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Preface

Writing a thesis is an ordeal, writing a preface even more so. It is well known that
almost nobody is going to read the thesis (except for the manuscript committee, my
supervisor, Judi Romijn, Angelika Mader, Jim Kapinski and maybe you, honorable
fellow scientist. Thanks!), but almost everybody is going to read the preface. Prob-
ably, because the reader hopes to get some insight into the author’s mind, to see
who else was involved, to see whether their own name is mentioned, or to see who
is responsible. Or maybe just because this is the most readable part of this book.

Nicht nur der Tradition gehorchend möchte ich mich als Erstes bei meinem
Doktorvater Prof. Dr. Frits Vaandrager bedanken. Ohne ihn wäre dieses Buch nicht
geschrieben worden, auf jeden Fall nicht durch mich. Aber Dank gebührt ihm nicht
nur, weil es ihm behagt hat einem Mathematiker die Umschulung zum Informatiker
an zu bieten, er hat mich all diese Jahre hindurch auch noch begleitet. Er ist ein
kritischer Geist, der mich gelehrt hat, dass der Teufel nur allzu häufig im Detail
steckt. Es geht nicht nur darum, dass etwas stimmt, es sollte auch bewiesenermaßen
wahr sein. Frits ist aber auch einäußerst angenehmer Chef, der es versteht eine
stimulierende Arbeitsatmosphäre zu schaffen.

As you take a look on the first pages of each chapter (page19, 43, 67, 95,
and109) you will see that most of them are a result of a joint effort. I therefore
like to thank my co-authors Gerd Behrmann, Ed Brinksma, Thomas Hune, Kim
Larsen, Angelika Mader, Paul Petterson, Judi Romijn and Frits Vaandrager, since
they made – believe it or not – doing science a fun experience. To get an impression
you should try to use Danish feta cheese to illustrate 3-dimensional regions. This
works much better than mozzarella. I was lucky to participate in the EU research
project VHS. Not only did it lead to most of the joint work in this thesis, it was
also an outstanding opportunity to meet many interesting researchers from all over
Europe. I enjoyed this project a lot. Thanks. I would also like to thank Henning
Dierks, though our joint work is not included in this thesis.

Besonders herzlich m̈ochte ich mich auch bei meiner Doktormutter Mirèse
Willems bedanken. Sie hat nicht nur dafür gesorgt, dass der Laden lief, sondern
hatte auch immer ein offenes Ohr für die Nöte der Doktoranden.

Erg bijzonder was dat ik, ook al moest ik de afgelopen jaren meerdere keren
binnen ons mooie gebouw verhuizen, een vaste kamergenote had, waar ik het erg
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2 Preface

goed mee heb kunnen vinden. Mariëlle nam altijd de tijd, ook als ze zelf druk bezig
was, om mijn vaak onnozele vragen over wiskunde, informatica of het gebruik van
de Engelse taal te beantwoorden. Ook kon ik altijd bij haar terecht voor stroop-
wafels, chocolade (Aldi rules) of letters (Een van de meest nijpende problemen
in de moderne wiskunde is het gebrek aan letters). En niet te vergeten dat je met
Mariëlle ook de importante zaken van het leven kunt bespreken, zoals de lokale
middenstand, het openbaar vervoer, of de nieuwe outfit van Prinses Marilène.

If you ever have the opportunity to join the Informatics for Technical Appli-
cations group, you should definitely try it. It will give you the opportunity get a
better insight in various fields such as European computer science human interest
stories, Danish Christmas traditions, French cuisine and automotive transporta-
tion, Dutch immigration service, European royalty, North German verbal commu-
nication, South German feminism and welding, Brabantian proverbs and naming
schemes, including the joy of having multiple initials. Thanks for all those cozy
cups of coffee.

Via deze weg wil ik nog graag Marieke (A2rechts) en Karin (B1) bedanken.
Marieke heeft me in Nederland geı̈ntroduceerd, en Karin heeft me bij Melanie
gëıntroduceerd. Beide zijn erg goed bevallen, en ik ben er erg dankbaar voor.
Verder wil nog ik nog Mies en Mowie bedanken, omdat zij me door de jaren ge-
steund hebben, en altijd verheugd waren als ik rond (hun) etenstijd weer thuis
kwam.

It all started, of course, when I grew up in Teglingen, Lower Saxony; my
paranymph Claudia already shared the frontmost bench in elementary school with
me, since we were the shortest. But as I had many schoolmates, numerous teach-
ers, a lot of neighbors, and an extensive family – which I still have – I omit special
thanks. Let me just say: Those years didn’t harm, thanks.

The reader who is just reading the preface is advised to take a look at the cover,
which was designed by Aiḿee, and for those who intend to read the remaining 154
pages I will conclude with a proverb in my mothers tongue, which captures the
basic feeling when you are writing a thesis.



Kien Tied, kien Tied.

Low Saxon proverb
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1

Introduction

The 9000 series is the most reliable computer
ever made. No 9000 computer has ever made
a mistake, or distorted information. We are
all – by any practical definition of the word –
foolproof, and incapable of error.

HAL 9000, 2001: A Space Odyssey

1.1 Formal Methods

Tuesday, June 4, 1996, marks the beginning of a new chapter for the European
aerospace industry. The floodlit Ariane 5, with its central fat rocket and its two
thin solid boosters aside, awaits its maiden flight. Since the visibility criteria are
not met at the beginning of the launch window at 08.33h local time, the launch is
postponed. The electric field at the launch site of Kourou is negligible; there is
no risk of lightning. Within the next hour the weather conditions improve, such
that the rocket ignites for lift off at 09.33.59h. It gains height quickly. About 40
seconds after lift off the launcher suddenly veers from its intended path. The links
between the boosters and the main stage break because of high aerodynamic load.
This triggers the self-destruction mechanism. The debris of the vessel scatter over
an area of about 12 square kilometers of the surrounding mangrove swamps.

According to the report of the Inquiry Board [Lio96] the vehicle veered from its
path because the subsystem that computes the velocity and angle of the launcher
was malfunctioning. The malfunctioning subsystem was backed-up by a second
identical system, but this failed for the very same reason. The error originated in a
function that worked perfectly well in Ariane 4 for years. The horizontal velocity
of Ariane 5 in the early part of its trajectory, however, is much higher than that
of Ariane 4. This caused a software exception when this data was converted from
one format to another. Bitter was that the function that caused the error served no
purpose anymore in the Ariane 5; it was maintained for reasons of commonality.

The design of the Ariane 5 was biased towards managing random failures; for
this it included for example a back-up system for each critical system. However,
the destruction was not caused by a random failure, but by an error in the design.
The destruction of Ariane 5 now serves as one of the standard examples to moti-
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12 1 Introduction

vate the use of Formal Methods. The purpose of these methods is to help making
a good design, and to find design errors way before the system is implemented.
These methods have proven to be useful in numerous case studies [CW96]. For-
mal Methods use mathematically based languages to describe soft- and hardware
systems, and provide methods and techniques to prove whether a given model does
satisfy the requirements. The languages serve for modeling systems unambigu-
ously, which is itself valuable and does in many cases reveal inconsistencies.

The formal model then allows also to employ techniques to prove mathemat-
ically that the model is correct. This is process is called verification. Verification
can be done either by proving that the model relates to a simpler correct model,
or by proving that the model satisfies a correctness property. These proofs can
be done manually, but even for small systems they tend to be tedious and error
prone. The two most prevalent methods techniques to computer aided verification
areTheorem ProvingandModel Checking. Theorem Proving automates the pro-
cess of proving correctness, but requires in many cases user interaction. Model
checking can handle only restricted classes of models, but if it is applicable, it ver-
ifies the correctness automatically, or it finds an error and gives information on how
to reproduce it. In this thesis we will study model checking for timed and hybrid
automata models.

1.2 Timed and Hybrid Automata

A formalism that is widely accepted for modeling soft- and hardware systems is
that ofautomata1, or labeled transition systems. An automaton describes the be-
havior of a system as a set of transitions from one state to another. A state can
be considered as a snapshot of a system. The state of mechanical cash register for
example represents the position of the wheels in the clock work, or, on a more ab-
stract level, what can be seen on the display. Whenever a wheel turns or the display
changes we may model this as a transition from one state to another. We may label
this transition with a symbol, to model that the state changes by pressing the key
with that symbol.

Automata have proven to be suitable for modeling in particularreactiveand
concurrent systems. As the name suggest, reactive systems interact with their en-
vironment, which is usually a process that has to be controlled. Based on input
from this process a reactive system gives feedback to that process, to establish that

1 The term automaton may cause confusion to those unfamiliar with it. There is nothing automatic
in an automaton. An automaton is a description of a system, rather than the system itself; the term
automata is also used as synonym for the language of the description. The philosophy of an automa-
ton model is to consider the system as if it were implemented as a physical automaton. This makes
this language in particular suitable for modeling soft- and hardware systems.



1.2 Timed and Hybrid Automata 13

Figure 1.1: The train gate has to be closed before the train passes the gate.

the overall system behaves as desired. A typical example is a train gate controller,
which closes the gate when the sensor detects an approaching train. The correct-
ness of a reactive system depends strongly on its environment; verification has also
to consider the process that has to be controlled. As illustrated by the Ariane 5, a
correct controller for one rocket, may behave incorrectly in another.

In many cases subsystems have to interact with other subsystems to complete
a task. These systems are called concurrent systems. Most approaches based on
automata have a notion of synchronization that allows to model subsystems sep-
arately. A typical example of a concurrent system is a air travel booking system,
which allows different travel agents to issue tickets concurrently.

Some systems act in an environment in which time plays an important role.
The train gate controller for example has to close the gate within some seconds,
rather than hours, and the booking system should acknowledge a request within a
certain time. Timed automata include so calledclocks– continuous variables with
rate one – to capture timing aspects. In some cases clocks alone are not sufficient
for modeling the continuous behavior of a system, for instance, if the model has
to take the early trajectory of a rocket into account. For this there is the class of
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hybrid automatathat allows to put any type of continuous behavior into the system
description[ACH+95]. Even though hybrid automata are richest of these classes in
terms of expressivity, when it come to model checking timed automata or untimed
automata may be a better choice.

1.3 Model Checking

Given a formal model one aims to show that it satisfies its specification. This
specification might be given by a simpler model, or, as in this thesis, by a formula
in a temporal logic. These logics allow to specify properties such as “Each request
will eventually be acknowledged”, or “Whenever a train crosses, the gate is closed.”
Actually, this thesis deals only with simple reachability problems, i.e. whether a
given state can be reached from the initial configuration. Usually these states are
considered bad states which should not be reachable. Take as example a state in
which a train is on the crossing and the gate is open, or a state in which two agents
issued a ticket for the same seat.

The philosophy of model checking is straightforward. To show that a state is
not reachable the model checker searches all states exhaustively. If it finds a bad
state, i.e. one that indicates that the model does not satisfy the specification, it will
produce a counterexample that helps to find an error in either the design or the
model. A prerequisite for this approach is that the model is finite, which is the case
if the number of states and transitions are finite. In the case of timed and hybrid
automata each valuation of the real valued variables leads to a state, and hence to
an infinite and uncountable number of states.

The solution to this problem is to consider sets of states rather than individual
states. These sets are called symbolic states. In the case of timed automata it is
possible to give a partition of the state-space into a finite number of symbolic states
[AD94]. The model checking algorithm is guaranteed to terminate in any case; we
say that the reachability problem for timed automata is decidable. For the richer
class of hybrid system there is no general decidability result. As matter of fact it
has been shown that the reachability problem is undecidable. But, the situation
is not a bad as it seems. For some sub-classes of hybrid automata decidability
has been proved [HKPV95]. In addition, even if it cannot be guaranteed that the
model checking algorithm does terminate in general, for many instances of a hybrid
system it does terminate, and can thus give valuable information.

The main problem of model checking is known as the state-space explosion
problem. This refers to the fact that the number of (symbolic) states in a model
tends to grow exponentially with the number of components. Even for a relative
small number of components, model checking may fail due to a limited amount
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of memory. Approaches that proved to be able to tackle, or at least soften, this
problem are the use of compact data structures, exploitation of symmetry, abstrac-
tion, or hashing, to name a few. As a consequence, model checking is able to aid
with the design of soft- and hardware systems and is becoming widely accepted as
verification technique in industry.

1.4 The Scope of this Thesis

This thesis does not deal with typical verification problems. Most of this thesis
deals with finding feasible or optimal solutions, rather than errors. As mentioned
before, timed automata are suitable for modeling the timing aspects of a system.
Timed automata, however, can also be used for modeling scheduling problems.
Similar to the booking system, we can for example model several agents that can
share information via a telephone network. Suppose that each of then owns a dis-
tinct piece of information, and that they agree on a protocol on how to exchange
information.

A typical verification problem would be to prove that a one-to-one communica-
tion cannot be disturbed by a third party. In contrast, a static scheduling problem2

would be to find a schedule such that all agents know eventually all information.
Given a timed automaton model, one can use a model checker to search for a state
in which all agents have complete information. The “counterexample” then serves
as a schedule.

Finding a feasible schedule is often not the primary problem. Rather, the prob-
lem is to find an optimal or fairly good schedule. A good schedule for the agents
in the telephone network might minimize the number of calls, the time, or the cost
of the telephone bill, maybe under the assumption that the agents use different
rate plans. The model checking algorithm, however, has no notion of a “good” or
“optimal” counterexample. In verification each counterexample is as bad, since it
points to an error. If we want to use a model checker to find optimal schedules it
is necessary to introduce a notion of cost, and associate a cost with each error state
(as they represent feasible solutions). The model checking algorithm has then to be
modified to search for the optimal solution, rather than for any solution. It not ob-
vious that the modified model checking does terminate in any case, since the cost
of a state is basically unbounded. The optimal solution may not be computable. In
addition, introducing a notion of cost may necessitate to either modify exiting data
structures or to develop new ones.

2 This problem is called static, since the setting does not change while the schedule is executed.
Dynamicscheduling considers problem that may change during the course of the schedule due to
changing demands.
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The approach to use model checking for scheduling suffers, just as model
checking for verification, from state-space explosion. But since we are looking
for solutions rather than errors, we do not need to explore the full state-space. As
soon the model checker finds a solution, it can stop the exploration of states that
cannot lead to better solutions. The search space may be reduced further, if the
model checker searches first parts of the state-space that are likely to contain a
good solution. The scheduling problem is often such that one can point at transi-
tions that are likely to contribute to or to foil a good solution. The model checker
should then prefer or postpone exploration of that transition.

Guiding the model checkers to promising parts of the state-space can also use-
ful for verification. Despite of the efforts to mitigate the state-space explosion
problem, there are interesting problems that are too large to be model checked.
Nevertheless, in many cases one can identify components and transitions that have
to be involved in order to possibly violate a property. Guiding allows us to explore
first the part that is likely to contain an error. Of course, this mean that the model
might not be completely verified, but it helps in debugging the design, even if a
complete exploration is impossible. Guiding may also have a positive effect on the
size of the state-space, provided that the model checker uses a symbolic state rep-
resentation. It has been observed that the number of symbolic states depends on the
order in which they are explored. Guiding the exploration allows us to utilize this
effect. Even though the guiding the state-space exploration is mostly motivated by
scheduling problems, its results are also valuable for general verification problems.

This thesis shows how to model scheduling problems as timed automata mod-
els, extends the timed automaton model with a notion of cost, shows that the
minimal-cost reachability problem is computable, presents efficient data structures,
and sketches how to guide the state-space exploration. It then presents a way to
over-approximate sets of states for a sub-class of hybrid automata and investigates
whether search order can influence the size of the state-space positively. This thesis
is about model checking, and spends not only attention to the algorithmic part, but
also to modeling. It discusses the model of a part of a steel plant in great detail, and
considers furthermore models that involve people with different physical abilities,
planes, experimental batch plants, a router, a communication protocol and cars.

1.5 This Thesis: Context and Overview.

Most of the research that led to this thesis is a result of the participation of the
University of Nijmegen in the VHS project3. The VHS project (Verification of
Hybrid Systems) is a European Union Esprit long term research project, and was

3 European Union Esprit-LTR Project 26270 VHS (Verification of Hybrid Systems)
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set up to improve the take-up of modern information technologies in industry. One
of the major objectives of the project is to analyze a number of case studies of the
industrial partners. This includes explicitly the use of existing verification tools for
timed and hybrid systems.

Most of the case studies in the VHS project have some scheduling aspects. The
motivating example of this thesis is to schedule a part of the Sidmar steel plant,
which is also know as case study 5. Using the timed automata model checker
UPPAAL it was possible to generate feasible schedules. These first experiments
with this approach in the VHS project led to an extensive cooperation with the
UPPAAL team, as can been seen from the list of co-authors. Hence, most models
that are presented in this thesis use the UPPAAL input language of networks of
timed automata.

The thesis is organized as follows. Chapter2 shows how to model scheduling
and planning problems as timed automaton model. It considers the general class of
job shop problems and describes the Sidmar plant model in more detail. Boel and
Stremersch presented a Petri-Net model of this case study in [BS99]. Yovine and
Niebert used the timed automata model checker KRONOS to generate schedules
for case study 1 of the VHS project [NY99]. Brinksma and Mader used the untimed
model checker SPIN to compute schedules for a Promela model of case study 1
[BM00].

Chapter3 introducesLinearly Priced Timed Automata(LPTA), an extension
of the timed automaton model with cost. The cost might increase with a fixed rate
as time passes, and by a fixed amount if a transition is taken. The cost rate may
change on taking a transition. A basic notion of a symbolic state extended with cost
allows to prove that the optimal solution is computable. Similar and independent
work has been presented by Alur et al. [ATP01].

The data-structures that are used in Chapter3 are guaranteed to be ineffi-
cient. Chapter4 introducesUniformly Priced Timed Automata(UPTA), which
differ from LPTAs in that the cost rate is constant and may not change on taking
a transition. This class covers for example minimum time optimality. The chapter
presents an efficient data structure for UPTAs, a class of optimal search orders,
and modifications of the algorithm that allow manual guiding of the exploration.
A number of experiments illustrates the results. The minimum time reachability
problem, and the more general problem of controller synthesis has been solved in
[AM99]. Niebert et al. present an alternative solution to the minimal time problem
in [NTY00]. Abdeddäım and Maler show in [AM01] that the model checking al-
gorithm can be further tailored to solving job shop problems. Reffel and Edelkamp
[RE99] presented an modified model check algorithm for untimed systems, that
allows to guided the state-space exploration in order to find an error state.

Chapter5 presents an efficient data structure for the full class of linearly timed
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priced automata. This approach uses linear programming to realize the necessary
operations on symbolic states. The main application example is a aircraft landing
problem taken from [BKA00]. The results confirm that the prototype is able to
compete with other approaches, such as linear programming based tree search.

For LPTAs we have developed a representation of sets of states that guarantees
termination. There is no equivalent for general hybrid systems. Chapter6 proposes
for a sub-class a notion of symbolic states based on bounded polyhedra. We illus-
trate for two cases studies that this representation allows to derive automatically
outer bounds on the set of reachable states. Similar approaches are presented in
[CK99], [Dan99] and [Var98]. The foregoing chapters show that heuristic search
allows to find a (close to optimal) solution quickly. As complement to this result,
the remainder of Chapter6 investigates whether a complete state-space exploration
can benefit from heuristic search orders. Chapter7 reviews the content of this the-
sis, gives some general remarks on experimental research in the field of formal
methods and concludes with directions for future research.

1.6 Bibliographical Notes

All chapters in this thesis are based, at least to some extent, on earlier publications.
Chapter2 is based on [Feh99], that introduces a timed automaton model of the
Sidmar steel plant, and [Feh00a], that sketches how to move from a reachability
to a scheduling algorithm. Chapter3 is based on [BFH+01b], and Chapter4 on
[BFH+01a]. The latter includes also experimental findings that were presented in
[BMF02]. The content of Chapter5 is based on [LBB+01]. Finally, Chapter6 is
based on [Feh98] which presented a polyhedral approximation technique for hybrid
systems, and [Feh00b] which reported on experiments with heuristic search orders.
Work on timed automata semantics for PLC-automata [DFMV98], a formalism for
modeling industrial applications that use PLCs to control a process, has not been
included in this thesis.

Each chapter has its own introduction. These introductions contain references
to essential work in the context of that particular chapter, that were omitted in this
introduction. A general overview of formal methods an model checking was given
by Clarke and Wing in [CW96]. Alur and Dill introduced the timed automata
model in [AD94]. Common model checkers for timed automata are KRONOS
[Yov97], and UPPAAL [LPY97, ABB+01]. Alur et al presented a framework for
algorithmic analysis of hybrid systems in [ACH+95]. An introduction to job shop
scheduling was given by French in [Fre82], and a recent overview by Jain and
Meeran in [JM99].
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From Schedulability to Reachability

2.1 Introduction

Case study 5 of the VHS project (CS5) is brought into the project by Sidmar, a flat
steel producer from Ghent, Belgium. It deals with the part of an integrated steel
plant where molten pig iron coming from the blast furnace, is converted into steel
of different qualities before it enters the hot rolling mill. The raw iron enters the
system is batches of about 290 ton. Each batch is transported in a so calledladle.
Depending on the quality of steel that has to be produced, a batch moves along the
different machines, to undergo the necessary treatments. Finally, the steel is casted
in the rolling mill, where the flat steel is produced.

This problem might look, at first sight, similar to a job shop scheduling prob-
lem. In job shop scheduling theory one supposes that there are a number of jobs
and machines. A job is usually defined as a sequence of operations which have to
be executed in a given order. Each of these operations is performed by a particular
machine for a given period of time. It is also assumed that each machine can per-
form only one operation at the same time [CP89]. Furthermore, one often assumes
that each job can perform on each machine only once an operation. The problem is
to schedule the operations in a way that it minimizes the time it takes to complete
all jobs.

Most assumptions mentioned in the previous paragraph do not hold for case
study 5. Some operations may be performed by different machines, other resources
may be used by two jobs concurrently. The duration of some operations is not fixed
but lies in an interval. There is a lot of freedom in how to schedule the jobs. On the
other hand we have non-trivial constraints. Due to the topology of the plant there

This chapter contains excerpts form the following publications:

[Feh99] A. Fehnker.Scheduling a Steel Plant with Timed Automata.Sixth International Con-
ference on Real-Time Computing Systems and Applications (RTCSA’99), 1999.

[Feh00a] A. Fehnker.Bounding and Heuristics in Forward Reachability Algorithms.CSI report
CSI-R0002.2000.
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are operations on certain machines that prevent operations of other jobs on other
machines. These machines are not accessible during that operation. There are also
resources that move, jobs that cannot wait indefinitely for a machine to become
free and other deadlines. In this context it can even be difficult to decide whether a
feasible schedule exists.

In this chapter we want to show how to reformulate scheduling problems as a
reachability problem that can be solved by a verification tool. The timed automata
[AD94] based modeling languages of the verification tool UPPAAL serves in this
approach as the basic input language to describe the scheduling problem. The
reachability algorithm is then used to find a state in which all jobs are completed.
Firstly, we consider the class of job shop problems. Since it is a well defined
class of problems it is possible to show some basic properties of a translation of
these problems to timed automata models. We will give a generic timed automaton
model and show how to obtain a schedule from diagnostic information. A model of
the Sidmar steel plant of case study 5 then demonstrates how this approach extends
to scheduling problems that do not fit in the class of job shop problems.

The job shop problem will be defined in Section2.2, timed automata in Section
2.3. Section2.4 introduces the timed automata model of a job shop problem and
we show how to translate traces to schedules. We will then give a description of
the Sidmar plant and discuss the timed automaton model in Section2.5. Section
2.6 presents results for a model of a job shop problem and the Sidmar model.
Finally, Section2.7 discusses which problems arise with this approach, and gives
an outlook on the succeeding chapters, that address these problems.

2.2 Job Shop Scheduling

The job shop schedulingproblem is to find an optimal schedule for set of jobs on a
set of machines. Each job is a chain of operations, and machines can only process
a limited number of operations at a time. The purpose is to allocate starting times
to the operations, such that the maximal completion time is minimal. The job
shop problem is known to be NP-hard [GJ79, p. 242]. Many solutions methods
like simulated annealing or tabu search [AvLLU94], shifting bottleneck algorithms
[AC91], and even hybrid methods [JM99] that combine different approaches have
been proposed.

