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Abstract

Scheduling in an environment with constraints of many
different types is known to be a hard problem. We tackle
this problem for an integrated steel plant in Ghent, Belgium,
using UppAAL, a model checker for networks of timed au-
tomata. We show how to translate schedulability to reach-
ability, enabling us to use UPPAAL’s model checking algo-
rithms.

1. Introduction

This report is a result of the participation of CSI
Nijmegen in the European Union Esprit long term re-
search project Verification of Hybrid Systems (http://www-
verimag.imag.fr//\VHS/). The Esprit program was set up to
improve the take-up of modern information technologies in
industry. The VHS project in particular is meant to stimu-
late research in the area of hybrid systems. These systems
typically consist of digital components in a continuous envi-
ronment. The correct behavior depends strongly on the in-
teraction between the digital components, say the controller,
and the controlled process.

Hybrid systems are important in numerous application
areas like avionics, consumer electronics and process con-
trol. The research in the VHS-project is focused mainly on
industrial process control. One of the major objectives of
the project is to analyze a number of case studies of the in-
dustrial partners. This includes explicitly the use of existing
verification tools for timed and hybrid automata.

Case study 5 of the VHS project (CS5) is brought into
the project by SIDMAR, a flat steel producer from Ghent,
Belgium. It deals with the part of an integrated steel plant
where molten pig iron coming from the blast furnace, is
converted into steel of different qualities before it enters the
hot rolling mill. The layout of the plant is presented in Fig-
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ure 1. We assume that the transformation of pig iron to steel
consists of a number of atomic, non-preemptive operations.
The number of treatments and the time needed for each of
these depend on the steel quality. Ultimately we want to
control the output of the plant, i.e. the quality of the steel
leaving the system.

At first sight this problem looks similar to a job-shop
scheduling problem. In job-shop scheduling theory one
supposes that there are a number of jobs and machines. A
job is usually defined as a sequence of operations which
have to be executed in a given order. Each of these opera-
tions is performed by a particular machine for a given period
of time. It is also assumed that each machine can perform
only one operation at the same time [5]. Furthermore, one
often assumes that each job can perform on each machine
only once an operation and that machines are not allowed
to be idle in between two operations [6]. The problem is to
schedule the operations in a way that it minimizes the time
it takes to complete all jobs. There are many efficient and
fast local search algorithms like simulated annealing or tabu
search [1], approaches like branch and bound, and shifting
bottleneck algorithms [3] to tackle different classes of the
job shop problem.

In case study 5 none of the assumptions mentioned in the
previous paragraph hold. Even worse: due to the topology
of the plant there are operations on certain machines that
prevent operations of other jobs on other machines. This
machines are not accessible during that operation. There are
also resources that move, jobs that can not wait indefinitely
for a machine to become free and operations that do not
have a fixed duration. In this context it can even be difficult
to decide whether a feasible schedule exists.

Timed Automata (TA) have proven to be a useful for-
malism to model and verify real-time systems. Timed Au-
tomata, due to Alur and Dill [2], are finite state automata
with clock variables. This formalism can be used to model
real-time requirements of systems in a natural way. In
recent years several tools for automatic model checking
based on timed automata have become available, such as
UpPAAL[9] and KRONOS [14]. Several case studies have
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Figure 1. Layout of the plant

proven that these tools can be used for realistic applications.

In this paper we give a model of the steel plant at SID-
MAR, using UppPAAL’s networks of timed automata. The
model describes the behavior that satisfies the given con-
straints. We use this model to search for a behavior that
completes the jobs in a prescribed order. To do so we will
use the UppAAL model checker. To be sure that a controller
can effectively realize this behavior we remove uncontrol-
lable nondeterminism in the model. Doing this the model
just describes a subset of the behavior of the plant.

Our model is based on two descriptions: a Petri net
model by René Boel and Geert Stremersch [4] and a tex-
tual description from SIDMAR [11]. We will try to use the
same terminology. In this paper a job will be called batch,
the order of operations is defined by a recipe, and most op-
erations will be called treatments.

