the object spends in the PreCrash location before the



ECU does something about it. Section 4 lists impor-
tant invariants that have to be satisfied when an object
reaches the PreCrash location.

3.2 Sensor

A sensor in the CPS system scans the environment
for a nearest object in-front of the car, and returns the
region value of the scanned object. A sensor has two
modes of operation: DSCAN and CVSCAN, and one IDLE
mode. These modes of operation are used as locations
in the timed automaton of the sensor depicted in Fig. 4.

CVscan
x<=Tcv

IDLE Dscan
x<=TdMax

x:=0DSCAN?

x>=TdMin,
e>=PreCVReg

x:=0, sd:=PreCVReg

CVSCAN?
x:=0

x:=0,sd:=e
e>sd

e<PreCVReg,
x>=TdMin

x:=0, sd:=DScanReg

CVSCAN? x:=0

e<=sd x:=0

x==Tcv

Fig. 4. Sensor Template

The sensor is initially in location IDLE and waits for
a command from the ECU. If it receives a DSCAN
command, it conducts a long range scan and, as soon
as it finds an object in PreCV, the sensor’s distance
reading sd is updated:

sdi(t) = ei(t),

where t is the time when the ith sensor scans the envi-
ronment from its own perspective (ei). For a CVSCAN
command, the sensor produces a maximum of eight
readings, one for each region RGi. It scans the envi-
ronment every Tcv time units, and sdi is updated in a
similar manner.

The CPS system usually has several sensors placed
in-front of the car. In this paper only two sensors are
considered. It is possible that the two sensors return
different readings. This may be a result of the fact that
they are situated at different positions, or the object
may have an irregular form, or simply there are several
objects in-front of the car. Thus, in general, there need
to be no correlation between the readings of the two
sensors (even though a visibility analysis shows that
the difference is rather small).

3.3 Electronic Control Unit (ECU)

ECU stands for the collection of tasks running on a
single processor. According to Kowalewski and Rittel
(2003), the ECU executes more than two tasks. Most
of these tasks are sequential and run in a predictable
manner. Thus, they can easily be grouped into two
tasks without affecting their behavior. These combined
tasks are called DFusion (sensor fusion) and EnvDe-
scription (environment description).

3.3.1. Sensor Fusion DFusion is a part of the ECU
which receives individual distance values from all sen-
sors and sends a “combined” single value to the re-
maining tasks. Combining several readings (sdis) into
one reading (d) can be done by the triangulation func-
tion as suggested by Kowalewski and Rittel (2003).
The maximum function, instead of triangulation, is
used here to compute the final value, since our model
deals with one-dimensional value of the sdis only.
DFusion is a periodic task and in every jth step it
computes d( j) as follows:

d( j) = max
∀i={1,2}

(sdi( j))

The variable d( j) is a shared variable which is also
readable by EnvDescription. Figure 5 shows the timed
automaton of DFusion.

x<=MT

x==MT, 
sd1<sd2
d:=sd2, 
x:=0

x==MT,
sd1>=sd2

d:=sd1,
x:=0

Fig. 5. Sensor Fusion

3.3.2. Environment Description EnvDescription is
a part of ECU that receives environment data from
DFusion and maintains accurate information about the
environment. While doing so, EnvDescription controls
the mode of operation of the sensors as well. The
sensor-controlling part is defined in Kowalewski and
Rittel (2003) as the “situation analysis” task. In the
present paper it is combined with the EnvDescription
task to avoid the state-space explosion.

The timed automaton of EnvDescription is shown in
Fig. 6. Initially EnvDescription is in location IDLE,
from which it periodically reads the value of d and
broadcasts the DSCAN command to the sensors. If the
value of d shows that an object is present in the
PreCV region, then the automaton jumps to location
(PreCV0), from which it sends the CVSCAN command.
There is a time delay of CVComDL time units be-
fore this command happens. Once the sensors receive
the CVSCAN command, the EnvDescription counts the
number of RGi regions by reading d computed by DFu-
sion.



IDLE
x<=MT,y<=DT

PreCV0
x<=CVComDL

RGi
x<=MT

CVSCAN!
x==CVComDL,
d>=PreCVReg

x:=0

x:=0,y:=0
d>=PreCVReg

d<PreCVReg,
x==MT
x:=0

d<PreCVReg
x:=0,y:=0

d>i, 
x==MT
i:=d,x:=0

y==DT
DSCAN!

y:=0

x==MT,
d<=i

x:=0

Fig. 6. Environment Description (ED)

4. VERIFICATION

4.1 Requirements

The primary goal of the CPS system is to provide
accurate information about the environment of the car
to the applications such as airbag inflation, parking as-
sistance, pre-crash detection and others. The accuracy
of the information provided by ECU is measured by
the time delay between a change in the environment
and the knowledge of the ECU about this change. The
properties are stated below as parametrized temporal
logic formulas, and they were verified using U
on a workstation with a 512MHz CPU and 256Mb of
RAM. The time required to verify these properties was
drastically reduced using the convex-hull approxima-
tion feature of U to less than a minute.