Definition 2.1 A job shopP is a tuple(J ,O,M, j,d,m, c,≺) where

J is a finite set of jobs,

O is a finite set of operations,
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M is a finite set of machines,

j : O → J gives for each operation the job it belongs to,

d : O → N\0 defines the duration of each operation,

m : O →M gives the machine on which the operation has to be performed, and
finally

≺ is a partial order on the set of operations that satisfies

∀o, p ∈ O, o 6= p. (o ≺ p ∨ p ≺ o) ⇔ j(o) = j(p) (2.1)

Equivalence (2.1) states that all operations of the same job are totally ordered, and
that there is no precedence between operations of different jobs. Similar to the
definitions of job shops in [AC91, CP89, AvLLU94] we require that the maximal
capacity of machines is one. The definitions of the general job shop in [Vae95] and
[DSW98] cover a larger class of problems. They allow machines that can process
more than one operation at the same time, and do not require (2.1) to hold.

Definition 2.2 LetP be a job shop. A schedule ofP is a functionS : O → N that
defines the starting time of each operation. The completion time of an operation is
thenS(o) + d(o). A scheduleS is feasible if it satisfies, for allo, p ∈ O:

o ≺ p ⇒ S(o) + d(o) ≤ S(p) (2.2)

o, p ∈ O, o 6= p, m(o) = m(p) ⇒ S(o) + d(o) ≤ S(p) ∨ S(p) + d(p) ≤ S(o)
(2.3)

We writeF(P) for the set of all feasible schedules.

Thus, a schedule is feasible if it respects the order between operations of the same
job (2.2), and if two operations that use the same machine are not processed simul-
taneously (2.3). The makespan of a scheduleS is the maximum of the completion
times.

Definition 2.3 Let P be a job shop. The job shop problem is to find a feasible
scheduleS ∈ F(P) such that

max
o∈O

(S(o) + d(o)) = min
S′∈F(P)

max
o∈O

(S ′(o) + d(o)) (2.4)

i.e. S minimizes the maximum of the completion times. We will say thatS is a
schedule with minimal makespan.
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2.3 Timed Automata

Since we use the model checking tool UPPAAL, we work with networks of timed
automata as defined in [BJLY98, LPY97] to model the job shop problem. A timed
automaton is a finite automaton over a set of labelsAct, equipped with a finite set
of clocksC, whose values increase uniformly with time. Labels are either local or
synchronizing. If labela is synchronizing it has a complementā, which in turn has
as complement̄̄a = a. A clock constraintg is a conjunction of atomic constraints
of the formx ∼ n andx− y ∼ n for x, y ∈ C, n ∈ N and∼ ∈ {<,≤,=,≥, >}.
We denote the set of all clock constraints withB(C).

Definition 2.4 (Timed Automaton) A Timed Automaton over clocksC and ac-
tions Act is a tuple(Loc, l0, E, Inv) where Loc is set of locations,l0 is the ini-
tial location, E ⊆ Loc× B(C) × Act× P(C) × Loc is the set of edges, and
Inv : Loc→ B(C) assigns invariants to locations. In the case of(l, g, a, r, l′) ∈ E,

we writel
g,a,r−−−→ l′.

A Network of Timed Automatais defined as parallel compositionA1| . . . |An of
the timed automataA1, . . . , An over clocksC and labelsAct. Let l be the control
vector(l1, . . . , ln), with li ∈ Loci. The control vector where thei-th elementli is
replaced byl′i will be denoted byl[l′i/li].

Definition 2.5 (Parallel Composition) The parallel compositionA1| . . . |An, with
Ai = (Loci, l0i , Ei, Invi) is defined to be the timed automata(Loc, l0, E, Inv) with
Loc = L1 × . . . Ln, l0 = (l01 , . . . , l01) and Inv(l) = Inv1(l1) ∧ . . . Invn(ln). The
timed automatonA has

• a local transitionl
g,a,r−−−→ l′ iff there exist transitionli

g,a,r−−−→ l′i with local
labela of automatonAi such thatl′ = l[l′i/li]

• a synchronizing transitionl
g,a,r−−−→ l′ iff there exists a transitionli

gi,a,ri−−−−→ l′i

with synchronizing labela of automatonAi and a transitionlj
gj ,ā,rj−−−−→ l′j of

automatonAj such thatg = gi ∧ gj , r = ri ∪ rj andl′ = l[l′i/li][l′j/lj ].

Thestateof a timed automaton is a pair(l, v), wherel ∈ Locandv : C → R≥0

a valuation of the clocks. We denote byRC the set of clock valuations forC.
We usev ∈ g to denote that the clock valuationv satisfies the clock constraint
g ∈ B(C). Note that the clock valuations that satisfyg ∈ B(C) form a convex set.
We define the operationv′ = [r 7→ 0]v to be the assignment such thatv′(x) = 0 if
x ∈ r andv(x) otherwise, and the operationv′ = v + d to be the assignment such
thatv′(x) = v(x) + d.
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Definition 2.6 (Semantics)The semantics of a timed automatonA is defined as
a labeled transition system with the state-spaceL × RC with initial state(l0, v0)
(wherev0 assigns zero to all clocks inC), v0 ∈ Inv(l0) and with the following
transition relation:

• (l, v)
ε(d)−−→ (l, v + d) if ∀0 ≤ e ≤ d : v + e ∈ Inv(l),

• (l, v) a−→ (l′, v′) if there existsg, r s.t. l
g,a,r−−−→ l′, v ∈ g, v′ = v[r 7→ 0],

v′ ∈ Inv(l′).

The transitions are decorated with a delay-quantity or an action. A sequence of
delays and transitions(l0, v0) −→ (l1, v1) −→ (l2, v2) . . . with initial state(l0, v0)
is calledexecution. State(l, v) is calledreachableif there exists a finite execution
with final state(l, v). We denote the final state of an executionα with α.(l, v).
We write exec(A) for the set of (finite) executions of a timed automatonA. For
α, β ∈ exec(A) we use the notationα @ β if α is a prefix ofβ. Thespanof a finite
execution is defined as the finite sum

∑
i di of the delaysε(di). By definition, we

have ifα @ α′ thenspan(α) ≤ span(α′).
A forward reachability algorithm searches for a state by enumerating all reach-

able states. Starting from the initial configuration reachable states are computed
until either the state has been found or a fixpoint has been reached. If the model
checker finds such a state it can generates diagnostic information that shows how
to reach that state. Backwards reachability algorithms in contrast start with a state
and computes its predecessors. If an initial set is among those, the state is proven
to be reachable.

The semantics of definition2.6 yield a transition system with uncountable
many transitions, and is thus unsuitable for a reachability algorithm. Model check-
ers like UPPAAL overcome this problem by symbolic semantics based onsymbolic
statesof the from(l,Z), with l ∈ LocandZ ∈ B(C). The setZ is calledzone. The
symbolic semantics yield a finite transition system, which is appropriate for auto-
matic verification [LPY97]. The next chapter will pay more attention to symbolic
state-space exploration.

2.4 From Trace to Schedule

LetP = (J ,O,M, j,d,m, c,≺) be a job shop. We modelP as a network of timed
automata. For each jobJ ∈ J we include a timed automatonTA(J), which will be
constructed as follows. Letj be the number of operationso ∈ O with j(o) = J. Let
n(o) be the number of operations of that precedeo, i.e.#{p ∈ O|p ≺ o}. Then we
will construct automatonTA(J) with control locationss0, . . . , sj andt0, . . . , tj−1.
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u0 u1
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(b)

Figure 2.1: Figure (a) shows a timed automaton modeling a machine with capacity 1.
Figure (b) shows how to model a job with three operations, and durationsd0 , d1 , d2 .

The automaton will be in locationsn(o) before operationo, and insn(o)+1 after
operationo is processed. While operationo is processed automatonTA(J) will be
in locationtn(o). To time the duration of the operations we include clockclockJ.

We have for each machine two labels in setAct. One to models the beginning
of an operation on that machine and one to model the end of an operation. For
convenience we define two injective mappingson : M→ Act andoff : M→ Act
with on(M)∩ off(M) = ∅. We then have for each operationo ∈ O the following
transitions:

sn(o)
on(m(o)),{clockJ}−−−−−−−−−−−→ tn(o)

tn(o)
clockJ≥d(oi),off(m(o))−−−−−−−−−−−−−−→ sn(o)+1

(2.5)

The automatonJ is initially in location s0. Furthermore, we assume that the in-
variantclockJ ≤ d(o) holds in locationtn(o).

1

For each machineM ∈ M we include a small timed automatonTA(M).The
timed automatonM has only the two following transitions:

u0
on(M)−−−−→ u1

u1
off(M)−−−−→ u0

(2.6)

The job shopP with n jobs andm machines is modeled by the composition au-
tomatonP = TA(J1)| . . . |TA(Jn)|TA(M1)| . . . |TA(Mm). We assume in the
remainder for simplicity that each job consist ofm operations. The jobJi has thus
completed its operations, if automatonTA(Ji) is in control locationsm.

Figure2.1illustrates this model for a job shop problem with 3 machines. Table
2.2 shows the complete textual model of the Muth and Thomson problemmt06,
a job shop problem with 6 machines and 6 jobs, as network of timed automata in
UPPAAL. The model contains two templates, one for machines and another for
jobs. The template for the machine has just two locationsu0 andu1 , and two
transitions labeledmon? andmoff? . The second templatejob is used to define

1 This invariant is strictly speaking not necessary, but its use reduces the size of the state-space. See
also page83.
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chan on0,on1,on2,on3,on4,on5,off0,off1,off2,off3,off4,off5;
process machine(chan mon; chan moff){
state u0, u1;
init u0;
trans u0 -> u1 {sync mon?; },

u1 -> u0 {sync moff?; };
}
process job(chan m0on,m0off;const d0;chan m1on,m1off;const d1;
chan m2on,m2off;const d2;chan m3on,m3off;const d3;
chan m4on,m4off;const d4;chan m5on,m5off;const d5){
clock c;
state s0,s1,s2,s3,s4,s5,s6,

t0{c<=d0},t1{c<=d1},t2{c<=d2},t3{c<=d3},t4{c<=d4},t5{c<=d4};
init s0;
trans s0 -> t0 {sync m0on!; assign c:=0; },

s1 -> t1 {sync m1on!; assign c:=0; },
s2 -> t2 {sync m2on!; assign c:=0; },
s3 -> t3 {sync m3on!; assign c:=0; },
s4 -> t4 {sync m4on!; assign c:=0; },
s5 -> t5 {sync m5on!; assign c:=0; },
t0 -> s1 {guard c>=d0; sync m0off!; },
t1 -> s2 {guard c>=d1; sync m1off!; },
t2 -> s3 {guard c>=d2; sync m2off!; },
t3 -> s4 {guard c>=d3; sync m3off!; },
t4 -> s5 {guard c>=d4; sync m4off!; },
t5 -> s6 {guard c>=d4; sync m5off!; };

}
M1:=machine(on0,off0);
M2:=machine(on1,off1);
M3:=machine(on2,off2);
M4:=machine(on3,off3);
M5:=machine(on4,off4);
M6:=machine(on5,off5);
//
// 6 BY 6 TEST CASE FROM MUTH AND THOMPSON
// 6 6
// 2 1 0 3 1 6 3 7 5 3 4 6
// 1 8 2 5 4 10 5 10 0 10 3 4
// 2 5 3 4 5 8 0 9 1 1 4 7
// 1 5 0 5 2 5 3 3 4 8 5 9
// 2 9 1 3 4 5 5 4 0 3 3 1
// 1 3 3 3 5 9 0 10 4 4 2 1
//
J1:=job(on2,off2,1,on0,off0,3,on1,off1, 6,on3,off3, 7,on5,off5, 3,on4,off4,6);
J2:=job(on1,off1,8,on2,off2,5,on4,off4,10,on5,off5,10,on0,off0,10,on3,off3,4);
J3:=job(on2,off2,5,on3,off3,4,on5,off5, 8,on0,off0, 9,on1,off1, 1,on4,off4,7);
J4:=job(on1,off1,5,on0,off0,5,on2,off2, 5,on3,off3, 3,on4,off4, 8,on5,off5,9);
J5:=job(on2,off2,9,on1,off1,3,on4,off4, 5,on5,off5, 4,on0,off0, 3,on3,off3,1);
J6:=job(on1,off1,3,on3,off3,3,on5,off5, 9,on0,off0,10,on4,off4, 4,on2,off2,1);
system J0,J1,J2,J3,J4,J5,M0,M1,M2,M3,M4,M5;

Table 2.2: UPPAAL model of the Fisher and Thompson problemmt06asxta -file.

the jobs, and has six on and six off-transitions. The templates are then instantiated
according to the description of the job shop problem.

A job shop problem withn job andm machines is usually represented by an
by 2 ·m matrix, as shown in Table2.2.2 Each row of the matrix, which consists of
m pairs, defines a job. The first element of each pair defines the machine and the
second the duration of the operation. The operations have to be performed in the

2 The mt06 problem and other instances of the job shop problem can be found at the url:
ftp://ftp.caam.rice.edu/pub/people/applegate/jobshop/.

ftp://ftp.caam.rice.edu/pub/people/applegate/jobshop/
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order, in which they appear in the row that defines the job.
Given the composition automaton, we can use UPPAAL to find a state in which

all jobs are completed. Since we use UPPAAL, this information will be an execu-
tion. Hence, the goal is to obtain an executionα that ends in a stateα.(l.v) that
satisfiesli = sm,∀i ∈ 1, . . . , n. We abbreviate this property withΩ. The schedule
is obtained by associating anon-transition of an operationo with a starting time
S(o). Executionα ∈ exec(P ) ends with aon-transition of operationo, if

α = α′
on(m(o))−−−−−→ (l′, v′) ∧ l′ = α′.l[J.tn(o)/J.sn(o)][M.u1/M.u0] (2.7)

with J = TA(j(o)) andM = TA(m(o)). This means that as well the label as the
change of the control location agree with the operation. We abbreviate property
(2.7) with Ωon(o). Similarly we can defineΩoff(o) for executions that end with a
off-transition of operationo.

Definition 2.7 LetP be a job shop problem andP the corresponding composition
automaton. Letα ∈ exec(P ), with α |= Ω. We will say thatS : O → N
correspondsto α, denoted asα 7→ S, if for all o ∈ O there exists aα′ v α such
that

α′ |= Ωon(o) ∧ S(o) = span(α′) (2.8)

A model of the job shop problem is sound and complete, if we can find for each
execution that satisfiesΩ a corresponding feasible schedule, and if we have for
each feasible schedule a corresponding execution that satisfiesΩ.

Lemma 2.8 (Soundness)Let P be a job shop andP the corresponding timed
automaton. Letα ∈ exec(P ) with α |= Ω, andS : O → N such thatα 7→ S.
ThenS ∈ F(P).

Proof It has to be shown that the schedule that assigns to each operation the accu-
mulated delay of the corresponding prefix is feasible. Leto, p ∈ O with o ≺ p, then
j(o) = j(p) by (2.1). By construction of the automatonTA(j(0)) the off-transition
of o has to be taken before the on-transition ofp. The guard on the off-transition of
o ensures that between the on-transitions ofo andp at leastd(o) time units elapsed.
This ensures (2.2).

The automata that model the machines guarantee that on and off-transitions of
the same machine alternate. Leto, p ∈ O, with m(o) = m(p). We then have
that either the off-transition ofo precedes the on-transition ofp, or that the off-
transition ofp precedes the on-transition ofo. The guards on the transitions then
ensure either a delay ofd(o) between the on-transition ofo andp, or a delay ofd(p)
between the on-transition ofp ando. Therefore (2.3) holds. Hence, the schedule
that corresponds toα is feasible. �
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Lemma 2.9 (Completeness)LetP be a job shop andP the corresponding timed
automaton. For all feasible schedulesS ∈ F(P) there exist an executionα ∈
exec(P ) with α 7→ S.

Proof Let S be a feasible schedule, and leto1, . . . , on·m be the operations ordered
with respect to ascendingS(oi). We want show that we can take for each operation
oi a on-transition at timeS(oi). First observe, that if the composition automaton
is in a state in which some machines are in locationu1 , it is possible to take the
corresponding off-transitions, interleaved with the necessary delays, in the order of
ascending completion times. Suppose, that we have constructed an executionαi

that ends in an on-transition ofoi. We can then extend this execution, by taking first
the off-transitions of operationsp with completion timesS(p) + d(p) ≤ S(oi+1),
interleaved with delays.

Equation (2.2) then guarantees, that all operations precedingoi+1 have been
completed, and (2.3) ensures that machinem(oi+1) has been released. We can
then take the on-operation ofoi+1, preceded by the necessary delay (this might be
zero). After taking the last on-transition ofon·m, we can take the remaining of
off-transitions, and end with a execution that satisfiesΩ and has as corresponding
scheduleS. �

In the timed automaton model we have for each feasible schedule an execution
to a final state and vice versa. But, the relation from schedules to executions is not
one-to-one, but one-to-many. If the starting or completion times of two operation
coincide, then any interleaving of the corresponding transitions will lead to the
same schedule. Only if the completion time of the first operation coincides with
the starting time of a second, and both operations belong either to the same job or
require the same machine, then the first operation has to be completed before the
second starts. This yields a huge number of intermediate symbolic states that lead
to the same solution, and increases thus the state-space. This is known as partial
order problem, and is common to all automata models. The job shop models suffer
in particular from this problem, as they incorporate a lot of components that act
independently. There are approaches for partial order reduction of timed systems
[BJLY98, Min99] that address this problem, but unfortunately they are not yet
applicable in a model checker for the full class of timed automata.

The disjunctive graph representation, the most prevalent modeling formalism
for job shop problems, avoids these problems. The nodes in the graph represent
operations. Two consecutive operations of the same job are connected by a directed
arc. Operations that require the same machine are connected by undirected edges.
Each orientation of the edges that result in a acyclic graph gives a partial order on
the operations. This partial order can then be used to build a feasible schedule.
Orienting an edge means that the conflict between two operations is resolved, and
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Figure 2.3: Layout of the Sidmar steel plant

by construction only conflicts that might matter are considered.

The disjunctive graph representation allows to branch on the orientation of the
edges. Branch and bound algorithms that use this branching scheme have been
applied successfully to job shop problems [AC91, CP89]. Local search algorithm
can employ this representation, too, for it is possible to define a neighborhood
function on disjunctive graphs [AvLLU94]. This algorithm are able to find close to
optimal solutions for instances of the job shop problems that are beyond reach for
enumerative methods.

All approaches that are based on a disjunctive graph representation, have to
build a feasible solution from the graph. It is then sufficient to consider onlyleft jus-
tifiedschedules, i.e. no operation can be completed earlier, without either changing
the order of the operations on any machine or delaying another operation [Tri90].
It has been proven that there exist always a left justified solution to a job shop
problem. The timed automaton approach allows in contrast to obtain the schedule
almost directly from the diagnostic information. We showed in this section that
this approach can be use for modeling job shop problems. In the next sections we
will show that this approach extends also to an industrial case study.
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2.5 The Sidmar Steel Plant

2.5.1 Plant description

Plant Layout Case Study 5 of the VHS project considers the part of the Sidmar
steel plant in between the converters and the hot rolling mill. This part of the plant
consists of two converter vessels, five machines, one storage place, one buffering
place, one continuous casting machine, and two overhead cranes on one track.
Figure2.3depicts the layout of the plant.

The raw pig iron enters the system at one of the converter vessels, where it is
poured portion-wise in steel ladles. The pig iron undergoes different treatments in
the different machines, depending on desired steel quality. Converter vessel #1 and
machine #1 share one car that carries the ladle. This means that there can be at most
one ladle in either of these positions. Similarly, converter vessel #2 and machine
#4, and machine #2 and machine #3 share a car. The overhead cranes connect the
different parts of the plant. Whenever a ladle has to be moved for example from
machine #3 to machine #4, an empty crane has to be available.

The steel leaves the system at the continuous casting machine. The casting
machine consists of two parts, a holding place and the casting machine itself and
works like a merry-go-round. The steel is pored into the hot rolling mill, and the
empty ladle is then transported to the storage place by an overhead crane.

Recipes The steel quality depends, as mentioned before, on the order of the dif-
ferent treatments. Machine #1 and machine #4 are identical and so are machine #2
and machine #5. Hence, we have three types of machines that can perform three
different types of treatments. A treatment is defined by the type of the machine and
a duration. There is an upper bound on the time a load can stay in the system, to
prevent it from cooling down to much. This upper bound depends on the quality
of the steel. Most recipes consist of at most four treatments. All recipes start with
a treatment on machine #1 or machine #4. Next, all recipes require a treatment on
machine #2 or machine #5. Some recipes also require a treatment on machine #3
and maybe a final treatment on machine #2 or machine #5.

Timing constraints Except for the timing constraints which are imposed by the
recipes there are three other types of timing constraints. First, whenever a ladle is
filled at the converter vessel it needs some time before the next load pig iron can
be tapped at this vessel. Second, the cranes need some time to pick up and drop a
ladle, and to move from one position to another. Finally, a ladle has to wait for a
certain amount of time in the holding place before it is allowed to enter the casting
machine. After being casted the ladle has to wait for the same amount of time in
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the holding place. The duration of casting a ladle is controllable within known
bounds.

Other constraints Since each car can hold at most one ladle, there is no pos-
sibility for ladles to pass each other. A ladle cannot move for example from the
converter# 1 to machine #2, if another ladle is at machine #1. The cranes cannot
pass each other, and only one crane can reach the bottom section where the ladles
enter the continuous casting machine. The buffer between the second track and the
storage place can hold at most five ladles. It can be used to pass a ladle from one
crane to the other.

A ladle can only leave the casting machine if there is already a filled ladle at
the holding place (except for the case it is the last ladle). As soon as the pouring
out of a steel ladle has been completed, this ladle is removed and casting of a new
ladle starts. The casting machine works like a merry-go-round. It places the filled
ladle in the casting machine while it removes the empty ladle and places it back
into the holding place. This guarantees that the casting machine is continuously in
use.

Objective The foregoing constraints define the physical and technical require-
ments of the plant. To meet the economic constraints we want that the different
steel qualities enter the continuous casting machine in a predefined order.

2.5.2 The Timed Automata Model

We will use UPPAAL’s input language for modeling the Sidmar steel plant. Sys-
tems in UPPAAL are modeled as networks of timed automata[AD94]. The different
components of the system are modeled as timed automata. The automata are com-
bined using UPPAAL’s operation of parallel composition with binary (handshake)
synchronization. Since in our model more than two components need to synchro-
nize, we will use UPPAAL’s concept of committed locations. Whenever a com-



2.5 The Sidmar Steel Plant 31

mitted location is entered no delay is allowed and the next action transition must
be an outgoing transition of that location. We use binary arrays to ensure mutual
exclusion. A process is only allowed to enter a certain location if a corresponding
bit is zero. It then sets the bit to one and releases it as soon as it leaves the location.
For a detailed introduction to UPPAAL see [LPY97].

Overview An overview of the structure of the model is given in Figure2.4. The
model distinguishes between the batches and the plant. The state of a batch is
defined by the position of the load in the plant and the position within the recipe and
the time that has passed since the load entered the system. A timed automaton that
keeps track of the load is included into the model. This TA resembles the layout of
the plant. Secondly, the model includes a linear (non branching) automaton for the
recipe that determines the duration and order of the treatments. Location invariants
in this automaton guarantee that the load cannot spend more time in the system
than specified.

In parallel with the TAs who model the batches and the plant we have a test
automaton. This is a linear automaton that reaches control locationfinal only, if
the ladles enter the casting machine in the prescribed order. The recipes synchro-
nize with the test automaton before the ladle enters the bottom section of the plant.
The recipes synchronize with the load automaton, which encode the positions of
the ladle, to ensure that a treatment is performed by the proper machine. Figure2.4
shows which TAs synchronize with each other.