In the next section an informal description of the plant is
given, followed by a UprpAAL model in section 3. The last
section discusses some results.

2. Plant description
2.1. Layout of the plant

The part of the plant we consider in this case study con-
sists of two convertor vessels, five machines, one storage
place, one buffering place, two normal tracks, a two over-
head cranes and one continuous casting machine. Figure 1
depicts the layout of the plant. Every load pig iron is trans-
ported in a steel ladle. The pig iron enters the system at one
of the the convertor vessels, where it is poured portion-wise
in steel ladles. Depending on the quality which has to be
produced the pig iron undergoes different treatments, mov-
ing through the system. The steel leaves the system at the

continuous casting machine, after which the empty ladle is
transported to the storage place. The casting machine con-
sists of two parts, a holding place and the casting machine
itself and works like a merry-go-round.

Ladles can move along the two normal tracks au-
tonomously. Moving ladles from one track to another or
to the buffer, storage place, or holding place involves the
overhead cranes. Whenever a ladle has to be moved for ex-
ample from machine#3 to machine#4, an empty crane has to
be available. Transport of the empty ladle from the casting
machine to the storage place, also involves a crane.

2.2. Recipes

The steel quality depends, as mentioned before, on the
the order of the different treatments. Machine#1 and ma-
chine#4 are identical and so are machine#2 and machine#5.
Hence, we have three types of machines that can perform
different types of treatments. A treatment is defined by
the time a ladle stays at a machine of a certain type. For
each duration the recipe gives an upper and lower bound.
Depending on the quality there is also an upper bound on
the total amount that a load can stay in the system. Nor-
mally a recipe involves at most four treatments. All recipes
start with a treatment on machine#1 or machine#4. Next,
all recipes require a treatment on machine#2 or machine#5.
Some recipes also require a treatment at machine#3 and a
final treatment at machine#2 or machine#5.

2.3. Timing constraints

Except for the timing constraints which are imposed by
the recipes there are three other types of timing constraints.
First, whenever a ladle is filled at the convertor vessel, it
needs some time before the next load pig iron can be tapped
at this vessel. Second, the cranes need some time to pick
and drop a ladle, and to move from one position to an-
other. Finally, a ladle has to wait for a certain amount of
time in the holding place before it is allowed to enter the
casting machine. After being casted the ladle waits for the
same amount of time, before it is leaving the holding place.
The duration of casting a ladle is controllable within known
bounds. All other times are unspecified.

2.4. Other constraints

In a machine and between two machines there is at most
one ladle. These positions can therefore serve as short term
buffer. Since each position can hold at most one ladle, there
is no possibility for ladles to pass each other. No ladle can
move for example from the convertor# 1 to machine#2 if
another ladle is at machine#1. The cranes cannot pass each
other. This also implies that only one crane can reach the



bottom section where the ladles enter the continuous cast-
ing machine. The buffer between the second track and the
storage place can hold at most five ladles. It can be used to
pass a ladle from one crane to the other.

A ladle can only leave the casting machine if there is
already a filled ladle at the holding place (except for the case
itis the last ladle). As soon as the pouring out of a steel ladle
has been completed, this ladle is removed and casting of a
new ladle starts. The casting machine works like a merry-
go-round. Filling the continuous casting machine with a
filled ladle happens synchronously with filling the holding
place with the empty ladle. This guarantees that the casting
machine is continuously in use.

2.5. Objective

The foregoing constraints define the safety requirements
of the plant. To meet the economic constraints we want
that the different steel qualities enter the continuous casting
machine in a predefined order. To begin with we are just
interested in a method that finds for a given order (of at
most 30 batches) a detailed schedule that realizes this order.
In a later stage we would like to have a method that gives
an optimized schedule with a minimized production time. It
should also be possible to change the model easily. Suppose
a crane fails, while the plant is in use, a new schedule that
takes this into account has to be computed.