Property 1 (P1): EnvDescription has an accurate in-
formation about the object in the collision course.
This property is modeled in the following way: the
EnvDescription’s information ED.i about the re-
gion of the object should not deviate too much from
the environment’s information e1 about the same
object. The goal is to find the maximal difference Q
between these two values (the minimal Q for which
the formula is satisfied).

A[] (e1-ED.i <= Q and e2-ED.i <= Q)

Property 2 (P2): When an object reaches the pre-
crash region (the environment automaton is in
location ENV1.PreCrash), EnvDescription knows
about this (ED.i == lastRReg+1) within a few
time units (ENV1.x > P). Here ENV1.x represents
the time after the environment automaton moved
into location ENV1.PreCrash, and we are inter-
ested in finding the minimal value of P.

A[] ((ENV1.PreCrash and ENV1.x > P)

imply (ED.i == lastRReg+1))

Property 3 (P3): The ECU avoids false alarm. En-
vDescription never reports advancement of an ob-
ject toward the car before the object (the environ-
ment) actually does so.

A[] (ED.i <= e1 or ED.i <= e2)

Property 4 (P4): The system is deadlock free.

A[] (not deadlock)

4.2 Results

The CPS model satisfies properties P1 for Q ≥ 3,
P2 for P ≥ 5, P3 and P4. Note that Q can also
be computed from P as Q = dP/CVStepmine, since
the difference in the number of regions can also be
expressed as difference in time.

In the above model DFusion and EnvDescription run
in arbitrary order, no prior scheduling is assumed. It
is possible, however, to schedule the execution in such
a way that, DFusion computes d and EnvDescription
updates its counter immediately. Under such synchro-
nization EnvDescription will update its information
faster. Figure 7 shows the model of EnvDescription
using this alternative schedule. The model of the new
DFusion is not shown here, but it is similar to the one
in Fig. 5 except that the new model sends a synchro-
nization signal (ND!) to the EnvDescription as soon as
a new value of d is computed. After the synchroniza-
tion with DFusion, EnvDescription makes its decision
without a delay (see the urgent locations in Fig. 7).
For this setting the properties P1 for Q ≥ 2 and P2 for
P ≥ 3 are satisfied.

IDLE
x<=DT PreCV

x<=CVComDL

RG

x==DTDSCAN!
x:=0

ND?

d>=PreCVReg
x:=0

d<PreCVReg

d<PreCVReg
x:=0

d>=PreCVReg,
x==CVComDL
x:=0

CVSCAN!

ND?

ND?d<=i d>i
i:=d

Fig. 7. Modified Environment Description

In both cases P is equal to the time needed for an
information to propagate from the environment to
EnvDescription. That is the sum of the time spent by
the sensor (Tcv), DFusion and EnvDescription.

P = Tcv +MT +MT



But in the scheduled model, both EnvDescription and
DFusion need only one MT to update their informa-
tion, and propagation time is reduced to P = Tcv+MT .
These two cases show the worst and best cases for
determining the value of P. In general, however, P is
equal to Tcv + MT plus the overhead associated with
scheduling of the ECU tasks and the time spent by
each task. When OSEK operating system, is used to
schedule the ECU tasks, and if OSEKSchTime(Ti) is the
time delay due to scheduling and running the tasks T i,
then the value of P is

P = Tcv +MT + OSEKSchTime(Ti).

5. CONCLUSION AND FUTURE WORK

The car periphery supervision is a hybrid system.
Verifying properties for hybrid systems is undecidable
in general. However, the continuous variables of the
model, the environment in this case, can be discretized
to a finite block of regions in order to make verification
of the properties possible.

The different time scale between the environment and
CPS components have resulted in a state-space blow
up. The convex-hull over-approximation technique of
U was used to verify the safety properties of the
system. Another approach could be the exact acceler-
ation method of Hendriks and Larsen (2002).

The assumptions made on the environment of CPS are
too restrictive. Allowing only one object and having
non decreasing e in the regions can be omitted by
introducing a recovery mode in case when more than
one object appears in the RG regions. As described
in Kowalewski and Rittel (2003), the recovery mode
is a third mode of sensor operation, which scans for
follow-up objects when a nearest object disappears
from the scene. This scenario may happen when one
object in the collision course changes its trajectory and
disappears; and later on, another object, which was
close to the first one, enters a collision course. Adding
recovery method to the model for such a scenario
would be an interesting future work.
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