The model allows to translate the question whether a feasible schedule exists
into the question whether a state is reachable in which all recipes are completed.
The diagnostic information then gives the desired schedule, since we assume that
all times are either deterministic or controllable, i.e. it they are either time points
or they the plant can realize each time point in an interval. The original description
[BS99] states that the duration of a treatment is only known within certain bounds.
We take the upper bound as duration of the treatment, since each machine can also
function as short term buffer.

The timed automaton model in this chapter differs in some points from the
model in [Feh99]. A main difference is that the model as presented in this chapter
contains modifications to ease the verification, that do not affect the correctness of
the model. Furthermore some ambiguities in the informal description have been
clarified, which led to modifications.

Test Automaton Figure 2.5(a) shows an example of an automaton that tests
whether the batches arrive at the casting machine in the prescribed order. The
automaton in this example can reach the statefinal only, if a batch of quality 2
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Figure 2.5: (a) The test automaton that guarantees that the prescribed order of qualities.
(b) This automaton defines the recipe to produce steel of quality 1. Locations decorated
with C are committed

arrives first, succeeded by three loads of quality 1.

Recipe The automaton in Figure2.5(b) models a recipe to produce a batch of
quality 1. As mentioned before, the model includes one automaton for each batch.
Each automaton has two local clocks; clocktotal measures the overall time the
batch has spend in the system, and clocktreat times the operations of the recipe.

When batchX enters the system, then the recipe will take the transition labeled
goBX?. The system incorporates a lot of symmetry, mostly since all batches of the
same quality are modeled the same. The model checker may explore a lot of states
that are syntactically different, but which should be considered equivalent due to
symmetry. To reduce the symmetry we number batches of the same quality, using
a variableQ1next . The guard and the assignment on transitiongoBX? ensure
that batches of the same quality start in the order of their increasing numbers. A
more systematic approach would be to incorporate symmetry reduction techniques
within the tool UPPAAL, as in the untimed model checker Murphy [ID93].

The example recipe in2.5(b) includes one operation of type 1 and one of type
2, both with a duration of 30 time units. BatchX starts a operation of type 2 by
taking the transition labeledBXT1on! to locationr2 . The transition resets clock
treat to zero. The invarianttreat<=30 ensures that this operation cannot last
longer than the required 30 time units. The transition labeledBXT1off! , guarded
by treat>=30 , marks the end of the operation. The subsequent operation of
type 2 is modeled similarly. In this example we assume that we have two converter
vessels, one to fill empty ladle at machine #1, and one to fill ladles at machine #4.
The converter cannot fill a ladle as long as a batch is processed in the neighboring
machine, since both share the same car. But since a batch has also to receive its



2.5 The Sidmar Steel Plant 33

first treatment at that machine, we can safely combine both operations, and declare
locationr1 as committed.

The batch may try to enter the holding place of the casting machine if all nec-
essary operations are completed. This is modeled by the transition labeledtryBX .
But a batch should only try to enter the holding place if it is of the desired quality.
The recipe has therefore to synchronize with the test automaton. The locations1
is committed to guarantee that both transition are taken in one atomic step. Finally,
when the batchX enters the casting machine, transitiondoneBX will be taken. The
invariants on the locations ensure that the batch arrives at the casting machine be-
fore its deadline, which is in this example 120 time units. The invariant in location
rend is total<=115 , since has still to wait for at least another 5 time units in
the holding place, before it may enter the casting machine. The invariants in the
other location are chosen similarly.

Load Automaton The largest automata in the model are the automata that rep-
resent the position of the load in the system (Figure2.6). The model includes
for each batch of steel one load automaton. The transitionsfillI andfillII
model filling a ladle at one of the two converter vessels. The automaton is in lo-
cationmachine1 to machine5 if the corresponding batch is processed in these
machines.

The loads are moved by the cranes along locationsc0 to c4 . Only one crane
can reach the bottom section. This allows us to simplify the model for this part
as follows. Moving a load from positionc4 , which corresponds to a position
next to the storage place, to the holding place can be modeled by a sequence of
transitions, tied together with committed locations. TransitiontryBX ensures that
a load enters the holding place only if it has undergone all necessary treatments.
Transitioncvdown models the transport by the crane to the casting machine, and
incast places the ladle into the holding place.

If the ladle has waited for required time, it may enter the casting machine.
Entering the casting machine corresponds to transitionturn? . The recipe is
then completed, which is modeled by transitiondoneBX! . The empty ladle can
then leave the casting machine via transitionnrut? , and move to the storage
place via transitionscvup! , outcast! andcivdown! . Transitioncvup! and
civdown! synchronize with the crane.

The car at machine #2 and machine #3 can be used as a buffer. If a ladle spends
some time waiting in that position before it is processed in one of the machines, it
might as well being processed first and wait after completion of the treatment. We
model this position by two locationsi1a and i1b . Locationi1a is committed.
This modification ensures that a load either waits without being processed, or is
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Figure 2.6: This timed automaton keeps track of the position of a load.

processed before it starts waiting. We modeled the car at machine #5 similarly.

Converter Figure2.7(a) shows the model for converter vessel #1. The converter
in this example can fill a ladle with pig iron once every 10 time units. The model
uses local clockt to establish this constraint. Before it starts filling a ladle one has
to guarantee that the car at machine #1 is free. The bitposI[0] encodes whether
this car is used. The guardposI[0]==0 ensures that no load is in locationi0 .
The automaton can then take transitionfillI and setposI[0] to one.

Casting machine The automaton in Figure2.7(b) has transitionsincast? to
model a full ladle that enters the holding place, and transitions labeledoutcast? ,
that synchronize with a load automaton, to model empty ladles that leave the hold-
ing place. An empty ladle can leave the casting machine and enter the holding place
only, if there is a full ladle present in the holding place. This constraint establishes
a continuous flow of steel to the hot rolling mill.

Transitions labeledturn! synchronize with batches that enter the casting ma-
chine, and transitions labelednrut! with batches that leave the casting machine.
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Figure 2.7: (a) Timed automaton for a converter. (b) Timed automaton for the casting
machine.

The transitions from locationcc00 to cc02 model the initialization phase when
the first ladle enters the casting machine.

The transitions fromcc02 via c21 back tocc02 models be behavior of cast-
ing machine up to the last batch. The casting machine repeatedly accepts a full
batch, turns and releases an empty batch. Turning the casting machine is mod-
eled in two steps; one to remove the empty ladle from and another to put the other
into the casting machine. Since locationcc21 is committed, these steps are taken
atomically.

To model the required waiting times and the duration of casting a ladle we use
two local clockstwait andton . The ladle has to wait for 5 time units when it
enters the holding place. Casting a ladle takes between 20 and 30 time units. The
duration of casting steel is controllable within these bounds.

The last ladle can leave the casting machine, even if no new ladle is present
in the holding place. The transitions from locationcc02 to cc00a model this
procedure. Integer variablecounter counts the number of batches that have been
completed, and constantbatches gives the number ofbatches that has to be
produced.

Cranes There are two cranes that cannot pass each other. The topmost crane
cannot, as mentioned before, reach the bottom section of the plant with the casting
machine. The two cranes are therefore modeled differently. Figure2.8 depicts
the model of the top most crane, crane #1. If the crane does not carry a load it
is in locationc0bot to c3bot . Each of this locations model a part of the track.
Moving the crane from on part to another takes one time unit. Arraycpos ensures
that the cranes cannot be at the same position at the same time3. Local clocktCA
is used to time the movements of the crane.

3 This array records redundant information on the location of the cranes. It could be omitted if
UPPAAL would allow to refer to locations in guards.
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Figure 2.8: Timed automaton model of crane #1

If the crane picks up a load it moves from locationc1bot , c2bot or c3bot
to locationc1top , c2top or c3top , respectively. Picking up a load is modeled
as two steps. Firstly, the crane synchronizes with the load. After two time units
the crane releases the position of the load, i.e. it sets the corresponding element of
arrayposI or posII to zero. If it picks up a load from the buffer it decreases the
counter of buffered loadspark by one.

Putting down a load is also modeled as two transitions. The first transition can
only be taken if the position is free. It then set the corresponding element ofposI
or posII to one. If the crane puts down a load into the buffer it has to make
sure that the number of load in the buffer does not exceedmaxpark . The second
transition can be taken after two time units. This transition synchronizes with the
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Figure 2.9: Timed automaton model of crane #2

load. The second crane is basically modeled as the first crane. They differ only
for parts of the plant only one them can reach. The crane #2 for example cannot
reach the top most position of the plant. The model does consequently not include
locationsc0bot andc0top . For crane #1 cannot reach the bottom section, we
can simplify this part of the model of crane #2. It is for instance not necessary to
use the shared arraycpos to guarantee mutual exclusion. As a consequence we
can also combine and omit transitions.



38 2 From Schedulability to Reachability

If crane enters the bottom section with a full load it can put it only into the
holding place or move back to the top. We can therefore model moving the crane
downwards and putting the load down into the holding place as a single operation
that takes 3 time units. Similarly, we can combine the operations that pick up an
empty ladle from the holding place, move it to the storage place, and put it down
there as one operation. Removing a full ladle from the holding place and moving
an empty ladle to the top section of the plant are useless and thus not modeled.

2.6 Results

We showed in this chapter how to model a job shop problem and an industrial
scheduling problem as networks of timed automata. In this section we will present
experimental results for instances of these problems.

The UPPAAL verifier offers two ways to explore the state-space. Depending
on whether the list of encountered but unexplored states is a stack or a queue we
are searching depth-first or breadth-first, respectively. The breadth-first strategy is
not able to find a trace for themt06-problem in Figure2.2, due to limited memory.
The depth-first strategy yields a schedule with completion time197. This is at the
same time the worst possible schedule, since this is the sum of all durations of the
mt06-problem. This solution is obtained by scheduling first all operations of one
job, then all operations of another job, etcetera.

The UPPAAL simulator allows us to apply random search. In this case the
simulator selects at random the next transition. We apply this strategy to themt06-
problem which has an optimal solution with makespan 55. The model has 12
synchronizing transitions for each job automaton. Since these automata have no
cycles it is guaranteed that the 72nd successor of the initial state corresponds to a
feasible schedule, no matter how we search for a feasible solution. The generated
schedules during 10 experiments with random search had an average completion
time of 94.5. The maximal makespan was 120, the minimal makespan was 87. The
schedule with the makespan 120 was the only one that took longer than 100 time
units.

A different approach to find better feasible schedule uses UPPAALs concept
of urgent transitions. We declare all on transitions urgent, i.e. if they are enabled
time may not advance. This heuristic will not always lead to an optimal solution,
since not only unnecessary delays but also useful delays might be omitted. The
verifier found with a depth-first search for this greedy approach a trial schedule
with makespan 70.

We combined this approach with some other heuristics that estimated the re-
maining time and pruned branches if the global clock increased the given upper
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Figure 2.10: Schedule for five batches. This chart depicts which load is in which location
at a certain time.

bound minus the remaining time. For each location in a job one can for exam-
ple determine the duration of all remaining operations of that job. The remaining
time has to be bigger that value. We then used the verifier to produce iteratively
schedules with a smaller makespan by decreasing the upper bound. We were able
to find a schedule with makespan 57, and subsequently that there was no schedule
with a makespan smaller than 57. In our attempts to bound the search space by
introducing urgency we obviously pruned also the branch that contains the optimal
solution with makespan 55.

The model of the Sidmar steel plant contains already some modifications to
ease the verification, which were mentioned before. We used depth-first search to
find a schedule for this model. We were able to find a schedule for a model with 5
batches, only one crane and no buffer within 2934 seconds cpu time on a Pentium
III 500MHz (Figure2.10). This schedule is not optimal and contains useless delays
and transitions; it happens for example that a load gets picked up to be put down in
the very same position, immediately afterwards.

Earlier experiments in [Feh99] report schedules for up to three batches for an
alternative model. The reason for the different results is not only the different
modeling. An important reason is that the results are sensitive to the order in
which components appear in the system definition in the textual model. The system
description in2.2, for instance, is the last line that sums up all automata in the
composition. UPPAAL evaluates the transitions in the order in which they appear
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in the composition automata. Changing the order in the system definition changes
also the evaluation order and can thus influence the search order. Experiments
with different orders led ultimately, for the model as presented in this chapter, to a
schedule for five batches.

2.7 Conclusion and Outlook

This chapter shows that timed automata are suitable for modeling scheduling prob-
lems. A model checker can then be used to find a schedule. We can introduce
an upper bound on the makespan if we want to improve on this schedule. The
language of timed automata allows to naturally model a broad class of scheduling
problems that may incorporate a nontrivial combination of deadlines, due dates
and other technical constraints. Furthermore, it allows to utilize the efforts that are
made to represent and store huge search spaces efficiently

This approach has however some drawbacks. First, it allows only to solve
constraints problems; given a deadline they can find a schedule if one exists. In
order to get better schedules one has to decrease this deadline. One would prefer
to search for an optimal solution automatically. Another drawback is that one has
to search either depth or breadth-first. But in many cases they will not find a close
to optimal solution or they will find no solution at all. There are only coarse ways
to influence the search order, like changing the system description.

These drawbacks derive from the fact that the model checker was not intended
to solve scheduling problems. It is tailored towards exploring the full state-space,
since one assumes that the properties will eventually be proven to be true for all
reachable states. If the algorithm finds an error, it stops; there is no need to continue
the search.

It seems therefore promising to adapt techniques from scheduling algorithms,
to tackle the problems of the model checking approach to scheduling. A natural
candidate for this are branch and bound algorithms, that search in a tree structure
for feasible solutions with minimal costs. Like the model checking algorithm, they
enumerate the possible solutions. What solutions are considered feasible and how
to compute the costs depends on the application area. Branch and bound algorithms
can be characterized by four basic rules [Mit70, Tri90].

B1 The branching rule defines how to calculate the successors of a node in the
search tree.

B2 The selection rule defines which node in the waiting list to branch from next.

B3 The bounding rule defines how to compute a lower bound on the costs of the
complete solutions that can be obtained from a partial solution. This lower
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bound allows to prune branches with a lower bound larger than the cost of
the best solution found so far. A tight lower bound in combination with a
good trial solution can bound the search space effectively.

B4 The elimination rule defines how to recognize branches that cannot contain
an optimal solution. A partial solution can be eliminated if is dominated by
another partial solution, this means it can be proven that the costs of the best
completion of the second is less or equal to the costs of the best completion
of the first.

Our approach is based on the timed automata model; the nodes in search tree are
symbolic states. The next chapter introducesLinearly Priced Timed Automata,
who extend timed automata with a notion of cost to that goes beyond time optimal-
ity. The branching rule B1 is then defined by the symbolic semantics of linearly
priced timed automata. Along with the notion of cost we define a notion of a bet-
ter symbolic state, and thus the elimination rule B4. We introduce in this chapter
an algorithm to compute the optimal execution, and show that it terminates. This
algorithm uses a rather inefficient data structure to represent sets of states.

Chapter4 presents a efficient data structure for the sub-class ofUniformly
Priced Timed Automata, and Chapter5 an efficient data structures for the full class
of Linearly Priced Timed Automata. Both chapters use a modified algorithm that
allows to define heuristic search orders. It is possible to manually define a selec-
tion rule B2. The algorithm allows also to define an estimate on the remaining cost.
This allows to derive a tight bounding rule B3 in order to restrict the state-space.
Several experiments with prototype implementations indicate that this approach is
competitive with other approaches. Finally, Chapter6 describes how the results on
heuristics extend to a more general class of hybrid systems.
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3

Minimal-Cost Reachability for Linearly
Priced Timed Automata

3.1 Introduction

This chapter introduces the model oflinearly priced timed automataas an exten-
sion of timed automata withpriceson both transitions and locations: the price of
a transition gives the cost for taking it and the price on a location specifies the
costper time-unitfor staying in that location. This model can capture not only the
passage of time, but also the way that e.g. tasks with different prices for use per
time unit, contribute to the total cost. For this model we consider the minimum-
cost reachability problem: given a linearly priced timed automaton and a target
state, determine the minimum cost of executions from the initial state to the target
state. This problem generalizes the minimum-time reachability problem for ordi-
nary timed automata. Similar and independent work has been presented by Alur
et al. [ATP01]. They reduce the optimization problem to a shortest-path prob-
lem in a finite directed graph, and obtained additionally complexity bounds for the
optimization problem.

The minimum-time reachability problem together with the controller synthe-
sis problem has been solved in [AM99], using a backward fix-point computation.
Niebert et al give in [NTY00] an alternative solution based on forward reachability
analysis. The present chapter extends this work and settles an open problem given
in [AM99]. It extends also the work in [ACH97] which provides an algorithm
for computing the accumulated delay in a timed automata. We prove decidabil-
ity of the minimum-cost reachability problem by offering an algorithmic solution,
which is based on a combination of branch-and-bound techniques and a new notion

This chapter is based on the publication:

[BFH+01a] G. Behrmann, A. Fehnker, T.S. Hune, K.G. Larsen, P. Petterson, J.M.T. Romijn and
F.W. Vaandrager.Minimum-Cost Reachability for Linearly Priced Timed Automata.
HSCC’01.
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Figure 3.1: Timed automata model of scheduling example.

of priced regions. The latter allows symbolic representation and manipulation of
reachable states together with the cost of reaching them.

As an example consider the very simple static scheduling problem represented
by the timed automaton in Figure3.1 from [NTY00], which contains five ’tasks’
{A,B, C, D, E}. All tasks are to be performed precisely once, except taskC,
which should be performedat leastonce. The order of the tasks is given by the
timed automaton, e.g. taskB must not commence before taskA has finished. In
addition, the timed automaton specifies three timing requirements to be satisfied:
the delay between the start of the first execution of taskC and the start of the
execution ofE should be at least3 time units; the delay between the start of the
last execution ofC and the start ofD should be no more than1 time unit; and, the
delay between the start ofB and the start ofD should be at least2 time units, each
of these requirements are represented by a clock in the model. Using a standard
timed model checker we are able to verify that locationE of the timed automaton
is reachable. This can be demonstrated by a trace leading to that location1:

(A, 0, 0, 0) a−→ ε(1)−−→ (B, 1, 1, 1) b−→ ε(1)−−→ (C, 2, 1, 1) d−→ ε(2)−−→ (D, 4, 3, 3) e−→ (E, 4, 3, 3)
(3.1)

The above trace may be viewed as a feasible solution to the original static schedul-
ing problem. Nevertheless, given an optimization problem, one is often not satis-
fied with an arbitrary feasible solution but one desires solutions which areoptimal
in some sense. When modeling a scheduling problem an obvious notion of opti-
mality is that of minimal makespan, i.e. minimum accumulated time. For the timed
automaton of Figure3.1 the trace of (3.1) has an accumulated time-duration of4.
This, however, is not optimal as witnessed by the following alternative trace, which
by exploiting the looping transition onC reachesE within a total of3 time-units:

(A, 0, 0, 0) a−→ b−→ ε(2)−−→ (C, 2, 2, 2) c−→ (C, 2, 0, 2) d−→ ε(1)−−→ (D, 3, 1, 3) e−→ (E, 3, 1, 3)
(3.2)

In fact,3 is the minimum time for reachingE. Figure3.2 gives a linearly priced
extension of the timed automaton from Figure3.1. Here, the price of locationD

1 Here a quadruple(X, vx, vy, vz) denotes the state of the automaton in which the control location
is X and wherevx, vy andvz give the values of the three clocksx, y andz, respectively.
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Figure 3.2: Linearly priced timed automata model of scheduling example.

is set toβ and the price on all other locations is set to1 (thus simply accumulat-
ing time). The price of the looping transition onC is set toα, whereas all other
transitions are free (price0). Now for (α, β) = (1, 3) the costs of the traces (3.1)
and (3.2) are 8 and 6, respectively (thus it is cheaper to actually exploit the looping
transition). For(α, β) = (2, 2) the costs of the two traces are both 6. In this case
it is immaterial whether the looping transition is taken or not. In fact, the optimal
cost of reachingE will in general be the minimum of2 + 2 · β and3 + α, and the
optimal trace will include the looping transition onC depending on the particular
values ofα andβ.

In contrast to minimum-time reachability for timed automata, the minimum-
cost reachability problem for linearly priced timed automata requires the develop-
ment of new data structures for symbolic representation and the manipulation of
reachablesetsof statestogether withthe cost of reaching them. In this chapter we
put forward one such data structure, namely a priced extension of the fundamental
notion ofclock regionsfor timed automata [AD94].

The remainder of the chapter is structured as follows: Section3.2 formally
introduces the model of linearly priced timed automata together with its semantics.
Section3.3develops the notion of priced clock regions, together with a number of
useful operations on these. The priced clock regions are then used in Section3.4
to give a symbolic semantics capturing the cost of executions. Section3.5gives an
example on how to compute a symbolic state-space. An algorithm that solves the
minimum-cost problem is presented in Section3.6. Finally, in Section3.7we give
some concluding remarks.

3.2 Linearly Priced Timed Automata

Linearly priced timed automata extend the model of timed automata [AD94] with
prices on both locations and transitions. Dually, linearly priced timed automata
may be seen as a special type of linear hybrid automata [Hen96] or multi-rectangular
automata [PKHWT98] that represent the accumulation of prices (i.e. the cost) by a
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single continuous variable. In contrast to known undecidability results for these
classes, minimum-cost reachability is computable for linearly priced timed au-
tomata. An intuitive explanation for this is that the additional (cost) variable does
not influence the behavior of the automata.

As in Section2.3, let C be a finite set of clocks, andB(C) the set of con-
junctions of atomic clock constraints of the formx ∼ n for x ∈ C, n ∈ N and
∼ ∈ {<,≤,=,≥, >}. Note that for each timed automaton that has constraints of
the formx − y ∼ n, there exists a strongly bisimilar timed automaton with only
constraints of the formx ∼ n. Therefore, the results in this chapter are applicable
to automata having constraints of the typex− y ∼ n as well.

Definition 3.1 (LPTA) A Linearly Priced Timed Automaton (LPTA) over clocksC
and actions Act is a tuple(Loc, l0, E,
Inv, P ) where Loc is a finite set of locations,l0 is the initial location,E ⊆ Loc×
B(C)×Act×P(C)×Loc is the set of edges, Inv: Loc→ B(C) assigns invariants
to locations, andP : (Loc∪ E) → N assigns prices to both locations and edges.

In the case of(l, g, a, r, l′) ∈ E, we writel
g,a,r−−−→ l′.

Definition 3.2 (Semantics)The semantics of a LPTAA is defined as a transition
system with the state-space Loc×RC

≥0, with initial state(l0, v0) (wherev0 assigns
zero to all clocks inC), and with the following transition relation:

• (l, u)
ε(d),p−−−→ (l, v + d) if ∀0 ≤ e ≤ d : v + e ∈ Inv(l), andp = d · P (l).

• (l, v)
a,p−−→ (l′, v′) if there existsg, r such thatl

g,a,r−−−→ l′, v ∈ g, v′ = v[r 7→ 0],
v′ ∈ Inv(l′) andp = P ((l, g, a, r, l′)).

Note that the transitions are decorated with two labels: a delay-quantity or an ac-
tion, together with the cost of the particular transition. For determining the cost,
the price of a location gives the cost rate of staying in that location (per time unit),
and the price of a transition gives the cost of taking that transition. In the remain-
der, states and executions of the transition system for LPTAA will be referred to
as states and executions ofA.

Given LPTAA = (L, l0, E, I, P ), let Â = (L, l0, E, I) be the corresponding
TA, obtained by dropping the prices. It is trivial to show that by dropping the costs
in the executions ofA, we obtain exactly the executions ofÂ.