3. The modéel

We will use UpPAAL’s input language to model the SID-
MAR steel plant. Systems in UPPAAL are modeled as net-
works of timed automata. The different components of the
system are modeled as timed automata [2]. The automata
are combined using UPPAAL’s operation of parallel compo-
sition with binary (handshake) synchronization. Two tran-
sitions in different automata can synchronize, if they have
the same label and one of them is suffixed with “!” and the
other with “?”. If there is more than one possible pair, the
choice is made nondeterministically. Note however that in
our model synchronization is symmetric.

Since in our model more than two components need to
synchronize, we will use UPPAAL’s concept of committed
locations. Whenever a committed location is entered no de-
lay is allowed and the next action transition must be an out-
going transition of that location. The names of committed
locations are prefixed with C. or c: . To ensure mutual ex-
clusion we use binary arrays. A process is only allowed to
enter a certain location if a corresponding bit is zero. It then
sets the bit to one and releases it as soon as it leaves the
location. For a more detailed introduction to UPPAAL see

[9].
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Figure 2. Synchronization of the TAs

3.1. Overview

In the model we distinguish between batches and the
plant. The state of a batch is defined by the position of the
load in the plant and the position within the recipe and the
time that has passed since the load entered the system. We
have for each batch a single TA that keeps track of the load.
We use two binary arrays, one array for each track, to en-
sure that at most one ladle can be at a position. This TA re-
sembles the layout of the plant. Secondly, we have a linear
(non branching) automaton for the recipe that determines
the duration and order of the treatments. This automaton
also takes care that the load cannot spend more time in the
system than specified. We will give more details in the next
sections.

In parallel with the beformentioned TAs we have a test
automaton. This is a linear automaton that reaches control
location f i nal * only, if the ladles enter the casting ma-
chine in the prescribed order. The recipes synchronize with
the test automaton before entering the casting machine. The
recipes synchronize with the positions of the ladle to ensure
that a treatment is performed by the proper machine. Figure
2 shows which TAs synchronize with each other.

By introducing the test automaton we translate the ques-
tion whether a feasible schedule exists into the question
whether the state f i nal is reachable. We use the diagnos-
tic trace to obtain the schedule. Hence, we assume that all
times are either deterministic or controllable. However the
original description [4] says that the duration of a treatment
is only known within certain bounds. Fortunately each ma-
chine can also function as short term buffer. In our model
we take the upper bound as duration of the treatment. If
the operation finishes earlier, we let the wait until the upper
bound has expired. Doing this we remove a main source of
non-determinism. The durations of the treatments in the ob-
tained schedule are considered as combined times for treat-
ment and waiting.
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Figure 3. Model of a simplified plant

3.2. A small example

In this subsection we give a model of a simplified plant
(Figure 3) to illustrate the basic ideas of the complete
model. We assume that three batches of steel of two qual-
ities must be produced. There is only one track with two
machines, a storage place and a simple casting machine.
We assume that there are four positionsi 0, i1, i2and
i 3 that can store a load of pig iron for some time. At the
first two positions we have machines machine#1 and ma-
chine#2. Empty ladles can enter a storage place from the
third position. The last positioni 3 is connected to the cast-
ing machine. Transportation along the track is autonomous
and untimed.

The processes | oadB1, | oadB2 and | oadB3 keep
track of the position of the ladle in the plant. We use a
binary array pos| of length 4 to ensure that there is at most
one ladle at a particular position. A ladle moves e.g. from
i 2toi 3 onlyif posl[3]==0. When it takes the transi-
tion to i 3 the assignment posl [ 3] : =1 is made. In this
way mutual exclusion is build into the model.

We assume that we have two machines. These machines
can function as buffer and also perform a certain type of

1This is not a final state in the usual sense, but just a state called f i nal

treatment. As long as this position is used as buffer the load
is at location i O or i 1, respectively. The locations ma-
chi neland nachi ne2 corresponds to loads that undergo
a treatment. When e.g. a treatment of type 2 on machine 2
starts, the transition B1T2on in the recipe automaton syn-
chronizes with a transition in automaton | oadB1 from lo-
cation i 2 to location machi ne2.