Definition 3.3 (Cost) Letα = (l0, v0)
a1,p1−−−→ (l1, v1) . . .

an,pn−−−→ (ln, vn) be a finite
execution of LPTAA. Thecostof α, cost(α), is the sumΣi∈{1,...,n}pi. The minimal
cost of reaching a given state(l, v) is the infimum of the costs of finite executions
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Figure 3.3: An example LPTA.

ending in(l, v). We denote this infimum withmincost((l, u)). Similarly, the min-
imal cost of reaching a locationl is the infimum of the costs of finite executions
ending in a state of the form(l, u), thusmincost(l) equalsinf{cost(α)|α a run
ending in locationl}

Example Consider the LPTA of Fig.3.3. The LPTA has a single clockx, and the
locations and transitions are decorated with guards and prices. A sample execution
of this LPTA is for instance:

(A, 0)
ε(1.5),4.5−−−−−→ (A, 1.5)

a,5−−→ (B, 1.5)
b,1−→ (C, 1.5)

The cost of this execution is 10.5. In fact, there are executions with cost arbitrarily
close to the value 7, obtainable by avoiding delaying in locationA, and delaying for
more than one time unit in locationB. Due to the infimum definition of mincost,
it follows that mincost(C) = 7. Note, however, that because of the strict compari-
son in the guard of the second transition, no execution actually achieves this cost.�

The need for infimum in the definition of minimum cost executions arises from
linearly priced timed automata with strict bounds in the guards, such as the one
shown in Figure3.3. Due to the use of infimum, a linearly priced timed automa-
ton is not always able to realize an execution with the exact minimum cost of the
automata, but will be able to realize one with a cost infinitesimally close to the
minimum value. If all guards include only non-strict bounds, the minimum cost
trace can always be realized by the automaton. This fact can be shown by defining
the minimum-cost problem for executions covered by a given symbolic trace as a
linear programming problem.

3.3 Priced Clock Regions

For ordinary timed automata, the key to decidability results has been the valuable
notion of region [AD94]. In particular, regions provide a finite partitioning of the
uncountable set of clock valuations, which is also stable with respect to the various
operations needed for exploration of the behavior of timed automata (in particular
the operations of delay and reset).
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In the setting of linearly priced timed automata, we put forward a new extended
notion ofpriced region. Besides providing a finite partitioning of the set of clock-
valuations (as in the case of ordinary regions), priced regions also associate costs to
each individual clock-valuation within the region. As we shall see in the following,
priced regions may be presented and manipulated in a symbolic manner and are
thus suitable as an algorithmic basis.

We divide a clock valuationv in its integer partbvc and its fractional part
frac(v). Let er : C → {0, 1} for r ⊆ C be the function that assigns1 if x ∈ r
and0 otherwise. We then trivially have thatv = bvc +

∑
x∈C frac(v(x)) · e{x}.

Suppose that we partitionC in r0, . . . , rk such that ifx, y ∈ ri, then frac(v(x)) =
frac(v(y)). Let xi ∈ ri, we can then establish the equality

v = bvc+
k∑

i=0

frac(v(xi)) · eri

Definition 3.4 (Priced Regions)Given setS, let Seq(S) be the set of finite se-
quences of elements ofS. A priced clock regionover a finite set of clocksC

R = (h, [r0, . . . , rk], [c0, . . . , ck])

is an element of(NC) × Seq(2C) × Seq(N), with C = ∪i∈{0,...,k}ri, ri ∩ rj = ∅
wheni 6= j, andi > 0 implies thatri 6= ∅.

Given a clock valuationv ∈ RC , and regionR = (h, [r0, . . . , rk], [c0, . . . , ck]),
v ∈ R iff

1. h = bvc,

2. x ∈ r0 ⇔ frac(v(x)) = 0,

3. x, y ∈ ri ⇔ frac(v(x)) = frac(v(y)), and

4. x ∈ ri, y ∈ rj andi < j ⇔ frac(v(x)) < frac(v(y)).

For a priced regionR = (h, [r0, . . . , rk], [c0, . . . , ck]), the first two components
of the triple constitute an ordinary (unpriced) regionR̂ = (h, [r0, . . . , rk]). The
closure of regionR̂ defines ak-dimensional convex polyhedron. The region itself
is only closed if it is a singleton set, i.e. a vertex. In all other cases the region does
not contain vertices or lower dimensional faces.

The vertex of the closure that is closest to the origin is defined byh. We denote
this vertex withv0. We can then reach the next vertexv1 by moving one unit in
the direction of setrk, from there to vertexv2 by moving one unit in the direction
of rk−1, etc. Hence,vi+1 = vi + erk−i

, for i = 0, . . . , k − 1. The priced region
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Figure 3.4: A three dimensional priced region.

R then assigns the costsc0, . . . , ck to the verticesv0, . . . , vk, as depicted in Figure
3.4. The costsc0, . . . , ck, span a linear cost plane on thek-dimensional unpriced
region.

The closure of the unpriced region̂R is the convex hull of the vertices. Each
clock valuationv ∈ R̂ is a (unique) convex combination of the vertices. In partic-
ularv = v0 +

∑k−1
i=0 frac(v(xk−i))(vi+1 − vi), wherexj is some clock inrj . This

leads to the following definition:

Definition 3.5 (Cost inside Region)Given priced regionR = (h, [r0, . . . , rk],
[c0, . . . , ck]) and clock valuationv ∈ R, thecostof v in R is defined as:

cost(v,R) = c0 +
k−1∑
i=0

frac(v(xk−i))(ci+1 − ci)

wherexj is some clock inrj . The minimal cost associated withR is mincost(R) =
min({c0, . . . , ck}).

In the symbolic state-space, constructed with the priced regions, the costs will
be computed such that for each concrete state in a symbolic state, the cost asso-
ciated with it is the minimal cost for reaching that state by the symbolic path that
was followed. In this way, we always have the minimal cost of all concrete paths
represented by that symbolic path, but there may be more symbolic paths leading
to a symbolic state in which the costs are different.

To prepare for the symbolic semantics, we define in the following a number of
operations on priced regions. These operations are later used in the algorithm for
finding the optimal cost of reaching a location.
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Figure 3.5: Delay and reset operations for two-dimensional priced regions.

Definition 3.6 (Delay) Let R = (h, [r0, . . . , rk], [c0, . . . , ck]) be a priced region.
Suppose that the set of clocksC is not empty. For a pricep, the functiondelayis
then defined as follows:

1. If r0 6= ∅, then

delay(R, p) = (h, [∅, r0, . . . , rk], [c0, . . . , ck, c0 + p])

2. If r0 = ∅, then

delay(R, p) = (h′, [rk, r1, . . . , rk−1], [c1, . . . , ck])
whereh′ = h + erk

The delay operation computes the time successor, and works exactly as for
classical (unpriced) regions. The changing dimensions of the regions cause the
addition or deletion of vertices and thus of the associated cost. The price argument
will be instantiated to the price of the location in which time is passing; this is
needed only if a vertex is added. The figures labeled (3.6.1) and (3.6.2) to the left
of Figure3.5 illustrate the two cases of definition3.6.

Definition 3.7 (Reset)Given a priced regionR = (h, [r0, . . . , rk], [c0, . . . , ck])
and a clockx ∈ ri, the functionresetis defined as follows:
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1. If i = 0 then

reset(x,R) = (h′, [r0, . . . , rk], [c0, . . . , ck]),
whereh′ = h[x 7→ 0]

2. If i > 0 andri 6= {x}, then

reset(x,R) = (h′, [r0 ∪ {x}, . . . , ri \ {x}, . . . , rk], [c0, . . . , ck])
whereh′ = h[x 7→ 0]

3. If i > 0 andri = {x}, then

reset(x,R) = (h′, [r0 ∪ {x}, . . . , ri−1, ri+1, . . . , rk],
[c0, . . . , ck−i−1, c

′, ck−i+2, . . . , ck])
wherec′ = min(ck−i, ck−i+1)

h′ = h[x 7→ 0]

The reset operation on a set of clocks:reset(C ∪ {x}, R) = reset(C, reset(x,R)),
andreset(∅, R) = R.

When resetting a clock, a priced region may loose a dimension. In this case, the
two costs, associated with the vertices that are collapsed, are compared and the
minimum is taken for the new vertex. The figures (4.7.2) and (4.7.3) to the right of
Figure3.5 illustrate the nontrivial cases2 and3 of the definition.

.

Definition 3.8 (Increment) For a priced regionR = (h, [r0, . . . , rk], [c0, . . . , ck])
and a pricep, the increment ofR with respect top is the priced regionR ⊕ p =
(h, [r0, . . . , rk], [c′0, . . . , c

′
k]) wherec′i = ci + p.

The price argument in the increment operation will be instantiated to the price of
the particular transition taken; all costs are updated accordingly

If in region R, no clock has fractional part 0, then time may pass inR, that
is, each clock valuation inR has a time successor and predecessor inR. When
changing location withR, we must choose for each clock valuationv in R between
delaying in the previous location untilv is reached, followed by the change of
location, or changing location immediately and delaying tov in the new location.
Which is cheapest, depends on the price of either location. For this the following
operation self is useful.
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Definition 3.9 (Self) Let R = (h, [r0, . . . , rk], [c0, . . . , ck]) be a priced region.
Suppose that the set of clocksC is not empty. For a pricep, the functionself is
defined as follows:

1. If r0 is not empty, thenself(R, p) = R.

2. If r0 is empty, then

self(R, p) = (h, [r0, . . . , rk], [c0, . . . , ck−1, c
′])

wherec′ = min(ck, c0 + p)

If the setC is empty, thenself(R, p) = R.

Definition 3.10 (Comparison) Let R = (h, [r0, . . . , rk], [c0, . . . , ck]) and R′ =
(h′, [r′0, . . . , r

′
k′ ], [c

′
0, . . . , c

′
k′ ]) may be priced regions. We define

R ≤ R′ iff h = h′, k = k′, and for0 ≤ i ≤ k : ri = r′i ∧ ci ≤ c′i

From the definition of a region and the cost inside a region follows, that ifR ≤ R′

andv ∈ R, thenv ∈ R′ and cost(v,R) ≤ cost(v,R′).
The operations delay, reset,⊕ and self satisfy the following useful properties:

Proposition 3.11 (Interaction Properties)

1. self(R, p) ≤ R,

2. self(self(R, p), p) = self(R, p),

3. R ≤ R′ ⇒ delay(R, p) ≤ delay(R′, p),

4. reset(x, reset(x,R)) = reset(x,R),

5. reset(x, reset(y, R)) = reset(y, reset(x,R)),

6. self(delay(R, p), p) = delay(R, p),

7. self(R⊕ q, p) = self(R, p)⊕ q,

8. delay(R⊕ q, p) = delay(R, p)⊕ q,

9. For g ∈ B(C), wheneverR ∈ g thenself(R, p) ∈ g.

Proof Follows from the definitions of the operators and≤. �
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Proposition 3.12 (Cost Relations)Given a priced regionR = (h, [r0, . . . , lk],
[c0, . . . , ck]), and a pricep, the symbolic operations behave as follows:

1. If R = self(R, p), v′ ∈ delay(R, p) andv′ − d ∈ R then

cost(v′, delay(R, p)) = inf{cost(v′ − d, R) + d · p|v′ − d ∈ R, d ∈ R≥0}

2. cost(v′, reset(x,R)) = inf{ cost(v,R) | v[x 7→ 0] = v′ }.

3. cost(v,R⊕ p) = cost(v,R) + p

Proof

1. Let R = (h, [r0, . . . , lk], [c0, . . . , ck]) be a priced region.

(a) First, assumero 6= ∅. The delay successor ofR is then the priced
region R′ = (h, [∅, r0, . . . , rk], [c0, . . . , ck, c0 + p]). Recall that, if
v′−d ∈ R, andx ∈ r0, then frac(v′(x)−d) = 0. Note that forv ∈ R,
v +d ∈ R′ andx ∈ C holds frac(v(x)+d) = frac(v(x))+d. We thus
obtain

cost(v′, R′) = c0 +
k−1∑
i=0

frac(v′(xk−i)− d + d)(ci+1 − ci)

+ frac(v′(x0)− d + d)(c0 + p− ck)

= c0 +
k−1∑
i=0

frac(v′(xk−i)− d)(ci+1 − ci)

+ frac(v′(x0)− d)(c0 + p− ck) {= 0}

+ d
k−1∑
i=0

(ci+1 − ci) + d(c0 + p− ck) {= d · p}

= cost(v′ − d, R) + d · p

(b) Next, assumer0 = ∅. SinceR = self(R, p), we havec0 + p ≥ ck. The
delay successor ofR is R′ = (h + erk

, [rk, r1, . . . , rk−1], [c1, . . . , ck]).
If v′ ∈ R′ and0 < d < frac(v(x1)), thenv′ − d ∈ R. Note, that
for xi ∈ ri, v ∈ R, andv + d ∈ R′ we have frac(v(xi) + d) =
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frac(v(xi))+d if 0 < i < k, and frac(v(xk))+d = 1. Hence, we have

cost(v′, R′) = c0 +
k−1∑
i=1

frac(v′(xk−i))(ci+1 − ci) + 1 (c1 − c0)

= c0 +
k−1∑
i=0

(frac(v′(xk−i)− d) + d)(ci+1 − ci)

= cost(v′ − d, R) + d(ck − c0)
≤ cost(v′ − d, R) + d · p

Ford → 0, the last inequality becomes a equality, which proves Propo-
sition3.12.1. �

2. Let R = (h, [r0, . . . , lk], [c0, . . . , ck]) be a priced region,xj ∈ rj andR′ =
reset(R, x). For i = 0 or ri 6= {xi}, it follows directly from the definitions
of reset and cost that cost(v,R) = cost(v[xi 7→ 0], R′).

Next, consider the case0 < i < k andri = {xi}, thenR′ = (h[xi 7→
0], [r0 ∪ {xi}, . . . , ri−1, ri+1, . . . , rk], [c0, . . . , ck−i−1, c

′, ck−i+2, . . . , ck]),
with c′ = min(ck−i, ck−i+1). Let v′ ∈ R′. Clock valuationsv ∈ R satisfy
v[x 7→ 0] = v′, iff v(xj) = v′(xj), for i 6= j andv′(xi−1) < v(xi) <
v′(xi+1). Since the cost is linear, the infimum will be attained in either of
the vertices of this interval.

The cost cost(v,R) assigned to clock valuationsv ∈ R with v[xi 7→ 0] = v′,
differ only in the summand frac(v(xi))(ck−i+1 − ck−i). If ck−i+1 ≥ ck−i,
the infimum of cost(v,R) will be attained forv(xi) → v(xi−1). In this case
the summands frac(v(xi−1))(ck−i+2−ck−i+1)+frac(v(xi))(ck−i+1−ck−i)
of cost(v,R) simplify to frac(v(xi−1))(ck−i+2 − ck−i). Hence, we have
cost(v′, R′) = inf{cost(v,R)|v[x 7→ 0] = v′}, as desired.

Now, assume thatck−i+1 ≤ ck−i. The infimum of cost(v,R), for v[xi 7→
0] = v′, will then be attained forv(xi) → v(xi+1). The two summands
frac(v(xi))(ck−i+1−ck−i)+frac(v(xi+1))(ck−i−ck−i−1) reduce in this case
to frac(v(xi+1))(ck−i+1 − ck−i−1). This proves the equality cost(v′, R′) =
inf{cost(v,R)|v[x 7→ 0] = v′}.
Consider as last casei = k and rk = {xk}. Clock valuationsv satisfy
v[xk 7→ 0] = v′, iff v(xj) = v′(xj), for j < k andv′(xk−1) < v(xk) < 1.
Similarly to the previous case, the infimum will be attained in either vertex
of this interval. The equality cost(v′, R′) = inf{cost(v,R)|v[x 7→ 0] = v′}
follows, similarly to the previous case, from the definition of cost in those
vertices. �
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3. Follows directly from the definitions of cost and⊕. �

3.4 Symbolic Semantics

In this section, we provide a symbolic semantics for linearly priced timed automata
based on the notion of priced regions and the associated operations presented in
the previous section. As a main result we show that the cost of an execution of
the underlying automaton is captured accurately. Finally, we present an algorithm
based on priced regions.

Definition 3.13 (Symbolic Semantics)The symbolic semantics of an LPTAA is
defined as a transition system with the states Loc× (NC × Seq(2C) × Seq(N)),
with initial state(l0, (h0, [C], [0])) (whereh0 assigns zero to all clocks inC), and
with the following transition relation:

• (l, R) → (l, delay(R,P (l))) if delay(R,P (l)) ∈ Inv(l).

• (l, R) → (l′, R′) if there existsg, a, r such thatl
g,a,r−−−→ l′, R ∈ g, R′ =

reset(r, R)⊕ P ((l, g, a, r, l′)), andR′ ∈ Inv(l′).

• (l, R) → (l, self(R,P (l))) .

In the remainder, states and executions of the symbolic transition system for
LPTA A will be referred to as the symbolic states and executions ofA.

Lemma 3.14 Given LPTAA, for each executionα of A that ends in state(l, v),
there is a symbolic executionβ of A, that ends in symbolic state(l, R), such that
v ∈ R, andcost(v,R) ≤ cost(α).

Proof First, observe that, given a constraintg ∈ B(C), if v ∈ R andv ∈ g, then
R ∈ g.

We prove lemma by induction on the length ofα. The base step concernsα
with length 0, consisting of only the initial state(l0, v0) wherev0 is the valuation
assigning zero to all clocks. Clearly, cost(α) = 0. Since the initial state of the
symbolic semantics is the state(l0, (h0, [C], [0])), in whichh0 assigns zero to the
integer part of all clocks, and the fractional part of all clocks is zero, we can take
β to be(l0, (h0, [C], [0])). Clearly, there is only one valuationv ∈ (h0, [C], [0]),
namely the valuationv that assigns zero to all clocks, which is exactlyv0, and by
definition, cost(v0, (h0, [C], [0])) = 0 and trivially0 ≤ 0.

For the induction step, assume the following. We have an executionα in the
concrete semantics, ending in(l, v), a corresponding executionβ in the symbolic
semantics, ending in(l, R), such thatv ∈ R, and cost(v,R) ≤ cost(α).
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Supposeα′ = α
a,p−−→ (l′, v′). Then there is a transitionl

a,g,r−−−→ l′ in the au-
tomatonA such thatv ∈ g, v′ = v[r 7→ 0], v′ ∈ Inv(l′) andp = P ((l, a, g, r, l′)).
Now v ∈ g implies thatR ∈ g. Let R′ = reset(r, R) ⊕ p. It is easy to show
that v′ = v[r 7→ 0] ∈ R′ and asv′ ∈ R′ we then have thatR′ ∈ Inv(l′). So
(l, R) → (l′, R′). Hence we can extendβ to β′ → (l′, R′) such that

cost(v′, R′) = inf{ cost(v,R) | v[r 7→ 0] = v′ } + p

≤ cost(v,R) + p

≤IH cost(α) + p

= cost(α′)

as desired.

Supposeα′ = α
ε(d),p·d−−−−→ (l′, v′), wherep = P (l), i.e. l′ = l, v′ = v + d,

and v + e ∈ Inv(l) for 0 ≤ e ≤ d. As for unpriced regions there exist se-
quencesR0, R1, . . . , Rm andd1, . . . , dm of priced regions and delays such that
d = d1 + . . . + dm, R0 = R and fori ∈ {1, . . . ,m}, Ri = delay(Ri−1, p) with
v +

∑i
k=1 dk ∈ Ri. This defines the sequence of regions visited without consid-

ering cost. To obtain the priced regions with the optimal cost we apply the self
operation. LetR′

0 = self(R0, p) and fori ∈ {1, . . . ,m} let R′
i = delay(R′

i−1, p)
(in fact, for i ∈ {1, . . . ,m}, R′

i = self(R′
i, p) due to Proposition3.11.6). Clearly

we have the following symbolic extension ofβ:

β → (l′, R′
0) → . . . → (l′, R′

m)

By repeated application of Proposition3.12.1 (the condition of Proposition3.12.1
is satisfied for allR′

i(i ≥ 0) because of Proposition3.11.6), and application of
Proposition3.11.1 we get:

cost(v′, R′
m) ≤ cost(v,R′

0) + d · p
≤ cost(v,R) + d · p
≤IH cost(α) + d · p
= cost(α′)

�

Lemma 3.15 Whenever(l, R) is a reachable symbolic state andv ∈ R, then
mincost((l, v)) ≤ cost(v,R).

Proof The proof is by induction on the length of the symbolic traceβ reaching
(l, R). In the base case, the length ofβ is 0 and(l, R) = (l0, R0), whereR0 is the
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initial price region(h0, [C], [0]) in which h0 associates0 with all clocks. Clearly,
there is only one valuationv ∈ R0, namely the valuation which assigns0 to all
clocks. Obviously, mincost((l0, v0)) = 0 ≤ cost(v0, R0) = 0.

For the induction step, assume that(l, R) is reached by a traceβ. Let β′ = β →
(l′, R′) be an extension ofβ. We consider three cases depending on the type of
symbolic transition from(l, R) to (l′, R′). Let v′ ∈ R′.

Case 1:Suppose(l, R) → (l′, R′) is a symbolic delay transition. That is,l′ = l,
R′ = delay(R, p) with p = P (l) andR′ ∈ Inv(l). We consider two sub-cases
depending on whether the first set of clocks ofR is empty or not.

AssumeR = (h, [r0, . . . , rk], [c0, . . . , ck]) with r0 6= ∅. Then regionR′ =
(h, [∅, r0, . . . , rk], [c0, . . . , ck, c0 + p]). Let x ∈ r0 and letv = v′ − d where

d = frac(v′(x)). Thenv ∈ R and(l, v)
ε(d),q−−−→ (l′, v′) whereq = d · p. Thus

mincost((l′, v′)) ≤ mincost((l, v)) + d · p. We have by induction hypothesis,
mincost((l, v)) ≤ cost(v,R), and as cost(v′, R′) = cost(v,R) + d · p (by case
(a) of the proof of Proposition3.12.1), we obtain, as desired, mincost((l′, v′)) ≤
cost(v′, R′).

AssumeR = (h, [r0, r1, . . . , rk], [c0, . . . , ck]) with r0 = ∅. ThusR′ = (h +
erk

, [rk, r1, . . . , rk−1], [c1, . . . , ck]). Now, letxi ∈ ri with 0 < i ≤ k. Let v′ ∈ R′.
Clearly, for anyd with 0 < d < frac(v′(x1)) the following holds:v′ − d ∈ R, and

hence(l, v′ − d)
ε(d),p·d−−−−→ (l, v′), which leads to

mincost((l, v′)) ≤ mincost((l, v′ − d)) + p · d
≤IH cost(v′ − d,R) + p · d

Note that frac(v′(xi)−d) = frac(v′(xi))−d for i = 1, . . . , k−1 and frac(v′(xk)−
d) = 1− d. We obtain

cost(v′ − d, R) + p · d = c0 +
k−1∑
i=1

(frac(v(xk−i))− d)(ci+1 − ci)

+ (1− d)(c1 − c0) + p · d

−→ c1 +
k−1∑
i=1

frac(v(xk−i)− d)(ci+1 − ci) {d → 0}

= cost(v′, R′)

Thus mincost((l′, v′)) ≤ cost(v′, R′) as desired.
Case 2:Suppose(l, R) → (l′, R′) is a symbolic action transition. That isR′ =
reset(r, R) ⊕ p for some transitionl

g,a,r−−−→ l′ of the automaton withR ∈ g and
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p = P ((l, g, a, r, l′)). Now let v ∈ R such thatv[r 7→ 0] = v′. Then clearly
(l, v)

a,p−−→ (l′, v′). Thus:

mincost((l′, v′)) ≤ inf{mincost((l, v)) + p | v ∈ R, v[r 7→ 0] = v′ }
≤IH inf{ cost(v,R) | v[r 7→ 0] = v′ }+ p

= cost(v′, reset(r, R)) + p

= cost(v′, R′) by Proposition3.12.2 and3.12.3

Case 3:Suppose(l, R) → (l′, R′) is a self transition. Thus, in particularl′ = l. If
R = (h, [r0, . . . , rk], [c0, . . . , ck]) with r0 6= ∅, thenR′ = R. The lemma follows
immediately by applying the induction hypothesis to(l′, R′).

Otherwise, ifr0 = ∅, thenR′ andR are identical except for the cost of the ‘last’
vertex; i.e. R = (h, [r0, . . . , rk], [c0, . . . , ck−1, ck]) and R′ = (h, [r0, . . . , rk],
[c0, . . . , ck−1, c0 + p]) with c0 + p < ck andp = P (l). Now let xi ∈ ri. Let
v′ ∈ R′. Clearly, for anyd with 0 ≤ d < frac(v′(x1)) we havev′ − d ∈ R′ (and

v′ − d ∈ R) and(l, v′ − d)
ε(d),p·d−−−−→ (l, v′). Now:

mincost((l, v′)) ≤ mincost((l, v′ − d)) + p · d
≤IH cost(v′ − d, R) + p · d

Observe that for0 ≤ d < frac(v(x1)) we have frac(v(x) − d) = frac(v(x)) − d
for all x ∈ C. Then

cost(v′ − d,R) + p · d = c0 +
k−2∑
i=0

frac(v′(xk−i))(ci+1 − ci)

+ frac(v′(x1))(ck − ck−1) + d(c0 − ck + p)

−→ c0 +
k−2∑
i=0

frac(v′(xk−i))(ci+1 − ci)

+ frac(v′(x1))(c0 + p− ck−1) {d → frac(v′(x1))}
= cost(v′, R′)

Hence, as desired, mincost((l′, v′)) ≤ cost(v′, R′). �

Combining the two lemmas we obtain as a main theorem that the symbolic se-
mantics captures (sufficiently) accurately the cost of reaching states and locations.
Lemma3.15ensures that we can find for any symbolic execution to(l, R) a reach-
able state(l, v), with v ∈ R, in the concrete semantics with less or equal cost. For
this state however Lemma3.14ensures that we can find a symbolic trace to(l, R′)
with less cost andv ∈ R′. This allows us to establish the following equality.
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Figure 3.6: Sets of reachable priced regions of the LPTA in Figure3.2.

Theorem 3.16 Let l be a location of a LPTA A. Then

mincost(l) = min({mincost(R) | (l, R) is reachable})

3.5 Example Symbolic State-Space

In this section, we present part of the symbolic state-space of the linearly priced
timed automaton in Figure3.2 where the value of bothα andβ is two. Figures
3.6.i-iv and 3.7.v-viii show some of the priced regions reachable in a symbolic
representation of the states space. Regions are the vertices, edges and the interior
of the triangles. We only show the priced regions with integer value less than or
equal to three.

Initially all three clocks have value zero and when delaying the clocks keep on
all having the same value. Therefore the priced regions reachable from the initial
state by the delay operation are the ones on the line from(0, 0, 0) through(3, 3, 3)
shown in Figure3.6.i. The numbers on the line are the costs of the vertices of
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Figure 3.7: Sets of reachable priced regions (continued).

the priced regions. Since the cost of staying in locationA is one, the price of
delaying one time unit is one. The point(3, 3, 3) is the only element of region
((3, 3, 3), [{x, y, z}], 3).

The transition labeleda from locationA to B resets clockx. All regions in
Figure3.6.i can take this transition, since the guard is trivially true. This yields
the priced regions presented in Figure3.6.ii. The reset does not change any of
the costs, since the new priced regions are still one-dimensional and no vertices
are collapsed. The priced regions in Figure3.6.iii are the delay successors of the
priced regions in Figure3.6.ii.

The transitionc from locationB to locationC resets clocksy andz. After
resetting the priced regions in Figure3.6.iii, the priced regions in Figure3.6.iv are
reachable. The cost of a states after the reset (projection) is the infimum of the cost
of the states projecting tos. But since the cost are linear it is sufficient to consider
in this case only the cost in the vertices along the diagonal.

When delaying from these priced regions, the priced regions in Figure3.7.v
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are reached. Now we are left with a choice; either we can take the transitiond to
locationD, or take the loop transitionc. Transitionc resets they clock and has a
price ofα = 2. Resetting clocky and adding2 to the cost of the priced regions
in Figure3.7.v gives the regions in Figure3.7.vi. Taking transitionc again yields
the same priced regions as displayed in Figure3.7.vi but now with just another two
added to the cost. So, for each successorR′ of a regionR depicted in Figure3.7.vi
we haveR ≤ R′. Therefore the new priced regions are more costly than the priced
regions already found. The algorithm presented in the next section will decide with
this information not to explore this state further.

Taking the transition to locationD is only possible if the guardx ≥ 2 ∧ y ≤ 1
is satisfied. Only the priced regions in Figure3.7.vii are reachable from the regions
in 3.7.v by transitiond. The minimum cost of reaching locationD in this way is
two. The cost rate in locationD is β = 2, but the self transition does not change
any of these regions. Application of delay operations gives then the regions in
Figure 3.7.viii. The delay successor of region((2, 1, 1), [{y, z}, {x}], [2, 3]) for
instance is((2, 1, 1), [∅, {y, z}, {x}], [2, 3, 4]). While the cost increase in the old
regions increases with rate1, the cost of regions that are only reachable by a delay
in locationD increases with rate2.

3.6 Algorithm

The introduction of priced regions provides a first step towards an algorithmic so-
lution for the minimum-cost reachability problem. In the present form, however,
both the integral part as well as the cost of vertices of priced regions may grow
beyond any given bound during symbolic exploration. In the unpriced case, the
growth of integral parts is often dealt with by suitable abstractions of (unpriced)
regions, taking the maximal constant of the given timed automaton into account.

We have chosen a very similar approach exploiting the fact, that we do not
care about the exact value of clocks that exceed some bound beyond the maximal
constant. As soon as it reaches this bound, we reset it to a smaller bound which
is also larger than the maximal constant. Of course, this requires a more general
definition of linearly priced timed automata, that allows to reset a clock not just to
0, but to an integer value beyond the maximal constant maxA. But this extension is
obtained straightforward and requires only slight modifications of the LPTA model,
in particular of Definition3.7.

This section shows that any LPTAA may be transformed into an equivalent
boundedautomatonÃ in the sense thatA andÃ reach the same locations with the
exact same cost. We then present a state-space exploration algorithm and show that
it computes the optimal trace, provided that it terminates. We then show that the
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algorithm terminates for any bounded LPTA, and thus for any LPTA.

Theorem 3.17 Let A = (Loc, l0, E, Inv, P ) be a LPTA with maximal constant
max. Then there exists abounded time equivalentof A, Ã = (Loc, l0, E ∪
E′, Inv′, P ′), satisfying the following:

1. Whenever(l, v) is reachable inÃ, then for allx ∈ C, v(x) ≤ maxA + 2.

2. For any locationl ∈ Loc, l is reachable with costc in A if and only if l is
reachable with costc in Ã

Proof We constructÃ = (Loc, l0, E ∪ E′, Inv′, P ′), as follows.E′ = {(l, x ==
max+ 2, τ, x := maxA + 1, l)|x ∈ C, l ∈ Loc}. For l ∈ Loc, Inv′(l) = Inv(l) ∧∧

x∈C x ≤ maxA+2, P ′(l) = P (l). Fore ∈ (E∪E′), if e ∈ E thenP ′(e) = P (e)
elseP ′(e) = 0.

By definition,Ã satisfies the first requirement.
As to the second requirement. LetR be a relation between states fromA

and Ã such that for((l1, v1), (l2, v2)) ∈ R iff l2 = l1, and for eachx ∈ C, if
v1(x) ≤ maxA thenv2(x) = v1(x), elsev2(x) > maxA. We show that for each
state(l1, v1) of A which is reached with costc, there is a state(l2, v2) of Ã, such
that((l1, v1), (l2, v2)) ∈ R and(l2, v2) is reached with costc, and vice versa.

Let (l1, v1), (l2, v2) be states ofA andÃ, respectively. We use induction on
the length of some execution leading to(l1, v1) or (l2, v2). For the base step, the
length of such an execution is 0. Trivially, the cost of such an execution is 0, and if
(l1, v1) and(l2, v2) are initial states, clearly((l1, v1), (l2, v2)) ∈ R.

For the transition steps, we first observe that for each clockx ∈ C,
v1(x) ∼ c iff v2(x) ∼ c with ∼∈ {<,≤, >,≥} andc ≤ maxA. (∗)

Assume((l1, v1), (l2, v2)) ∈ R, and(l1, v1) and(l2, v2) can both be reached with
costc. We make the following case distinction.

Case 1: Suppose(l1, v1)
ε(d),p−−−→A (l1, v1 + d). In order to letd time pass

in (l2, v2), we have to alternatingly perform the addedτ transition to reset those
clocks that have reached the maxA + 2 bound as many times as needed, and then
let a bit of the time pass. Letd1 . . . dm be a sequence of delays, such thatd =
d1 + . . . + dm, and forx ∈ C and i ∈ {1, . . . ,m}, if maxA + 2 − (v1(x) +
d1 + . . . + di−1) ≥ 0 thendi ≤ maxA + 2 − (v1(x) + d1 + . . . + di−1), else
di ≤ 1− frac(v1(x) + d1 + . . . + di−1). It is easy to see that for somev′2,

(l2, v2)(
τ,0−−→)∗

ε(d1),p1−−−−−→ . . . (
τ,0−−→)∗

ε(dm),pm−−−−−−→ (l2, v′2)

wherepi = di · P (l2). The cost for reaching(l1, v1 + d) is c + d · PA(l1) =
c+d ·PÃ(l2) = c+(d1 + . . .+dm) ·PÃ(l2), which is the cost for reaching(l2, v′2).
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Now, ((l1, v1 + d), (l2, v′2)) ∈ R, because of the following. For eachx ∈ C, if
v1(x) > maxA, thenv2(x) > maxA, and eitherx is not reset to maxA + 1 by any
of theτ transitions, in which case stillv′2(x) > maxA, or x is reset by some of the
τ transitions, and then maxA + 1 ≤ v′2(x) ≤ maxA + 2, sov′2(x) > maxA.

If v1(x) ≤ maxA, then byv1(x) = v2(x), v2(x) ≤ maxA. If (v1 + d)(x) ≤
maxA, thenx is not touched by any of theτ transitions leading to(l2, v′2), hence
v′2(x) = v2(x)+d1+ . . .+dm = v2(x)+d = (v1+d)(x). If (v1+d)(x) > maxA,
thenx may be reset by some of theτ transitions leading to(l2, v′2). If so, then
maxA + 1 ≤ v′2(x) ≤ maxA + 2, so v′2(x) > maxA. If not, thenv′2(x) =
v2(x) + d1 + . . . + dm = v2(x) + d = (v1 + d)(x) > maxA.

Case 2: Suppose(l2, v2)
ε(d),p−−−→A (l2, v2 + d). Then it trivially holds that

((l1, v1 + d), (l2, v2 + d)) ∈ R. Now we show(l1, v1)
ε(d),p−−−→A (l1, v1 + d). Since

(l2, v2 + d) ∈ InvÃ, sinceInvÃ impliesInvA and since((l1, v1 + d), (l2, v2 + d)) ∈

R, from observation (∗) it follows that (l1, v1 + d) ∈ InvA. So (l1, v1)
ε(d),p−−−→A

(l1, v1 + d), and trivially, the cost of reaching(l2, v2 + d) is c + d · PÃ(l2) =
c + d · PA(l1), which is the cost of reaching(l1, v1 + d).

Case 3: Suppose(l1, v1)
a,p−−→A (l′1, v

′
1). Let (l, g, a, r, l′) be a correspond-

ing edge. Thenp = PA((l, g, a, r, l′)). By definition, (l, g, a, r, l′) ∈ EÃ and
PÃ((l, g, a, r, l′)) = PA((l, g, a, r, l′)). From observation (∗) it follows thatv1 ∈ g
impliesv2 ∈ g. It is easy to see that forx ∈ r, v′1(x) = 0 = v2[r 7→ 0](x), and
for x 6∈ r, v′1(x) = v1(x) andv2(x) = v2[r 7→ 0](x), so ((l′1, v

′
1), (l

′, v2[r 7→
0])) ∈ R. Combining this with observation (∗) it follows thatv1[r 7→ 0] ∈ InvA(l′)
impliesv2[r 7→ 0] ∈ IÃ(l′), hence(l2, v2)

a,p−−→Ã (l′, v2[r 7→ 0]). Clearly, the cost
of reaching(l1, v′1) is c + d · PÃ((l, g, a, r, l′)) = c + d · PA((l, g, a, r, l′)), which
is the cost of reaching(l2, v2[r 7→ 0]).

Case 4:Suppose(l2, v2)
a,p−−→Ã (l′2, v

′
2). Let (l, g, a, r, l′) be a corresponding

edge. If(l, g, a, r, l′) ∈ EA, then the argument goes exactly like in the previous
case. If(l, g, a, r, l′) 6∈ EA, thena = τ , p = 0, l′2 = l′ = l = l2, andx ∈ r implies
v′2(x) = maxA + 1 andv2(x) = maxA + 2. Since the cost of reaching(l′2, v

′
2) is

c + 0 = c, it suffices to show((l1, v1), (l2, v′2)) ∈ R. Forx 6∈ r, this follows triv-
ially. For x ∈ r, v2(x) = maxA + 2, sov1(x) > maxA and byv′2(x) = maxA + 1
we havev′2(x) > maxA. �

Now, we suggest in Figure3.8a branch-and-bound algorithm for determining
the minimum-cost of reaching a given target locationlg from the initial state of
a LPTA. All encountered states are stored in the two data structuresPASSEDand
WAITING , divided into explored and unexplored states, respectively. The global
variableCOSTstores the lowest cost for reaching the target location found so far.
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COST := ∞
PASSED:= {}
WAITING := [(l0,R0)]
while WAITING 6= [] do

select (l,R) from WAITING

if l = lg and mincost(R) < COST

then COST := mincost(R)
if ∀(l′,R′) ∈ PASSED. l 6= l′ ∨R′ � R
then add (l,R) to PASSED

forall (l′,R′) s.t.(l,R)→(l′,R′) do
add (l′,R′) to WAITING

od
fi

od

Figure 3.8: Branch-and-bound state-space exploration algorithm.

In each iteration, a state is taken fromWAITING . If it matches the target lo-
cationlg and has a lower cost than the previously lowest costCOST, thenCOST is
updated. Then, only if the state has not been previously explored with a lower cost
we add it toPASSEDand its successors toWAITING . This bounding of the search
in line 8 of Figure3.8 may be optimized even further by adding the constraint
mincost(R) < COST; i.e. we only need to continue exploration if the minimum
cost of the current region is below the optimal cost computed so far. Due to Theo-
rem3.16, the algorithm of Figure3.8does indeed yield the correct minimum-cost
value, provided that it terminates.

Theorem 3.18 When the algorithm in Figure3.8 terminates, the value ofCOST

equalsmincost(lg).

Proof First, notice that if(l1, R1) can reach(l2, R2) via a sequence of transitions,
then a state(l1, R′

1) with R′
1 ≤ R1 can reach a state(l2, R′

2) with R′
2 ≤ R2 via

the same path. We prove that after terminationCOST equalsmin{mincost(R) |
(lg, R) is reachable}.

The caseCOST ≥ min{mincost(R) | (lg, R) is reachable} is true, since the
value ofCOSTis only updated if(lg, R) is found to be reachable. The caseCOST≤
min{mincost(R) | (lg, R) is reachable} is less trivial. If the minimum exists, there
has to be an execution(l0, R0) → . . . → (ln, Rn), with ln = lg and mincost(R) =
min{mincost(R) | (lg, R) is reachable}. If this state is exploredCOST will be
updated to mincost(Rn), and we are done.

If this is not the case the algorithm must at some point have discarded a sym-
bolic state(li, Ri) on the path to(ln, Rn). This can only happen in line 8, but then
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there must exist a state(l′i, R
′
i) ∈ PASSEDwith R′

i ≤ Ri, which was encountered
in a prior iteration of the loop. Hence, there is a state(l′n, R′

n) reachable via ex-
ecution fragment(l′i, R

′
i) → . . . → (l′n, R′

n), suchl′n = lg and mincost(R′
n) ≤

mincost(Rn). The last inequality is actually an equality, since mincost(Rn) is cho-
sen minimal. Note that the execution fragment(l′i, R

′
i) → . . . → (l′n, R′

n) has the
same length as(li, Ri) → . . . → (ln, Rn). If the algorithm explores symbolic state
(l′n, R′

n) we haveCOST≤ mincost(R′
n) as desired.

If this is not the case one of the states(l′j , R
′
j) with i < j < n has been

discarded. In this case there must exist(l′′j , R′′
j ) ∈ PASSEDwith R′′

j ≤ R′
j , but

also a path(l′′j , R′′
j ) → . . . → (l′′n, R′′

n) such thatl′′n = lg and mincost(R′′
n) =

mincost(Rn). We are now in the same situation as in the previous paragraph, ex-
cept for the length of execution fragment to the goal location, which decreased.
If we iterate this step, the distance to the goal location will decrease with each
iteration, and we will eventually (after at mostn − i steps) find a symbolic state
(lg, R) that has been explored by the algorithm. ThusCOST ≤ mincost(R) =
min{mincost(R) | (lg, R) is reachable}.

The theorem now follows from Theorem3.16. �

For bounded LPTA, application of Dickson’s Lemma, which is a special case of
Higman’s Lemma [Hig52], ensures termination. In [Vel00] Dickson’s Lemma is
formulated as follows:

Lemma 3.19 (Dickson)For everyp > 0, for all infinite sequencesα0, . . . , αp−1

of natural numbers, there existi, j such thati < j and for everyk < p : αk(i) ≤
αk(j).

We will use this lemma to prove the following:

Theorem 3.20 The algorithm in Figure3.8terminates for any bounded LPTA.

Proof Even if A is bounded (and hence yields only finitely many unpriced re-
gions), there are still infinitely many priced regions, due to the unboundedness of
cost of vertices. Application of Dickson’s lemma ensures, since all costs are pos-
itive, that one cannot have an infinite sequence〈(ci

1, . . . , c
i
m) : 0 ≤ i < ∞〉 of

cost-vectors (for any fixed lengthm) withoutcj
l ≤ ck

l for all l = 1, . . . ,m for some
j < k. Consequently, due to the finiteness of the sets of locations and unpriced re-
gions, it follows that one cannot have an infinite sequence〈(li, Ri) : 0 ≤ i < ∞〉
of symbolic states withoutlj = lk andRj ≤ Rk for somej < k, thus ensuring
termination of the algorithm. �

Finally, combining Theorem3.18and3.20, it follows, due to Theorem3.17,
that the minimum-cost reachability problem is decidable.

Theorem 3.21 The minimum-cost problem for LPTA is decidable.
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3.7 Conclusion

In this chapter, we have successfully extended the work on regions and their op-
erations to a setting of timed automata with linear prices on both transitions and
locations. We have given an elementary principle branch-and-bound algorithm for
the minimum-cost reachability problem, which is based on accurate symbolic se-
mantics of timed automata with linear prices, and thus showing the minimum-cost
reachability problem to be decidable.

A slight modification of our algorithm provides an extension to a parameterized
setting, in which (some) prices may be parameters. In this setting, costs within
priced regions are linear expressions over the given parameters rather than simple
natural numbers. From recent results in [AN00] (generalizing Higman’s lemma) it
follows that the ordering on (parameterized) symbolic states is again a well-quasi
ordering, hence guaranteeing termination of our algorithm. In the modified version
of algorithm,COSTwill be a collection of (linear) cost-expressions with which the
goal-location has been reached (so far).

The algorithm in Figure3.8 is guaranteed to be rather inefficient and highly
sensitive to the size of constants used in the guards of the automata — a character-
istic inherited from the unpriced regions. An obvious continuation of this work is
therefore to investigate if other more efficient (in practice) data structures can be
found. Possible candidates include data structures used in reachability algorithms
of timed automata, such as DBMs to represent zones (i.e. convex sets of clock as-
signments). In contrast to the priced extension of regions, operations on such a
notion of priced zones cannot be obtained as direct extensions of the correspond-
ing operations on zones with suitable manipulation of cost of vertices. Consider for
example Figure3.7.viii. The regions form a zone, but the cost does not constitute
a linear plane on this zone.

The next chapter will present an efficient algorithm for the sub class ofUni-
formly Priced Timed Automata. For this class we can basically use an implemen-
tation based on DBMs. Chapter5 addresses the problem of symbolic exploration
based on priced zones for the full class ofLinearly Priced Automata.
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Efficient Guiding for Uniformly Priced
Timed Automata

4.1 Introduction

The previous chapter presented an algorithm for computing the minimal cost of
reaching designated goal states for the full model of Linearly Priced Timed Au-
tomata (LPTA). Since the algorithm is based on a cost-extended version of regions
it is guaranteed to be extremely inefficient and highly sensitive to the size of con-
stants used in the models. This chapter presents an algorithm for computing the
minimum cost of reaching a goal state in the model ofUniformly Priced Timed
Automata(UPTA) a sub-class of the LPTA model. This algorithm is based on a
symbolic semantics of UPTAs, and an efficient representation and operations based
on difference bound matrices.

As pointed out in the conclusions of Chapter2, using a verification algorithm to
solve scheduling problems has several drawbacks. Verification algorithms do nor-
mally not support any notion of optimality and are designed to explore the entire
state-space as efficiently as possible. The verification algorithms that do support
notions of optimality are restricted to simple trace properties such as shortest trace
[LPY95], or shortest accumulated delay in trace [NTY00]. Dedicated scheduling
algorithms, in contrast, are often designed to find optimal (or near optimal) solu-
tions and are therefore based on techniques such as branch-and-bound to identify
and prune parts of the states-space that are guaranteed to not contain any optimal
solutions.

This chapter is based on the publication:

[BFH+01a] G. Behrmann, A. Fehnker, T.S. Hune, K.G. Larsen, P. Petterson and J.M.T. Romijn.
Efficient Guiding Towards Cost-Optimality inUPPAAL. TACAS’01.

It contains excerpts from the paper:

[BMF02] E. Brinksma, A. Mader and A. Fehnker.Verification and Optimization of a PLC
Control ScheduleSTTT. 2002.
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A
2 2 2

B C

x < 3 < 3x

x := 0

y > 3

4

Figure 4.1: Example UPTA with two clocksx andy, and a uniform cost rate 2

In this chapter we aim at reducing the gap between scheduling and verification
algorithms by adapting a number of techniques used in scheduling algorithms to
timed automata and adding them to the verification tool UPPAAL. The modified
model checker can then be used to solve the minimal-cost reachability problem
for Uniformly Priced Timed Automata. UPTAs are LPTAs with the same cost rate
in all locations. Delay does therefore contribute in a uniform manner to the cost,
independent of the location. An example of a UPTA is depicted in Figure4.1. The
automaton is initially in locationA. The transition fromA to B has cost4, whereas
the other two transitions are free. Because of the invariants on the locations, a trace
reaching the locationC must first visitB and then go back to the initial location
A. It can then reach locationC, via B, with minimal cost of 14. UPTAs cover
scheduling problems in which the overall time has to be minimized, like the Sidmar
steel plant scheduling problem and job shop scheduling problems (Chapter2).

As the first contribution of this chapter, we give for the sub-class of UPTA an
efficient zone representation of symbolic cost states based onDifference Bound
Matrices[Dil89], and give all the necessary symbolic operators needed to imple-
ment a state-space exploration algorithm that computes the optimal solution. As the
second contribution we show, in analogy with Dijkstra’s shortest path algorithm,
that the state-space exploration may terminate as soon as a goal state is explored,
if the algorithm is modified to always select the symbolic state with the smallest
minimum cost from theWAITING list. This means that we can solve the minimum-
cost reachability problem without necessarily searching the entire state-space of
the analyzed automaton.

The third contribution of this chapter is a number of techniques inspired by
branch-and-bound algorithms (page40) that have been adopted in making the al-
gorithm even more useful. These techniques are particularly useful for limiting the
search space and for quickly finding solutions near to the minimum cost of reach-
ing a goal state. To support this claim, we have implemented the algorithm in an
experimental version of the verification tool UPPAAL and applied it to a wide vari-
ety of examples. Our experimental findings indicate that in some cases as much as
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90% of the state-space searched in ordinary breadth-first order can be avoided by
combining the techniques presented in this chapter. Moreover, the techniques allow
reachability analysis to be performed in cases which were previously unsuccessful.

The rest of this chapter is organized as follows: Section4.2 introduces the no-
tion of a priced zone. In Section4.3 we formally define the model of uniformly
priced timed automata and give the symbolic semantics and present the basic al-
gorithm. Section4.4discusses some useful properties of minimal-cost orders and
modifications of the basic algorithm, inspired by branch-and-bound techniques.
The experiments are presented in Section4.5. We conclude the chapter in Sec-
tion 4.6.