The recipes automata r eci peB1- B3 are divided into
two parts. The transitions from location r O to r end and
the invariants on locations r 1,..,r end determine the dura-
tion of the treatments, and the total amount of time that a
load may stay in the system. The transitions from location
rend to t er m nus consider the casting of the ladle and
its transport to the storage place.

Ladles can enter the casting machine at positioni 3. Ini-
tially the casting machine is empty. If there is a ladle at posi-
tion i 3, the casting machine cast i ng can leave location
empty and enter location full by transition t ur n. Recall
that the casting machine works like a merry-go-round. As
soon as a second ladle enters location i 3 the machine may
turn again. The empty ladle leaves the casting machine via
transition nr ut and the full ladle enters it viat ur n. Note
that both transitions are performed as one atomic step since
location busy is committed. Analogously, transitiont ur n
is succeeded by a transition doneB1- B3, which in turn is
succeeded by either transition qual i tyl or qual i ty2,
without any intervening delay or interleaving. By this cas-
cade of transitions, connected by committed locations, we
guarantee that the ladle has completed its recipe and that its
quality was scheduled when it enters the casting machine.
Casting a load lasts exactly one time unit; this is enforced
by the invariantt on<=1 and the guard t on>=1.

When a ladle is empty it may not pass the storage place
without being stored. Therefore, the transitions dunpB1-
B3 are declared to be urgent. They will be taken as soon
as they are enabled. When the test automaton has reached
the state f i nal , we know for sure that the recipes were
completed in the predefined order. Finally, the transition
fi ni shallows the casting machine to release the last ladle.

In this example we modeled three batches of pig iron.
There are two different steel qualities. The first one requires
1 time unit at machine#1 and 1 time unit at machine#2.
The recipe for the second quality asks for treatments at ma-
chine#2 and machine#1, both taking one time unit. Filled
ladles are not allowed to stay for more than three time units
in the system. This is guaranteed in the recipe automata by
the invariants t W\B1<=3,t WB2<=3 and t WB3<=3 respec-
tively. The desired order is first one ladle of quality 1, then
one ladle of quality 2 and finally one ladle of quality 1.

The model is not time-lock free. When for example a
load has been in the system for exactly three time units, and
then enters location machi nel or machi ne2 a deadlock
may occur. But this is not a problem of poor modeling. As



Figure 4. A timed automaton modeling a sin-
gle load

soon as we find a trace without time-locks that reaches the
final state, we have found a schedule. Time- and deadlocks
are part of the model and rule out infeasible schedules.

3.3. Thefull model

The largest automata in the full model are the automata
that represent the position of the load in the system (Figure
4). The locations i 0 to i 5 represent positions on the first
track. The second track is represented by locationsi i O to
i i 3. Mutual exclusion is guaranteed by the use of two bi-
nary arrays posl and posl | . The loads are moved by the
cranes along locations c0 to ¢5. To do this the loads syn-
chronize with the automata for the cranes. Location c5 is
connected to the casting machine. According to the speci-
fication the ladle waits before entering and after leaving the
casting machine. Hence, we included transitions wai t i n
and wai t out .

Each of the cranes is modeled by one automaton (Figure
6). Location cObot to c5bot model positions in which
the crane is empty. The locations cOt op to c5t op corre-
spond to positions in which the the crane is in use. When a
filled crane moves from one position to another it synchro-
nizes with the corresponding ladle viaa nove label. Lifting
and lowering a ladle takes time and the corresponding posi-
tion in the load automata, i 2 ori i 2, are occupied during
that operation. The labels i ncast and out cast make
the cranes synchronize with the casting machine. The as-
signment par k: =par k+1 and the guard par k<5 ensure
that at most five ladles are stored in the buffer.

Figure 5. TA modeling the casting machine

The binary array cpos is used to ensure that the two
cranes can not pass each other. Initially both cranes are in
different positions. In UPPAAL it is however not possible to
initialize binary arrays to values different from zero. There-
fore, we include an automaton i ni ti al i zer with just
two control locations. Its initial location is committed and
the only transition, leaving this location, initializes the ar-
rays.