4.2 Priced Zones

The semantics of LPTA as defined in Section3.2yields an uncountable state-space
and is therefore not suited for state-space exploration algorithms. For priced re-
gions we have obtained a decidability result, but this approach suffers from the
inefficiency it inherited from the unpriced regions. For pure reachability analysis,
timed automata model checkers like UPPAAL and KRONOSuse symbolic seman-
tics based onzones. A zoneZ ⊆ RC

≥0 is a convex set of clock valuations that
satisfy a constraint fromB(C), and can be considered as convex union of regions
(Section3.3. In the remainder we will identify the set of clock valuation with the
constraints that define the set. Recall thatB(C) is the set of conjunctions of atomic
clock constraints of the formx ∼ n for x, y ∈ C, n ∈ N and∼∈ {<,≤,=,≥, >},
given a set of clocksC. Since each timed automaton with constraints of the form
x− y ∼ n, is strongly bisimilar to a timed automaton with only constraints of the
formx ∼ n, the results in this chapter are applicable to automata having constraints
of the typex− y ∼ n as well.

WheneverZ is a zone andr a set of clocks, we denote byZ↑ and{r}Z the set
of clock valuations obtained by delaying and resetting (w.r.t.r) clock valuations
from Z, respectively. That is,Z↑ = {v + d | v ∈ Z, d ∈ R≥0} and{r}Z =
{v[r 7→ 0] | v ∈ Z}. It is well-known – using a canonical representation of zones as
Difference Bounded Matrices(DBMs) [Dil89] – that in both cases the resulting set
is again representable as a zone. Using these operations together with the obvious
fact, that zones are closed under conjunction, necessary operations may now be
effectively realized using the zone-based representation of symbolic states.

In the priced setting we must in addition represent the costs with which indi-
vidual states are reached. For this we proposepriced zones:

Definition 4.1 (Priced Zone) A priced zoneZ is a tuple(Z, π), whereZ is a zone
andπ : Z → R≥0 a function from valuations inZ to real valued cost.
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The intention is that reachability of the priced symbolic state(l,Z) should ensure
that any state(l, v) with v ∈ Z is reachable with cost arbitrarily close toπ(s). For
convenience we define forv ∈ RC

≥0 andZ = (Z, π) that cost(v,Z) equalsπ(v),
if v ∈ Z and∞ otherwise. Given a clock valuationv ∈ RC

≥0, and a priced zone
Z = (Z, π), we definev ∈ Z iff v ∈ Z.

As in the case of priced regions, we have to define comparison of priced zones.
Let (Z, π) and(Z ′, π′) be priced zones. We write(Z, π) v (Z ′, π′) if Z ′ ⊆ Z
andπ(v) ≤ π′(v) for all v ∈ Z ′, informally expressing, that(Z, π) is “as big
and cheap” as(Z ′, π′). Alternatively we may defineZ v Z ′ iff cost(v,Z) ≤
cost(v,Z ′), for all v ∈ RC

≥0. We denote the infimuminf{cost(v,Z)|v ∈ RC
≥0} by

mincost(Z).
The symbolic semantics for LPTA based on priced zones is very similar to the

common zone based symbolic semantics used for timed automata.

Definition 4.2 (Zone Semantics)LetA = (Loc, l0, E, Inv, P ) be a linearly priced
timed automaton. The symbolic semantics is defined as a labeled transition system
over symbolic states of the form(l,Z), l being a location andZ = (Z, π) a priced
zone with the transition relation:

• (l,Z) → (l, (Z ′, π′)), whereZ ′ = Z↑ ∧ Inv(l), andπ′(v′) = inf{π(v) +
P (l) · d|d ∈ R≥0 ∧ v ∈ Z ∧ v′ = v + d}.

• (l,Z) → (l′, (Z ′, π′)), iff l
g,a,r−−−→ l′, Z ′ = Inv(l′)∧{r}(Z ∧ g)), Z ′ 6= ∅ and

π′(v′) = inf{π(v) + P ((l, g, a, r, l′))|v ∈ Z ∧ v′ = [r 7→ 0]v}.

The initial state is(l0, (Inv(l0) ∧ Z0, π0)) whereZ0 = {v0} andπ0(v0) = 0.

Now, the above notion of priced symbolic state and associated operations, al-
lows an abstract algorithm for computing the minimum cost of reaching a desig-
nated goal location (Figure4.2). The algorithm starts with the initial symbolic state
(l0,Z0). The minimum cost mincost(lg) of reaching a locationlg is defined, as in
Definition3.3, to be the infimum of the cost of concrete finite executions that reach
lg. The algorithm shown in Figure4.2 differs from the algorithm in Figure3.8
only in the sense that we use a zone based semantics rather than the region based
from Section3.4. These algorithms can also handle reachability problems to a set
of goal states. By adding an additional location, one can translate a reachability
problem to a set of states to a reachability problem of a location.

The symbolic semantic and the algorithm allows us to derive the following
results, similar to Theorem3.16and Theorem3.18.

Theorem 4.3 Let l be a location of a LPTA A. Then

mincost(l) = min{mincost(Z) | (l,Z) is reachable}
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COST := ∞
PASSED:= {}
WAITING := [(l0,Z0)]
while WAITING 6= [] do

select (l,Z) from WAITING

if l = lg and mincost(Z) < COST

then COST := mincost(Z)
if ∀(l′,Z ′) ∈ PASSED. l 6= l′ ∨ Z ′ 6v Z
then add (l,Z) to PASSED

forall (l′,Z ′) s.t.(l,Z)→(l′,Z ′) do
add (l′,Z ′) to WAITING

od
fi

od

Figure 4.2: Abstract algorithm for the minimal-cost reachability problem.

Theorem 4.4 When the algorithm in Figure4.2 terminates, the value ofCOST

equalsmincost(lg).

Both theorems can be proven similarly to the corresponding theorems for priced
regions. Theorem4.4ensures that the algorithm in Figure4.2does indeed find the
minimum cost, provided that the algorithm terminates. Assuming that we can real-
ize the necessary operations like intersection and comparison of priced zones, one
can prove that the algorithm terminates, by transforming any given LPTA to its
bounded counterpart, as we did in Section3.6. Observe that each zoneZ is then a
finite union of regions. We can then assign to each vertexv ∈ NC that is an ele-
ment (of the closure) ofZ a costπ(v) in N. The cost inside a zone is then defined
by the cost in the nearest vertices of the grid. Dickson’s lemma then ensures that
we cannot have an infinite sequence of priced zones with no pairi < j such that
(Z, πi) v (Z, πj).

Theorem 4.5 The algorithm in Figure4.2terminates for any boundedLPTA.

Note, that we assumed that we have provided a way to realize operations on
priced zones such as comparison. In the implementation of zone based time au-
tomata model checkers termination is ensured by normalizing all zones with re-
spect to a maximum constantM [Rok93], but for LPTAs ensuring termination also
depends on the representation of priced zones. In the next section we will present
such a representation for the sub-class ofUniformly Priced Timed Automata.
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4.3 Uniformly Priced Timed Automata

Definition 4.6 (Uniformly Priced Timed Automata) A uniformly priced timed
automaton (UPTA) is an LPTA where all locations have the same rate. We refer to
this rate as the rate of the UPTA.

Lemma 4.7 Any UPTAA with positive rate can be translated into a UPTAB with
rate 1 such thatmincost(l) in A is identical tomincost(l) in B.

Proof [sketch] LetA be a UPTA with positive rater. Now, letB be likeA except
that all constants on guards and invariants are multiplied byr and set the rate ofB
to 1. �

Thus, in order to find the infimum cost of reaching a satisfying state in UPTA, we
only need to be able to handle rate zero and rate one.

In case of rate zero, all symbolic states reachable by the symbolic semantics
have very simple cost functions: The zone is mapped to the same integer, because
the cost is 0 in the initial state and only modified by the increment operation. This
means that a priced zoneZ can be represented as a pair(Z, c), whereZ is a zone
and c an integer, s.t. cost(v,Z) = c when v ∈ Z and∞ otherwise. Delay,
reset and satisfaction are easily implementable for zones using DBMs. Increment
is a matter of incrementingc and a comparison(Z1, c1) v (Z2, c2) reduces to
Z2 ⊆ Z1 ∧ c1 ≤ c2. In the DBM-based implementation, termination is ensured by
normalizing all zones with respect to a maximum constant maxA.

In case of rate one, the idea is to use zones overC∪{δ}, whereδ is an additional
clock keeping track of the cost. Priced zonesZ are then subsets ofRC∪δ

≥0 . Conse-
quently, we have for a priced zoneZ andv ∈ RC

≥0 that cost(v,Z) = inf{ν(δ)|ν ∈
Z ∧ ν|C = v}1. Delay, reset, satisfaction and computing mincost are supported
directly by DBMs. Increment translates toZ[δ 7→ δ + k] = {ν[δ 7→ ν(δ) + k] |
ν ∈ Z} and is also realizable using DBMs.

The only necessary operation that is not directly implementable is the compar-
ison. Fortunately, it can be shown that comparison between priced zones can be
reduced to inclusion of zones overC ∪ {δ}. For comparison between symbolic
cost states notice thatZ2 ⊆ Z1 impliesZ1 v Z2, whereas the implication in the
other direction does not hold in general. The following Lemma4.8states that com-
parisons can still be reduced to set inclusion provided the zone is extended in theδ
dimension.

Lemma 4.8 LetZ† = {ν†|ν ∈ Z ∧ ν|C = ν†|C ∧ ν(δ) ≤ ν†(δ)}. Then

Z1 v Z2 ⇔ Z†
2 ⊆ Z†

1

1 We define cost(v,Z) to be∞ if v 6∈ Z
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Figure 4.3: Letx be a clock and letδ be the cost. In the figure,Z v Z1 v Z2, but only
Z1 is a subset ofZ. The()† operation removes the upper bound onδ, henceZ†

2 ⊆ Z†.

Proof AssumeZ1 v Z2. By definition Z1 v Z2 ⇔ ∀v : cost(v,Z1) ≤
cost(v,Z2). First, assumeν† ∈ Z†

2. Then there exist aν ∈ Z2 with ν(δ) ≤ ν†(δ)
andν|C = ν†|C . FromZ1 v Z2 follows cost(ν|C ,Z1) ≤ cost(ν|C ,Z1), en thus
that there exists aν ′ ∈ Z1, such thatν ′(δ) ≤ ν(δ) ≤ ν†(δ) andν|C = ν ′|C =
ν†|C . Hence, as desired,ν† ∈ Z†

1.

AssumeZ†
2 ⊆ Z†

1. From the definitions follows straightforward cost(v,Z) =
cost(v,Z†). Furthermore, we trivially have cost(v,Z) ≤ cost(v,Z ′), if Z ′ ⊆ Z.
Hence,Z1 v Z2 as desired. �

See Figure4.3 for an example of the()†-operation. It is straightforward to
implement the()†-operation on DBMs. A useful property of the()†-operation
is, that its effect on zones can be obtained without implementing the operation.
Suppose that(l′,Z ′) is a symbolic successor of(l,Z), due to a delay transition or
discrete transition. We then have that(l′, (Z ′)†) is a successor of(l,Z†) due to the
same transition – intuitively becauseδ is never reset and no guards or invariants
depend onδ. It is therefore sufficient to apply the()† operation only once to the
initial symbolic state(l0,Z†

0).
Termination is ensured for the DBM-based implementation, since all clocks

except forδ are normalized with respect to a maximum constantM . It is important
that normalization never touchesδ. With this modification, the algorithm in Figure
4.2will essentially encounter the same states as the traditional forward state-space
exploration algorithm for timed automata, except for the addition of clockδ.

4.4 Improving the State-Space Exploration

As mentioned before, a drawback of the algorithm in Figure4.2 is, that the com-
plete states space has to be searched. This can in most cases be improved in a
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PASSED:= {}
WAITING := [(l0,Z0)]
while WAITING 6= [] do

select (l,Z) from WAITING with smallest mincost(Z)
if l = lg then return mincost(Z)
if ∀(l′,Z ′) ∈ PASSED. l 6= l′ ∨ Z ′ 6v Z
then add (l,Z) to PASSED

forall (l′,Z ′) s.t.(l,Z)→(l′,Z ′) do
add (l′,Z ′) to WAITING

od
fi

od

Figure 4.4: State-space exploration algorithm using MC order.

number of ways. In analogy with Dijkstra’s shortest path algorithm and the UP-
PAAL state-space search leads us to stop the search as soon as a goal state has been
found. This is, however, based on a kind of breadth-first search which might not
succeed for systems with very large state-spaces. In this case techniques inspired
by branch and bound algorithms can be helpful.

4.4.1 Minimum Cost Order

The algorithm of Figure4.2 may select, in analogy with Dijkstra’s algorithm for
finding the shortest path in a directed weighted graph, the symbolic state(l,Z)
from WAITING for whichZ has the smallest minimum cost. With this choice, we
may terminate the algorithm as soon as a goal state is selected fromWAITING . We
will refer the search order arising from this strategy as the Minimum Cost order
(MC order).

Lemma 4.9 Using the MC order, an optimal solution is found by the algorithm in
Figure4.2when a goal state is selected fromWAITING the first time.

Proof When a state is taken fromWAITING using the MC order, no state with lower
cost are reachable. Therefore, when the first goal state is taken fromWAITING no
(goal) states with lower cost are reachable, so the optimal solution has been found.

�

When applying the MC order, the algorithm in Figure4.2can be simplified as de-
picted in Figure4.4. There is no need to maintain variableCOST, and the algorithm
stops as soon as it finds a state(lg,Z).

If there are more than just one symbolic state with the same minimum cost, the
MC order offers no indication as to which one to explore first. As a matter of fact,
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Figure 4.5: (a) This automaton illustrates that the MC search order might not be optimal
in any case. We assume a cost rate of1. Figure (b) depicts the zones that are reachable
in locationl2 (andl3). The big light grey zone is reachable in locationl2 via locationl′1,
whereas the three dark grey zones are reachable only vial1.

we cannot even be sure that a particular MC search order cannot be outperformed
by a non-MC order; selecting a state from theWAITING that has not the smallest
mincost may reduce the number of explored states. The MC algorithm for priced
timed automata differs in this respect from the shortest-path algorithm for directed
weighted graphs. The main reason is that the timed automaton discards exploration
of a state based on a notion of superset, rather than equality.

Figure 4.5 illustrates this fact. The minimal cost of reaching locationlg of
the automaton in Figure4.5 (a) is 7, since clockx is never reset and hence equal
to the additional clockδ. The MC order might explore first the symbolic states
in locationsl0, l′0 and l1, and then the successors of locationl1, and finally the
successors of locationl′1. Exploring in contrast the successors ofl′1 with minimal
cost of 6, prior to the successors ofl1, with minimal cost of 1 to 3, reduces the
number of explored states with 6; but this search order is not an MC order. The
reduction is caused by the fact that the large zone in locationl2 andl3, that contains
the three smaller zones, is only reachable from locationl′1 (Figure4.5 (b)). If we
explore the large zone first, the smaller ones will not pass the test on thePASSED

list, and will thus not be explored further.
Minimal-cost search orders constitutes nevertheless an important class, as stat-

ed by the following lemma:

Lemma 4.10 There exist a MC order, such that the algorithm in Figure4.2 ex-
plores the fewest symbolic states.

Proof We prove this indirectly, by proving that for any search order, there exists
an MC order that explores as many or less states. Note, that the minimal cost of
a state never decreases if we take a transition. Given an arbitrary search order, we
denote thePASSEDlist after termination withPASSEDnonmc. The desired MC order
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is realized by the selecting states from theWAITING list according to the following
precedence rules:

• Select a state with the smallest mincost.

• To solve remaining ties, select the state than was explored first by the given
search order.

This search order is clearly a minimal-cost order. The second rule ensures that the
predecessor of a state will be explored first. If(l,Z) was discarded with the given
non-MC order, there exists a state(l′,Z ′) ∈ PASSEDnonmc with (l′,Z ′) v (l,Z).
If we use the MC order that is achieved by the precedence rules,(l,Z) will also
be discarded, since(l′,Z ′) will be explored before(l,Z). The MC order will thus
encounter only states that were explored by the given order, and it will discard at
least as many states. But, as stated before, we may stop exploration as soon as we
find a state in the goal location, and thus explore even less states. �
This proof gives a recipe on how to obtain an MC order from any given order. In
the case of the example in Figure4.5, this order imposes that we select first the
states in locationl0, l′0 andl1, then the successors of the symbolic state inl′1, and
finally the remaining symbolic states inl2. These will be discarded, since they are
subset of a symbolic state on thePASSEDlist.

The results in this section are based on two implicit assumptions. We assume
that we do not have any information on the minimal cost of the successors of a
state; except that it does not decrease. Such information, if present, is however
useful to reduce the number of explored states. Subsection4.4.2proposes an im-
proved minimal-cost order. We also assumed that there is a way to define arbitrary
search orders. This is in particular useful, if the state-space is that big that we
cannot afford (in terms of time and memory) to wait for termination. We will pro-
pose in Subsection4.4.3modifications of the basic algorithm, that allows to define
heuristic search orders.

4.4.2 Using Estimates of the Remaining Cost

From a given state one often has an idea about the cost remaining in order to reach
a goal state. In branch-and-bound algorithms this information is used both to delete
states and to search the most promising states first. Using information about the
remaining cost can also decrease the number of explored states.

For a state(l, v) let rem((l, v)) be the minimum cost of reaching a goal state
from that state. In general we cannot expect to know exactly what the remaining
cost of a state is. We can instead use an estimate of the remaining cost as long as
the estimate does not exceed the actual cost. For a symbolic state(l,Z) we require
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that REM(l,Z) satisfies REM(l,Z) ≤ inf{rem((l, v)) | v ∈ Z}, i.e. REM(l,Z)
offers a lower bound on the remaining cost of all the states with locationl and clock
valuation within priced zoneZ.

Combining the minimum cost mincost(Z) of a symbolic cost state(l,Z) with
the estimate of the remaining cost REM(l,Z), we can base the MC order on the sum
of mincost(Z) and REM(l,Z). Since mincost(Z) + REM(l,Z) is smaller than the
actual cost of reaching a goal state, the first goal state to be explored is guaranteed
to have optimal cost. We call this the MC+ order, and it is also known as Least-
Lower-Bound order. In Section4.5we will show that even simple estimates of the
remaining cost can lead to large improvements in the number of states searched to
find the minimum cost of reaching a goal state.

One way to obtain a lower bound is to specify an initial estimate and annotate
each transition with updates of this estimate. In this case it is the responsibility of
the user to guarantee that the estimate is actually a lower bound in order to ensure
that the optimal solution is not deleted. This also allows the user to apply her
understanding and intuition about the system.

To obtain a lower bound of the remaining cost in anautomaticandefficient
manner, we suggest to replace one or more automata in the network with “more
abstract” automata. The idea is that this should result in an abstract network which
contains (at least) all runs of the original one, with no larger costs. Thus comput-
ing the minimum cost of reaching a goal state in the abstract network will give
the desired lower bound estimate of reaching a goal state in the original network.
Moreover, the abstract network should be substantially simpler to analyze than the
original network making it possible to obtain the estimate efficiently.

4.4.3 Heuristics and Bounding

It is often useful to quickly obtain an initial solution and thus an upper bound on
the cost. This is in particular the case the state-space is too big for the MC order
to handle. As will be shown in Section4.5, the techniques described here for
altering the search order using heuristics are very useful. In addition, techniques
from branch-and-bound algorithms are useful for improving the upper bound once
it has been found. Applying knowledge about the goal state has proven useful in
improving the state-space exploration [RE99, HLP00, Feh00a], either by changing
the search order from the standard depth or breadth-first, or by pruning parts of the
state-space.

To implement the MC order a suitable data-structure forWAITING would be
a priority queue where the priority is the minimum cost of a symbolic cost state.
We can obviously generalize this by extending a symbolic cost state with a new
field, heur , which is the priority of the state used by the priority queue. Allowing
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various ways of assigning values toheur combined with choosing either to first
select a state with large or small priority opens for a large variety of search orders.

Annotating the model with assignments toheur on the transitions, is one way
to allow the user to guide the search. Because of its flexibility it proves to be a
very powerful way of guiding the search. The assignment works like a normal
assignment to integer variables and with the same kind of expressions. We give
several examples in Section4.5.

When searching for an error state in a system arandomsearch order might
be useful. We have chosen to implement arandom depth-first orderwhich as the
name suggests is a variant of a depth-first search. The only difference between this
and a standard depth-first search is that before pushing all the successors of a state
on to WAITING (which is implemented as a stack), the successors are randomly
permuted.

Once a reachable goal state has been found, a variableCOST gives an upper
bound on the minimum cost of reaching a goal. If we choose to continue the
search, a smaller upper bound might be obtained. During state-space exploration
the cost never decreases therefore states with cost bigger thanCOST cannot lead
to an optimal solution, and can therefore be deleted. The estimate of the remain-
ing cost as defined in Section4.4.2can also be used for pruning states. Whenever
mincost(Z) + REM(l,Z) is larger than the best upper boundCOST no state suc-
cessor of(l,Z) can lead to a better solution than the one already found. We can
therefore safely prune(l,Z).

All of the methods described in this section have been implemented in UP-
PAAL. Section4.5reports on experiments using these new methods.

4.5 Experiments

In this section we illustrate the benefits of extending UPPAAL with heuristics and
costs through several verification and optimization problems. All of the examples
have previously been studied in the literature. First, however we have to define
parallel composition of LPTAs.

Following the common approach to networks of timed automata, we extend
LPTA to networks of LPTA by introducing a partial functionf : (Act∪ {ι}) ×
(Act∪ {ι}) ↪→ Act, whereι is a distinguished no-action symbol.2 We assume that
f is associative and commutative. In addition, two functionshL, hE : N×N → N
for combining prices of transitions and locations are introduced.

2 We extend the edge setE such thatl
tt,ι,∅,0−−−−→ l for any locationl. This allows synchronization

functions to implement internalτ actions.
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Figure 4.6: Biphase mark terminology

Definition 4.11 (Parallel Composition) Let Ai = (Loci, li,0, Ei, Invi, Pi), i =
1, 2 be two LPTA. The parallel composition is defined asA1 |fhL,hE

A2 = (Loc1 ×
Loc2, (l1,0, l2,0), E, Inv, P ), with l = (l1, l2), Inv(l) = Inv1(l1) ∧ Inv2(l2), P (l) =
hL(P1(l1), P2(l2)), andl

g,a,r−−−→ l′ iff there existgi, ai, ri such thatf(a1, a2) = a,

li
gi,ai,ri−−−−→ l′i, g = g1∧g2, r = r1∪r2, andP (l, g, a, r) = hE(P1(l1, g1, a1, r1, l

′
1),

P2(l2, g2, a2, r2, l
′
2)).

Useful choices forhL and hE guaranteeing commutativity and associativity of
parallel composition are summation, minimum and maximum. In the remainder
we will use the sum of the prices. The first example in this section has no notion
of cost at all, but it illustrates guided search.

4.5.1 The Biphase Mark Protocol

The Biphase Mark Protocol is a convention for transmitting strings of bit and clock
pulses simultaneously as square waves. This protocol is widely used for communi-
cation in the ISO/OSI physical layer; for example, a version called “Manchester”
is used in the Ethernet. The protocol ensures that strings of bits can be submitted
and received correctly, in spite of clock drift, jitter and filtering by the channel. A
formal parameterized timed automaton model of the Biphase Mark Protocol was
given in [Vaa01], where also necessary and sufficient conditions on the correct-
ness for a parametric model were derived. We will use the corresponding UPPAAL

models to investigate the benefits of heuristics in pure reachability analysis.
The model assumes that sender and receiver have both their own clock with

drift and jitter. The sender encodes each bit in acell of lengthc clock cycles (see
Figure4.6). At the beginning of each cell, the sender toggles the voltage. The
sender then waits form clock cycles, wherem stands for themark subcell. If
the sender has to encode a “0”, the voltage is held constant throughout the whole
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Table 4.7: Results for nine erroneous instances of the Biphase Mark Protocol. Numbers
of state explored before reaching an error state
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mark subcell early late
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breadth first 1931 2582 4049 990 4701 2561 1230 1709 3035
in==1 heuristic 1153 1431 2333 632 1945 1586 725 1039 1763

cell. If it encodes a “1” it will toggle the voltage at the end of the mark subcell.
The signal is unreliable during a small interval after the sender generates an edge.
Reading it during this interval may produce any value.

The receiver waits for an edge that signals the arrival of a cell. Upon detecting
an edge, the receiver waits for a fixed number of clock cycles, thesampling distance
s, and samples the signal. We adopt the notationbpm(c,m, s) for instances of the
protocol with cell sizec, mark sizem and sampling distances.

There are three kind of errors that may occur in an incorrect configuration.
Firstly, the receiver may not detect the mark subcell. Secondly, the receiver may
sample too early, before or right after the sender left the mark subcell. Finally, the
receiver may also sample too late, i.e. the sender has already started to transmit
the next cell. The first two errors can only occur if there is an edge after the mark
subcell. This is only the case if input1 is offered to the coder. The third error
seems to be independent of the offered input.

Since two of the three errors occur only if input1 is offered to the coder, and
the third error can occur in any case, it seems worthwhile to choose a heuristic that
searches for states with input1 first, rather than exploring state-space for both pos-
sible inputs concurrently. Standard breadth-first search can be obtained by adding
the assignmentheur := heur-1 to each transition and selecting the symbolic
state with the highest value fromWAITING . This can be done by adding a global as-
signment to the model. Giving very low priority to the part of the state-space where
a 0 has been send we will obtain the desired search order. The choice of what to
send is made in one place in the model of the sender. We add on the transition that
models sending a 0 the assignmentheur := heur-1000 which will give this
state and all its successors very low priority, and therefore these will be explored
last. In this way we do not leave out any part of the state-space, but first search the
part that we consider to be the most interesting. We apply this heuristic to erro-
neous modifications of the (correct) instancesBPM(16, 6, 11), BPM(18, 5, 10) and
BPM(32, 16, 23). Table4.7gives the results.

It turns out that only about 60% of the complete state-space size is explored.
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Table 4.8: Computational results for the bridge problem by Ruys and Brinksma.
Initial Solution Optimal Solution With est. remainder

states cost states cost states cost
BF 4491 65 4539 60 4493 60
DF 169 685 25780 60 5081 60
MC 1536 60 1536 60 N/A N/A
MC+ 404 60 404 60 N/A N/A

The corresponding diagnostic traces show that the errors were found within the
first cell or at the very beginning of the second cell, thus at a stage were only one
bit was sent and received. Exploring only the part of the state-space with input1
in the first cell, saves about 40 % of the state-space. This is less than a half, since
for input “1” there is more activity in the protocol. An exception on this rule is the
fifth instanceBPM(18, 6, 10), which produces an error after one and a half cell, and
shows consequently a larger reduction when verified with the heuristic.

4.5.2 The Bridge Problem

The following problem was proposed by Ruys and Brinksma [RB98]. A timed
automaton model of this problem is included in the standard distribution of UP-
PAAL3.

Four persons want to cross a bridge in the dark. The bridge is damaged and
can only carry two persons at the same time. To cross the bridge safely in the
darkness, a torch must be carried along. The group has only one torch to share.
Due to different physical abilities, the four cross the bridge at different speeds.
The time they need per person is (one-way) 25, 20, 10 and 5 minutes, respectively.
The problem is to find a schedule such that all four cross the bridge within a given
time. This can be done with standard UPPAAL. With the proposed extension, it is
also possible to find the fastest time for the four to cross the bridge, and a schedule
achieving this.

We compare four different search orders: Breadth-First (BF), Depth-First (DF),
Minimum Cost (MC) and an improved Minimum Cost (MC+). In this example we
choose the lower bound on the remaining cost, REM(Z), to be the time needed by
the slowest person, who is still on the “wrong” side of the bridge.

For the different search orders, Table4.8shows the number of states explored
to find the initial and the optimal time, and the values of the times. It can be seen
that BF explores 4491 states to find an initial schedule and 4539 to find the optimal
one. This number is reduced to 4493 explored states if we prune the state-space
based on the estimated remaining cost (third column). Thus, in this case only

3 The distribution can be obtained athttp://www.uppaal.com .

http://www.uppaal.com
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Figure 4.9: Timed automata models of a machine (a) and a job (b), that exploitsurgency.
See Figure2.1on page24 for the model without urgent transitions.

two additional states are explored after the initial solution is found, all others are
pruned. DF finds an initial solution (with high costs) quickly, but explores 25779
states to find an optimal schedule, which is much more than the other heuristics
needed. This is most likely caused by the fact that DF search encounters many
small and incomparable zones. In any case, it appears that the depth-first strategy
always explores many more states than any other heuristic.

Searching with the MC order does indeed improve the results, compared to BF
and DF. It is however outperformed by the MC+ heuristic that explores only 404
states to find a optimal schedule. Note that pruning based on the estimate of the
remaining cost does not apply to MC and MC+ order, since the first explored goal
state has the optimal value.

Without costs and heuristics, UPPAAL can only show whether a schedule exists.
Extended UPPAAL finds the optimal schedule and explores with the MC+ heuristic
only about 10% of the states that are needed to find a initial solution with the
breadth-first heuristic.

4.5.3 Job Shop Scheduling

We apply UPPAAL to 25 of the smaller Lawrence Job Shop problems.4 Our models
are based on the timed automata models presented in Chapter2. Recall that each
operation on machineX is modeled by two transitions; one labeledmXonto model
the start and another labeledmXoff to model the completion of an operation. If we
declare the on-transition urgent, we minimizes the time a job can spend in between
two operations. As a consequence we get, as reported in Section2.6, fairly good
initial solutions, but we can no longer guarantee that the optimal solution is part of
the state-space.

The modified model in Figure4.9 shows how to introduce urgency such that
the optimal solution can still be computed. Two different transition are used to
mark the beginning of an operation. The transitions labeledurgXon are urgent. If
the automaton in Figure4.9(b) is in either locationS1a or S2a, and the outgoing

4 These and other benchmark problems for job shop scheduling can be found on
ftp://ftp.caam.rice.edu/pub/people/applegate/jobshop/ .

ftp://ftp.caam.rice.edu/pub/people/applegate/jobshop/
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transition is enabled, time may not advance. The next operation will start as soon as
the corresponding machine is available. If the automaton is in contrast in location
S1b or S2b, the automaton may delay. In order to favor the urgent transition we
decorate the off-transitions with assignments to the priority fieldheur . We assume
that we select symbolic states with the highest priority. Since we expect that most
delays between operations do not contribute to a good solution, we decrease the
priority heur , whenever the automaton takes a transition to a location with a non-
urgent outgoing on-transition.

The invariants in the timed automaton model are not necessary for the cor-
rectness of the model. Leaving out however results in poorer results. The same
holds for an alternative model that omits the automata that model the machines.
Machines are represented in this alternative approach by clocks. If a machine was
untouched for at least the duration of the operation, the job automaton may take a
corresponding transition. It then resets the clock. The timed automaton model job
will only have m transition, for a job withm operations, but alson + m clocks
rather thann. As a consequence, this model does not lead an improvement of the
computational results.

In order to estimate the lower bound on the remaining cost, we calculate for
each job and each machine the duration of the remaining operations. We obtained
this bounds in two ways. Firstly, we define lower bounds analogously to invariants,
i.e. we put a lower bound that holds as long as we are in a certain location. For
example, as long as the automaton in Figure4.9 stays in locationS2b, we know
that the remaining cost is at leastd2 . If we leave the location this lower bound
decreases as time advances, unless we have another lower bound.

Secondly, certain transitions may imply a lower bound on the remaining cost.
After the transition has been taken, this lower bound may decrease as the cost
increases, as long as this does not violate another lower bound that depends on
locations. If we take for example transitionm1on in Figure4.9 (b), we know for
sure that it will take at least anotherd1 + d2 time units to reach locationS3. This
kind of lower bounds can be considered as counterpart of guards on transitions. If
the transition is taken, we know that the guard holds. Time may delay afterwards.
Similarly, the lower bound should hold if the transition is taken, but it may decrease
as time passes. These estimates may be seen as obtained by abstracting the model
to one automaton as described in Section4.4.2. The final estimate of the remaining
cost is then estimated to be the maximum of bounds obtained for the individual
jobs and machines.

Table 4.10 shows results obtained for the search orders BF, MC, MC+, DF,
Random DF, and a combined heuristic. The latter is based on depth-first but takes
also into account the remaining operation times and the lower bound on the cost,
via a weighted sum which is assigned to the priority field of the symbolic states.
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Table 4.10: Results for the 25 job shop problems with 5 machines and 10 jobs (la1-la5), 15
jobs (la6-la10) and 20 jobs (la11-la15), and 10 problems with 10 machines, 10 jobs (la16-
20) and 15 jobs (la21-25). The table shows the best solution found by different search
orders within 60 seconds cpu time on a Pentium II 300 MHz. If the search terminated also
the number of explored states is given. The last row gives the makespan of an optimal
solution.

problem BF MC MC+ DF RDF comb. heur. minimal
instancecost statescost states cost states cost states cost states cost states makespan
la01 - - - - - - 2466 - 842 - 666 292 666
la02 - - - - - - 2360 - 806 - 672 - 655
la03 - - - - - - 2094 - 769 - 626 - 597
la04 - - - - - - 2212 - 783 - 639 - 590
la05 - - - - 593 9791 1955 - 696 - 593 284 593
la06 - - - - - - 3656 - 1076 - 926 480 926
la07 - - - - - - 3410 - 1113 - 890 - 890
la08 - - - - - - 3520 - 1009 - 863 400 863
la09 - - - - - - 3984 - 1154 - 951 425 951
la10 - - - - - - 3681 - 1063 - 958 454 958
la11 - - - - - - 4974 - 1303 - 1222 642 1222
la12 - - - - - - 4557 - 1271 - 1039 633 1039
la13 - - - - - - 4846 - 1227 - 1150 662 1150
la14 - - - - 1292 10653 5145 - 1377 - 1292 688 1292
la15 - - - - - - 5264 - 1459 - 1289 - 1207
la16 - - - - - - 4849 - 1298 - 1022 - 945
la17 - - - - - - 4299 - 938 - 786 - 784
la18 - - - - - - 4763 - 1034 - 922 - 848
la19 - - - - - - 4566 - 1140 - 904 - 842
la20 - - - - - - 5056 - 1378 - 964 - 902
la21 - - - - - - 7608 - 1326 - 1149 - (1040,1053)
la22 - - - - - - 6920 - 1413 - 1047 - 927
la23 - - - - - - 7676 - 1357 - 1075 - 1032
la24 - - - - - - 7237 - 1346 - 1061 - 935
la25 - - - - - - 7141 - 1290 - 1070 - 977

The results show BF and MC order cannot complete a single instance in 60
seconds, but even when allowed to spend more than 30 minutes using more than
2Gb of memory no solution was found. It is important to notice that the combined
heuristic used includes a clever choice between states with the same values of cost
plus remaining cost. This is the reason it is able to outperform the MC+ order
which is only able to find solution to two instances within the time limit of 60
seconds.

As can be seen from the table UPPAAL is handling the first 15 examples quite
well; it finds the optimal solution in 11 cases and it shows that it is optimal in 10
cases. This is much more than without the added guiding features. For the 10
largest problems (la16 to la25) with 10 machines we did not find optimal solutions
though in some cases we were close to the optimal solution. Since branch-and-
bound algorithms generally do not scale too well when the number of machines
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and jobs increase, this is not surprising. The branch-and-bound algorithm pre-
sented in [AC91], who solves about 10 out of the first 15 problems in the same
setting, faces the same problem. Note that the results of this algorithm depend
sensitively on the choice of an initial upper bound. Also the algorithm used in
[BJS95], which combines a good heuristic with an efficient branch-and-bound al-
gorithm and thus solves all of these 15 instances, does not find solutions for most
of the larger instances with 15 jobs and 10 machines or larger.

Recent work by Abdeddaı̈m and Maler [AM01] shows that it is possible to
tailor the model checking algorithm for timed automata to job shop problems. For
this class for problems it is for example sufficient to consider only the lower bounds
of a zone; this in contrast with our approach that removes only the upper bound on
clock δ. As a consequence they can will prune more symbolic states during the
exploration of the state-space. They presented results, obtained with the model
checker KRONOS, for 12 instances of the job shop problem, of which some are
also instances in Table4.10. These results confirm, even though they were obtained
without a limit on the cpu time, that our results can be improved, if one moves
towards algorithms that are more dedicated to the problem domain.

4.5.4 The Sidmar Steel Plant

The model of the Sidmar Steel Plant as presented in Section2.5contained already
some modifications to ease the state-space exploration. It assigns for example to
each ladle a number to reduces the symmetry. But still, its state-space is very large
since at each point in time many different possibilities are enabled. Consequently,
depth-first search needed about 50 minutes cpu time on a Pentium III 500MHz to
find a schedule for a plant with 5 batches and one crane.

Priorities can be used to influence the search order of the state-space, and thus
to improve the results. Based on a depth-first strategy, we reward transitions that
are likely to serve in reaching the goal, whereas transitions that may spoil a partial
solution result in lower priorities. For instance, when a batch of iron is being treated
by a machine, it pays off to reward other scheduling activities that take place in the
meanwhile, rather than wait for the treatment to finish.

To estimate the remaining time, we determined for each recipe the remaining
time until completion. An additional lower bound is determined by the casting
machine. It takes at least 20 time units to empty a ladle. Additionally, the first ladle
has to wait before it enters the casting machine, and the last one has to wait after
it leaves the machine. We can add to this bound also the time it takes to transport
the last ladle to the storage place. The overall estimate is then the maximum of the
individual bounds.

To compute the schedule in Figure2.10, with makespan 245, UPPAAL explored
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Figure 4.11: Initial schedule found by UPPAAL for the model of Sidmar steel plant with
heuristics

525286 states with depth-first search. With heuristics extended UPPAAL found
an initial solution with makespan 224 after exploration of 1880 states, which is
just about 0.35% of the states unguided UPPAAL needs to find an initial solution.
Within one minute cpu time on a Pentium III 500 MHz UPPAAL was able to com-
pute the schedule in Figure4.11with makespan 216. UPPAAL explored 4827 states
to find this schedule, which took 5.3 seconds cpu time, and it was not able to im-
prove this result in the remaining time. This schedule is probably not optimal, since
load 1 is first treated on machine #4 and then on machine #2. Load 2, in contrast,
receives its first treatment on machine #1 and its second one treatment on machine
#5. Since machine #1 and machine #4 are the same, machine #1 could treat load 1
as well, and machine #4 load 2. This would save two transports by the crane, and
could probably lead to a better schedule.

The model with heuristic allows also to compute schedule for more batches. An
initial schedule for a model with 10 batches and both cranes required exploration of
2334 states and has a makespan of 375. The best solution UPPAAL finds within one
minute, has a makespan of 359, and took 9201 explored states. In [HLP00] sched-
ules for up to 60 ladles were produced also using UPPAAL. To do so, additional
constraints were included that reduce the size of the state-space drastically, but also
prune possibly sensible behavior. A similar reduced model was used by Stobbe in
[Sto00], who uses constraint programming to schedule 30 ladles. All these works
consider only ladles with the same quality of steel and the initial solutions were not
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Figure 4.12: The best schedule UPPAAL found within one minute for the model with
heuristics.

improved.

4.5.5 The Experimental Batch Plant

Another case study from the VHS project is the experimental batch plant, origi-
nally designed at the University of Dortmund for student exercises. Figure4.13
depicts the piping and instrumentation diagram of the plant. It produces batches of
diluted salt solution from concentrated salt solution (in container B1) and water (in
container B2). These ingredients are mixed in container B3 to obtain the diluted
solution, which is subsequently transported to container B4 and then further on to
B5. In container B5 an evaporation process is started. The evaporated water goes
via a condenser to container B6, where it is cooled and pumped back to B2. The
remaining hot, concentrated salt solution in B5 is transported to B7, cooled down
and then pumped back to B1.

The plant is controlled by aProgrammable Logic Controller(PLC). PLCs are
special purpose computers designed for control tasks. The most significant differ-
ence with usual computers is that a program on a PLC runs in a permanent loop,
the so calledscan cycle. In each scan cycle the program in the PLC is executed
once, where the program execution may depend on variable values stored in the
memory.

The length of a scan cycle is in the range of milliseconds, depending on the
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Figure 4.13: The P/I-diagram of the batch plant

length of the program. Furthermore, a part of each scan cycle is dedicated to data
exchange with the environment: a PLC hasinput pointsconnected via an interface
with a dedicatedinput areaof its memory, and theoutput areaof the memory is
connected via an interface with theoutput pointsof the PLC. On the input points
the PLC receives data from sensors, on the output points the PLC sends data to
actuators. Finally, there are some activities of the operating system (such as self
checks and evaluating watchdogs) that take place in a scan cycle. The operation
system itself is small and stable, which is prerequisite for reliable real-time control.

The production process can be dissected into a number of transport processes,
such as transport of salt solution from container B1 to B3. All possible transport
processes, the evaporation process and two cooling processes lead to 12 parallel
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process P13 {
clock x12; state S0, S1 {x12<=32 }, S2, S3;

commit S2, S3; init S0;

trans S0 -> S1 {guard Pump1==0,V8==1, V9==0, V11==0, Mixer==1;

sync urgon?; assign x12:=0; },
S1 -> S2 {guard x12==32, B1==1, B3==0; assign B1:=0, B3:=2; },
S1 -> S2 {guard x12==32, B1==2, B3==0; assign B1:=1, B3:=2; },
S1 -> S2 {guard x12==32, B1==1, B3==1; assign B1:=0, B3:=3; },
S1 -> S2 {guard x12==32, B1==2, B3==1; assign B1:=1, B3:=3; },
S2 -> S3 {sync compute!; },
S3 -> S0 {sync compute!; }; }

Figure 4.14: The UPPAAL model of transfer between container B1 and B3, which has a
duration of 32 time units.

processes. The activities in each process are simply to open some valves, switch
on a mixer, pump or heater, and when the process finished, close and switch off
everything again. Each process starts its activities if itsactivation conditionsare
fulfilled, and is in a wait state otherwise. An active process remains active until
its postconditions are fulfilled; it then gets back in the waiting state. The control
program then decides which process to enable, in order to establish that under
ideal circumstances, without leakage and unexpected evaporation, new batches will
always be produced.

The translation from the plant and control to a UPPAAL model is straightfor-
ward. The plant is modeled as a parallel composition of 12 automata, where each
represents one of the processes. Each of these plant automata is equipped with a
clock that measures the duration of the process after activation. An example for
the transport of concentrated salt solution from container B1 to container B3 is
contained in Figure4.14. The process is initially in state S0 when it is passive.
The process starts as soon as the control opens and closes the appropriate valves,
switches on the mixer and the appropriate pump. The process is forced to start
without delay by a synchronization on anurgent channel, calledurgon. After the
time has passed by that the process takes, the container volumes change depending
on their previous values. The different possible contents of a container are encoded
by integers from 0 to 4, depending on the process.

We assume that the execution of the PLC control program can be considered
to be instantaneously, compared to the time scale on which the transport processes
take place. Technically, this can be translated tocommitted locationsas provided
by UPPAAL, that have to be left without time delay or other interleaving transitions.
All locations of the control are modeled ascommitted locations, apart from the first
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A1 -> A2 {assign bonus:=bonus+(T11==1?1:0); },
A1 -> A2 {guard T11==1; assign T11:=0; },
A2 -> A3 {assign bonus:=bonus+(T12==1 ?1:0); },
A2 -> A3 {guard T12==1; assign T12:=0; },

Figure 4.15: Part of the model of the control program. The transition decide whether to
disable a process setting a corresponding variables to 0, if it was 1 before. The heuristic
rewards to not disable processes that are enabled , to increase concurrency.

one which represents the idle state of the control.
The moments of control execution are restricted in the UPPAAL model to those

points of time when the conditions in the plant change, because these are the only
moments when the control changes its state. More precisely, it is the case that each
change in the state of the plant requires two control program executions: one to
finish some process (close valves, etc.), and one to start up new ones. In general,
starting up new processes could be delayed for some time. However, in the case
here, it holds for optimal schedules that if a process starts, it starts at the moment
that some other process finished.

The control automaton itself consists of two sequential parts. In the first part
the activation conditions for processes are evaluated, including a nondeterministic
choice of a subset of the processes that may be activated. This nondeterministic
step is prerequisite for finding optimal schedules. In the last part the control sets
the actuator variables for valves, pumps, heater and mixer.

The cost rate equals 1, since the cost is identical to the time elapsed. We added
a global assignment to the priority variableheur that is calculated according to
the expression1*bonus+100*depth-cost . The variablebonus is used to
reward selecting larger rather than smaller subsets of enabled start events, as is
shown in Figure4.15. This heuristic directs the exploration such that the controller
tries first to start all permissible plant processes. The bonus is made extra rewarding
for the selection of the evaporation process, which should be in (almost) continuous
use for an optimal exploitation of the plant resources.

The variabledepth is used to reward depth-first over breadth-first search.
This, because a good solution for the batch plant should show some progress, i.e.
it should start processes that are necessary to produce a batch. For example, we in-
crease variabledepth if transitionS0 -> S1 is taken in the automaton in Figure
4.14to reward the start of processP13. Transitions that start other processes and
transitions of the controller that enable processes to start are rewarded similarly.

The UPPAAL model of the experimental batch plant is complementary to work
that was initially presented in [BM00]. Brinksma and Mader used the non-real-time
model checker Spin to verify the correctness of the control program and to derive



4.5 Experiments 91

optimal schedules for a Promela model of the plant. The intention of this approach
was to see how much could be achieved here using the standard model checking
environment of SPIN/Promela [Hol97]. They handled the relevant real-time prop-
erties of the PLC controller using a time-abstraction technique; for the scheduling
we implemented in Promela a so-calledvariable time advance procedure[She99].
This approach aims to avoid an unnecessary blow-up of the state-space due to ir-
relevant points in time, i.e. times at which nothing interesting can happen. To do
so it calculates at each occurrence of an event the point in time at which thenext
event will occur, and then jumping to that point in time.

For this case study these techniques proved sufficient to verify the design of
the controller and derive (time-)optimal schedules with reasonable time and space
requirements. One of the conclusions of the initial experiments as reported in
[BM00] was that “. . . it would be useful to be able to influence the search strategy
of the model checker more directly and guide the search first into those parts . . .
where counterexamples are likely to be found.” Since the publication of [BM00]
the prototype implementation of cost-optimal UPPAAL has become available that
employs a guided evaluation strategy for state-space exploration. This motivated
us to carry out the optimization part of the case study again with UPPAAL.

The translation of the plant and the control program to a Promela model, or
UPPAAL model respectively, is straightforward, and both models share in many
points the same philosophy. The main differences of the Promela model and the
UPPAAL model are of course the use of time, which is built-in in UPPAAL, and the
execution of the control program. In the Promela model the latter is restricted by
fairness conditions, in the UPPAAL model we restricted it explicitly, as mentioned
before, to those points in time when the conditions in the plant change.

The Promela model, as presented in [BMF02], contains modifications to guide
the verification tool SPIN. The model checker has for example to face like UP-
PAAL the exponential blow-up of the state-space that is caused by the fact that the
controller may decide to disable an arbitrary number of processes. To control this
phenomenon a global system parameter is introduced that specifies the maximal
number of events that may be postponed by the controller. It turns out that none
the obtained results required this parameter to be bigger than 2.

Spin obtained optimal schedules for instances of the model with 1 to 7 initial
loads. For initial experiments we put an upper bound of 5000 time units on the
makespan. For each initial load Spin needed two or three runs to determine the
maximal number of batches for which counterexamples could be produced in a
very short time (in the order of seconds system time). It turned out that all coun-
terexamples contained schedules that rapidly (i.e. within 600 time units) converges
to a repeating pattern with a fixed duration.