The automaton cast i ng models the continuous casting
machine (Figure 5). Itis essentially the same as the automa-
ton in the example, but it also takes care for the waiting time
before and after casting the ladle. Transitioni ncast e.g.
resets the clock, and when the waiting time expires tran-
sition wai t i n is taken. The casting machine synchronizes
viai ncast and out cast with the crane to ensure that la-
dles enter only empty holding places. Casting a ladle takes
20 to 30 time units. This is modeled by the guardt on>=20
and the invariantt on<=30.

The convertors, the test automaton and the recipes are the
same as in the example. The recipes may of course depend
on the quality of steel, and the test automaton on the given
order. The durations of the treatments in the full model
range between 10 and 30 time units. The upper bound on
the total amount of time that a load of steel is allowed to
stay in system is about 120 time units. Note that all dura-
tions in this model are just rough estimation of the actual
durations in the real plant.

4. Resaults and Conclusion

The model described in the previous section was used
to do some experiments on a Sun Sparc 20 with 384Mb
memory. We used the depth-first model checking algorithm
from UPPAAL version 2.17. We computed for the example
in section 3.2 the minimal makespan, i.e. found an optimal
schedule with respect to total amount of time spend. To do
so we asked the UpPAAL to verify



Figure 6. Except for their own clocks the
cranes are modeled identical.

E<> | oadBl. si nk and | oadB2. si nk and
| oadB3. si nk and ti nme<=6

E<> | oadBl. si nk and | oadB2. si nk and
| oadB3. si nk and tinme<=5
The clock variable t i me is used to define the upper bound
on the makespan. We needed six minutes CPU time to
compute that we need at least six time units to complete all
recipes and store the ladles, and that there does not exist a
schedule that completes the jobs in five or less time units.

We were able to generate a schedule for a model with
three batches and just one crane in less than one minute
CPU time. We requested that first a load of quality 2 should
be produced and then two loads of quality 1. Steel of the
first quality needs a treatment of 30 time units on either ma-
chine#1 or machine#4 and than a treatment of 30 minutes at
machine#2 or machine#5. The recipes for steel of the sec-
ond quality start the same, and add a final treatment of 10
time units at machine#3. The upper bound on the makespan
is in both cases 120 time units..

We asked UPPAAL to verify E<> test.final. Fig-
ure 7 shows the automatically generated schedule. It starts
with filling a load on the first track. This load then under-
goes its treatment on the machines on this track (time units
0 to 70). Then the second load is tapped at the convertor
on the second track. This load undergoes its treatment on
the second track, while the first load is transported to the
casting machine to wait, and the last load is tapped on the
second track (time units 70 to 120). While the first load

Figure 7. Schedule obtained from an automat-
ically generated trace.

is casted, the second load transported is to the casting ma-
chine and the third load is treated on track 2 (time units 120
to 150). Finally load B3 is transported to the storing place,
load B1 is casted and load B2 finishes it recipe and enters
the casting machine. This schedule is of course not optimal
and modest variations to this model made verification even
impossible, due to memory overflow.

Th. Hune, K.G. Larsen and P. Pettersson [7] showed
for a physical model of the SIDMAR plant how to synthe-
size control programs from diagnostic traces. A similar ap-
proach to the one presented in this paper was used by P.
Niebert and S. Yovine in [10]. They determined for Case
Study 1 of the VHS project [8] a schedule for an experi-
mental batch plant. Using algorithmic approaches from real
time verification, they were able to compute optimal sched-
ules, which improve over currently used ad hoc schedules.

The approach presented in this paper is useful for con-
straint solving, i.e. to determine for a given deadline,
whether a feasible schedule exist or not [12]. The advan-
tage of our approach is that we can use well known al-
gorithms and a powerful formalism to model a scheduling
problem. We can add topological and timing constraints
easily without being forced to change the underlying algo-



rithms. The model checking algorithm as it is implemented
in UPPAAL so far [13] does not allow to determine the
minimal makespan straightforward, but forces us to deter-
mine for several deadlines if a feasible schedule exists. We
will investigate whether it is possible to incorporate ideas
from branch and bound methods to overcome this problem.
We also hope to profit from new developments in the field
of model checking.
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