For comparison we instantiated the UPPAAL model to the same initial load and
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heuristic depth-first
search search

load batches makespan period states makespan period states
1 10 3476 380 14063 4178 458 17547
2 25 4968 206 35952 11048 458 45781
3 25 4732 206 34584 10992 458 45385
4 25 4774 206 35344 11288 458 46181
5 20 3947 206 28808 9294 458 37716
6 20 4120 206 29568 9294 458 37716
7 10 3320 346 14377 4418 458 17957

Table 4.16: This table shows the first solution found by cost-optimal UPPAAL, either with
heuristic search or depth-first.

to the same number of batches as the Promela models. Table4.16 presents the
results that were obtained with UPPAAL. The columnload indicates the number of
batches with which the plant is initialized,batchesthe number of batches produced
in that trace andperiod the period of the periodic behavior in time units. Clearly,
UPPAAL explores with the heuristic search order less states than depth-first does,
and finds even a better solution than depth-first search does. As a matter of fact,
the period of 458 that was found by depth-first, is the worst possible period, since
this is the sum of the durations of all transport processes.

For 1 to 6 initial loads, UPPAAL finds with the heuristic initial solutions that
have exactly the same period and same makespan as the best solutions found by
Spin. The initial solution for 7 loads converges to a schedule with period 346,
whereas Spin is able to find a schedule that converges to a period of 314. UPPAAL

was able to improve on the initial solution for 7 loads, with a schedule with a
makespan of 3288. Backtracking yielded a schedule that produces the last batch
within 314 time units. To do so UPPAAL explores 74240 states, which takes 16.5
seconds on a Pentium III 500MHz.

In contrast to Spin it was not necessary to define an initial upper bound on
the makespan to produce schedules with UPPAAL. As a matter of fact UPPAAL can
produce schedules for any reasonable number of batches, as the number of explored
states grows nearly linearly with an increasing number of batches. For example,
to find an initial schedule for load 4 withn batches withn ≥ 4 UPPAAL explores
3424 + (n− 4) · 1520 states. This equality holds up to 100 batches, in which case
UPPAAL explores 149344 states, in 33.2 seconds, to find an initial solution with a
makespan of 20224.

Six of the computed periods can be easily shown to be optimal. For a plant
with an initial load of 1 this can be readily checked by hand by moving a single
batch through the plant and measuring the total duration of the critical branches of
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the path. The schedules for 2 to 6 initial loads can be shown to be optimal, since
heating containerB5 clearly dominates the time consumption during the produc-
tion of batches. Since fillingB5 (33 time units), heating it (147 time units), and
emptyingB5 (26 time units) must be part of every production cycle, the average
production time of a batch must be greater or equal to 33+147+26=206 time units.
This makes the schedules for 2 to 6 initial loads optimal schedules as well.

Compared to Spin, cost-optimal UPPAAL offers a more convenient interface
for handling guided state-space explorations. For Spin the latter can only be done
indirectly by repeated verification runs with different parameter settings under con-
trol of the user. In cost-optimal UPPAAL the user can control everything directly
by defining heuristic functions, so that multiple runs may be less needed, although
some additional experiments is required to fine-tune the heuristic. In view of the
very reasonable performance of Spin, however, developing a Uppaal model may
not pay off if a good Promela model is available. Given this situation it can be
concluded that it would be very interesting to look also into the possible extension
of Spin with cost-guided state-space exploration features.

Another approach to the optimal scheduling for the VHS case study 1 is re-
ported in [NY99]. Here the problem is analyzed using the tools OpenKronos and
SMI. It is difficult to compare the results of this approach directly with ours, as they
include also the production of the initial loads into their schedules, which we just
assume to be present. The more general findings seem to be consistent with ours.
OpenKronos could be used successfully to produce optimal schedules for loads of
up to 3 batches before falling victim to the state explosion problem. The symbolic
model checker SMI produced results 6 batches and more, with a computation time
of approximately 17 minutes per batch.

4.6 Conclusion

On the preceding pages, we have introduced (1) a priced zone based symbolic se-
mantics for the class of linearly priced timed automata; (2) an efficient, zone based
implementation of priced zones for the class of uniformly priced timed automata;
(3) a number of techniques to reduce the number of explored states; and (4) ex-
perimental evidence that these techniques can lead to dramatic reductions in the
number of explored states. In addition, we have shown that it is possible to quickly
obtain upper bounds on the minimum cost of reaching a goal state by manually
guiding the exploration algorithm using priorities.



94 4 Efficient Guiding for UPTA



5

Efficient Minimal-Cost Reachability for
Linearly Priced Timed Automata

5.1 Introduction

Although ensuring computability, the region construction introduced in Chapter3
is known to be very inefficient. Chapter4 introducedpriced zonesand provided an
efficient implementation viaDifference Bound Matrices[Dil89] for the restricted
class ofUniformly Priced Timed Automata. The central contribution of this chapter
is the extension of this concept to that oflinearly priced zones, which are attributed
with an (affine) linear function of clock valuations that defines the cost of reaching
a valuation in the zone. We show that the entire machinery for symbolic reachabil-
ity in terms of zones can be lifted to cost-optimal reachability for linearly priced
zones.

It turns out that some of the operations on linearly priced zones force us to
split them into parts with different price attributes, giving rise to the notionfacets
of a zone. Consider for example the zone depicted in Figure3.7.vii and its delay
successor in Figure3.7.viii. While the first is effectively representable as linearly
priced zone, the latter does not allow to define one affine linear function on the
whole zone.

The suitability of the LPTA model for scheduling problems was already illus-
trated in the previous chapter, using the more restrictedUniformly Priced Timed
Automata(UPTA) model. This model was used to consider traces for the time-
optimal scheduling of a steel plant, an experimental batch plant and a number of
job shop problems. The greater expressivity of LPTAs also supports other mea-
sures of cost, like idle time, weighted idle time, mean completion time, earliness,

This chapter is based on the publication:

[LBB+01] K.G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T.S. Hune, P. Petterson and
J.M.T. Romijn.As Cheap as Possible: Efficient Cost-Optimal Reachability for Priced
Timed AutomataCAV’01.
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Figure 5.1: Figure (a) depicts the cost of landing a plane at timet. Figure (b) shows an
LPTA modeling the landing costs. Figure (c) shows an LPTA model of the runway.

number of tardy jobs, and tardiness. Note, that in the case of job shop problems,
time optimal schedules are also optimal with respect to idle time and weighted idle
time. We take an aircraft landing problem [BKA00], that combines earliness with
tardiness, as the application example for his chapter.

Example [Aircraft Landing Problem] The problem is to schedule a number of
aircrafts safely and efficiently. For each aircraft there is a maximum speed and a
most fuel efficient speed which determine an earliest and latest time the plane can
land. In this interval, there is a preferred landing time, called target time, at which
the plane lands with minimal cost. The target timeT and the interval[E,L] are
shown in Figure5.1(a). For each time unit the actual landing time deviates from
the target time, the cost increases with ratee for early landings and ratel for late
landings. In addition there is a fixed costd associated with late landings.

In Figure5.1(b) the cost of landing an aircraft is modeled as an LPTA. The
automaton starts in the initial locationapproaching and lands at the moment
one of the two transitions labeledlandX! is taken. In case the plane lands too
early it enters locationearly in which it delays exactlyT − t time units. The cost
rate in this location ise, the cost of reaching locationdone from this location is
thereforee (T − t). In case the plane is late, the automaton takes first the transition
guardedt==T to locationlate . The cost in location late increases with ratel.
On transitionlandX! from locationlate to locationdone at timet, the cost is
l(t− T ). Invariants ensure that the automaton always ends in locationdone , after
at mostL time units.

Figure5.1(c) models a runway ensuring that two consecutive landings takes
place with a minimum separation time, under the assumption that there are two
types of planes. For each plane we include an LPTA as depicted in Figure5.1(b)
and for each runway an automaton as depicted in5.1(c). We also include a dummy
automaton (that is not depicted), to ensure thatt is initially zero and that all transi-
tions of the runway automata are enabled. Recall, that we defined composition of
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LPTAs in Definition4.11. We assume that the cost of delaying in the network is
the sum of the cost of delaying in the individual automata. A further discussion of
this example can be found in Section5.4. �

The structure of the rest of this chapter is as follows. Section5.2 contains
the definition of the central concept of linearly priced zones. The operations that
we need on linearly priced zones and facets are provided in Section5.3. The im-
plementation of the algorithm, and the results for the aircraft landing and other
examples are reported in Section5.4. Our conclusions, finally, are presented in
Section5.5.

5.2 Linearly Priced Zones

Typically, reachability of a timed automaton, is decided using symbolic states rep-
resented by pairs of the form(l, Z), wherel is a location andZ is a zone. The
framework given in Section4.2for symbolic computation of minimum-cost reach-
ability extends the zone-based representation of symbolic states, and assigns costs
to individual states. But, the notion of priced zones, as presented in that section, is
too general to derive an immediate efficient representation. For this, we introduce
the following notion of alinearly pricedzone.

For simplicity we do not deal with strict inequalities in guards and invariants
in this chapter. Therefore,B(C) is the set of formulas that are conjunctions of
atomic constraints of the formx ∼ n andx − y ∼ m for x, y ∈ C, ∼ ∈ {≤,=
,≥}, with n ∈ N andm ∈ Z. The offset, 0Z , of a zoneZ is the unique clock
valuation ofZ satisfying∀v ∈ Z.∀x ∈ C.0Z(x) ≤ v(x). Using the canonical
DBM representation ofZ, 0Z is easily computed.

Definition 5.1 (Linearly Priced Zone) A linearly priced zoneZ is defined as tu-
ple (Z, c0, q), whereZ is a zone,c0 ∈ N describes the cost of the offset,0Z , of Z,
andq : C → Z assigns a cost rateq(x) for any clockx. We writev ∈ Z whenever
v ∈ Z. We definecost(v,Z) = c0 +

∑
x∈C q(x) · (v(x) − 0Z(x)), if v ∈ Z, and

cost(v,Z) = ∞, otherwise.

Thus, the cost assignments of a priced zone define a linear plane over the underly-
ing zone and may alternatively be described by a linear expression over the clocks.
Figure5.2 illustrates the priced zoneZ = (Z, c0, p) over the clocks{x, y}, where
Z is given by the six constraints2 ≤ x ≤ 7, 2 ≤ y ≤ 6 and−2 ≤ x − y ≤ 3,
the cost of the offset0Z = (2, 2) is c0 = 4, and the cost-rates areq(x) = −1
and q(y) = 2. Hence, the cost of the clock valuation(5.1, 2.3) is given by
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Figure 5.2: A linearly priced zone and its successor sets. (a) The grey shaded areas on the
x-axis depicts the successors of a reset of clocky. (b) The delay successors in a location
with cost rate 3. The delay successor(↑Z) is the union ofZ, Z↑

1 andZ↑
2 .

4 + (−1) · (5.1 − 2) + 2 · (2.3 − 2) = 1.5. In general the costs assigned by
Z may be described by the linear expression2− x + 2y.

Linearly Priced zones can be seen as straightforward extension of priced re-
gions. In analogy with Definition3.4, we may partition the set of clocksC for a
given zone into subsetsr0, . . . , rk such that for allv ∈ Z the following holds:

1. x ∈ r0 ⇔ ∃n ∈ N. v(x) = n

2. x, y ∈ ri ⇔ ∃m ∈ Z. v(x)− v(y) = m

Obviously, this partition defines an equivalence relation onC. Since0Z ∈ Z by
definition,v(x) = 0Z(x), if x ∈ r0. We also havev(x)− 0Z(x) = v(y)− 0Z(y),
if x, y ∈ ri. As a consequence, the cost of a valuationv ∈ Z can be written as:

cost(v,Z) = c0 +
∑

i=1,...,k

(Σy∈riq(y))(v(xi)− 0Z(xi)) (5.1)

wherexi is some clock inri. This equation implies that the cost rateq(x) does not
influence the cost ofv if x ∈ r0. It also implies that only the sum of the cost rates
of equivalent clocks matters. This fact will be used in the next section, to ensure
that operations are independent of the choice of a particular equivalent clock.

The representation of priced regions in Section3.3relates to the representation
of zones as follows. Given a priced regionR = (h, [r0, . . . , rk], [c0, . . . , ck]), the
subsetsr0, . . . , rk constitute a partition as defined prior to Equation (5.1). We can
identify0Z with h, c0 with c0, frac(v(xi)) with v(xi)−0Z(xi) and finally,q(xk−i)
with ci+1 − ci, for i = 0, . . . , k − 1 andxk−i ∈ rk−i. Actually, the machinery
developed for priced regions works as well, if we would replace the absolute costs
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in the vertices of a region by cost rates. Absolute cost, however, allows to prove
termination of the algorithm more easily. For the cost is well founded, it follows
that the comparison on priced regions defines a well quasi order.

l’
1

l
3

:=0y

Figure 5.3: A small LPTA

Priced symbolic states are represented in the obvious way by pairs(l,Z),
wherel is a location andZ a linearly priced zone. Unfortunately, linearly priced
symbolic states arenot directly closed under the delay and reset operation. To see
this, consider the small LPTA in Figure5.3, with two locationsl andl′ and a single
edgee from l to l′ with trivial guardtrue and reset of clocky. The cost rate ofl
is 3 and the transition has zero cost. Now, letZ = (Z, c0, r) be the priced zone
depicted in Figure5.2(a) and consider the associated priced symbolic state(l,Z).

Assuming that the set of successors of all states(l, v) ∈ (l,Z) is again ex-
pressible as a single priced symbolic state(l′,Z ′), would obviously requireZ ′ =
(Z ′, c′0, r′) with Z ′ = {y}Z. Following our framework of Section4.2, the cost-
assignment ofZ ′ should be such that cost(v′,Z ′) = inf{cost(v,Z) | v ∈ Z ∧
v[y 7→ 0] = v′} for all v′ ∈ Z ′. Sinceq(y) > 0, it is obvious that these infima are
obtained along the lower boundary ofZ with respect toy (see Figure5.2 (a)). In
particular, cost((2, 0),Z ′) = 4, cost((4, 0),Z ′) = 2, and cost((6, 0),Z ′) = 2.
In general cost((x, 0),Z ′) = cost((x, 2),Z) = 6 − x for 2 ≤ x ≤ 5 and
cost((x, 0),Z ′) = cost((x, x − 3),Z) = x − 4 for 5 ≤ x ≤ 7. Obviously,
the desired cost-assignment isnot linear and hence not obtainable from anysingle
linearly priced zone. On the other hand, it is also shows that splittingZ ′ = {y}Z
into the sub-zonesZ ′

1 = Z ′ ∧ 2 ≤ x ≤ 5 andZ ′
2 = Z ′ ∧ 5 ≤ x ≤ 7, allows to

represent the successors as the union oftwo priced zones withq(x) = −1 in Z ′
1

andq(x) = 1 in Z ′
2).

Similarly, priced symbolic states arenot directly closed under the delay oper-
ation. To see this, consider again the LPTA from Figure5.3 and the priced zones
Z = (Z, c0, r) depicted in Figure5.2(b). Clearly, the set of delay successors must
cover the zoneZ↑. First, we have assign a cost to valuations(x, y) ∈ Z. To do
so it is crucial to compare the cost-rate ofl (hereP (l) = 3) with the sum of clock
cost-rates ofZ (hereq(x) + q(y) = 1). Clock valuations(x, y) in Z can obvi-
ously be reached by delay from all valuations withinZ of the form(x− ε, y − ε),
ε ∈ R≥0. The cost of(x− ε, y− ε) is 2−x+2y− ε. If we delay(x− ε, y− ε) with
ε time units, we will reach(x, y) with cost2− x + 2y + 2ε. Since the cost-rate of
l exceedsq(x) + q(y), the minimum cost is obtained whenε = 0.
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Similarly, the clock valuations(x, y) in Z↑\Z are reached most cheaply from
Z by delaying from theupperboundary ofZ, i.e. from valuations(x, 6) or (7, y)
depending on whetherx− y ≤ 1 or x− y ≥ 1 (see Figure5.2(b)). The resulting
cost are4y − x − 10 andx + 2y − 12, respectively. It can be seen that, although
the delay successors is not representable by asinglepriced symbolic state, it may
be expressed as afinite unionby splitting the zoneZ↑ into the three sub-zones
Z, Z↑

1 = (Z↑\Z) ∧ (x − y ≤ 1), andZ↑
2 = (Z↑\Z) ∧ (x − y ≥ 1) 1. Let

(l,Z) be a symbolic state of an LPTAA = (Loc, l0, E, Inv, P ), we then define for
our conveniencePostδ((l,Z)) as set of symbolic delay successors of(l,Z), and
Poste(l,Z) as set of symbolic successors of a transitione ∈ E. The next section
presents the operations that are necessary to compute these successors.

5.3 Facets & Operations on Linearly Priced Zones

The key to expressing successor sets of priced symbolic states as finite unions is
provided by the notion offacetsof a zoneZ. Formally, wheneverx ∼ n or x−y ∼
m is a constraint ofZ, the strengthened zoneZ ∧ (x = n) or Z ∧ (x − y = m),
respectively, is a facet ofZ. Facets derived from lower bounds on individual clocks,
x ≥ n, are classified aslower facets, and we denote byLF (Z) the collection of
all lower facets ofZ. Similarly, the collection ofupper facets, UF (Z), of a zone
Z is derived from upper bounds ofZ. We refer to lower as well as upper facets
asindividual clockfacets. Facets derived from lower bounds of the formsx ≥ n,
x− y ≥ m, andy−x ≤ m with n ∈ N andm ∈ Z, are classified as lowerrelative
facetsw.r.t. x. The collection of lower relative facets ofZ w.r.t. x is denoted
LFx(Z). The collection of upper relative facets ofZ w.r.t. x, UFx(Z), is derived
similarly. Figure5.4(left) illustrates a zoneZ together with its six facets: e.g.Z1

andZ6 are the lower facets ofZ, andZ1, andZ2 the lower relative facets ofZ
w.r.t. y.

The importance of facets comes from the fact that they allow for decomposi-
tions of the delay- and reset-operations on zones as follows:

Lemma 5.2 LetZ be a zone andx a clock. Then the following holds:

i) Z↑ =
⋃

F∈LF (Z) F ↑ iii) {x}Z =
⋃

F∈LFx(Z){x}F

ii) Z↑ = Z ∪
⋃

F∈UF (Z) F ↑ iv) {x}Z =
⋃

F∈UFx(Z){x}F

Proof As all facets are a subset ofZ, the⊇ direction follows in all cases immedi-
ately from the definition of delay and reset. To prove⊆ we introduce the following

1 Z↑
1 is formally not a zone in our sense as we do not allow strict inequalities.
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Figure 5.4: A linearly priced zone: Facets and operations.

notation: Given the set of constraints that define a zoneZ, we denote withLB(Z)
the set of lower boundsx ≥ n, and withUB(Z) the set of upper boundx ≤ n,
wheren ∈ N. LBx(Z) denotes, similarly to relative facets, the set of lower bounds
x − y ≥ m, y − x ≤ m, andx ≥ n relative tox, andUBx the set of the upper
bound relative tox. We assume without loss of generality that there are no equality
constraints.

(i) Let v ∈ Z↑. We show that there exist a delay predecessor that is an element
of a lower facetZ ∧ (x = n).
Let dmax = min{v(x)−n|(x ≥ n) ∈ LB(Z)}. Sincev ∈ Z↑ there exists a
valuationv − d ∈ Z, with d ∈ R≥0. Obviouslyd ≤ dmax, otherwisev − d
would violate a constraint ofZ. Sincev−d ∈ Z, it satisfies all constraints of
Z, in particular all upper and relative bounds. Hence, we have thatv− dmax

satisfies all upper and relative bounds, too. By the choice ofdmax valuation
v − dmax satisfies also all constraints inLB(Z). Hencev − dmax ∈ Z.
Additionally, we have for some lower boundx ≥ n thatv(x) − dmax = n
holds. Therefore,v − dmax ∈ Z ∧ (x = n) as desired.

(ii) Let v ∈ Z↑. We definedmin = max{v(x) − n|(x ≤ n) ∈ UB(Z)}. Note,
dmin ≤ 0 if v ∈ Z; but in this case the⊆ direction holds trivially. For
v ∈ Z↑ there existsv − d ∈ Z, with dmin ≤ d. It follows thatv − dmin

satisfies all lower and relative bounds as successor ofv − d ∈ Z. But it
satisfies also the upper bounds by the choice ofdmin. Furthermore, there
existsx ≤ n such thatv − dmin ∈ Z ∧ (x = n).

(iii) Let v ∈ {x}Z. Letdmin = max({n|(x ≥ n) ∈ LBx(Z)}∪{v(y)+m|(x−
y ≥ m) ∈ LBx(Z)}∪{v(y)−m|(y−x ≤ m) ∈ LBx(Z)}). Forv ∈ {x}Z
there exist av[x 7→ d] ∈ Z, with d ≥ dmin. Clearly,v[x 7→ dmin] satisfies
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all upper bounds, but by the choice ofdmin also all lower bounds. Hence,
v[x 7→ dmin] ∈ Z. In addition,v[x 7→ dmin] satisfies either a boundx = n
or a relative boundx− y = m or y − x = m.

(iv) Similar to (iii), by replacingmax with min,≥ with ≤,≤ with ≥, and upper
by lower bounds. �

Informally, Lemma5.2i) expresses that any valuation reachable by delay from
Z, is also reachable from one of the lower facets ofZ. Part ii) states that this holds
also for upper facets. Part iii) (and iv)) express that any valuation in the projection
of a zone will be in the projection of the lower (upper) facets of the zone relative
to the relevant clock.

As a first step, the delay- and reset-operation may be extended in a straightfor-
ward manner to linearly priced (relative) facets:

Definition 5.3 LetZ = (F, c0, q) be a linearly priced zone, whereF is a relative
facet w.r.t.x.

1. Supposex = n is a constraint ofF . Thenreset(x,Z) = (F ′, c0, q) with
F ′ = reset(x, F ).

2. Supposex − y = m is a constraint ofF . Thenreset(x,Z) = (F ′, c′0, q′),
whereF ′ = {x}F , c′ = c, andq′(x) = q(x) + q(x) andq′(y) = q(y) for
y 6= x.

This definition ofreset(x,Z) is somewhat ambiguous since it depends on which
constraint involvingx is chosen. But, if there are two constraintsx − y = m and
x− z = m′, then clocky andz are equivalent in the sense of Equation (5.1). Since
resettingx does not touch the constrainty − z = m′ − m, both clocks remain
equivalent and it does not matter whether to addq(x) to q(y), or q(z). The cost-
function onZ will be independent of this choice. The relation of this definition
with the definition of the reset on priced regions is straightforward. Case 1 in
this definition correspond to case 1 in Definition3.7, and case 2 to case 2 of that
definition.

Definition 5.4 LetZ = (F, c0, q) be a linearly priced zone, whereF is a lower
or upper facet in the sense thatx = n is a constraint ofF . Let p ∈ N be a cost
rate. Thendelay(p,Z) = (F ′, c′0, q′), whereF ′ = F ↑, c′ = c, and q′(x) =
p−

∑
y 6=x q(y) andq′(y) = q(y) for y 6= x.

If there are two constraintsx = n andy = n′, it does not matter which clock we
choose, as long as the sum of all cost rates of the delay successor is equal top.
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This sum determines the rate of the cost along diagonals in zoneZ, and has to be
equal to the cost rate of the location. This definition of the delay successor of facets
corresponds to case 1 in the Definition3.6for regions.

Conjunction of constraints may be lifted from zones to linearly priced zones
simply by taking into account the possible change of the offset. Formally, letZ =
(Z, c0, q) be a linearly priced zone and letg ∈ B(C). ThenZ ∧ g is the linearly
priced zoneZ ′ = (Z ′, c′0, q′) with Z ′ = Z ∧ g, q′ = q, andc′ = cost(0Z′ ,Z).
For Z = (Z, c0, q) and n ∈ N we denote byZ ⊕ n the linearly priced zone
(Z, c0 + n, r).

The constructs of Definitions5.3and5.4essentially provide thePost-opera-
tions for priced facets. More precisely, it is easy to show that:

Poste(l,Z1) = (l′, {y}(Z1 ∧ g)⊕ P (e))
Postδ(l,Z2) = (l,delay(P (l), (Z2 ∧ I(l))) ∧ I(l))

if e = (l, g, {y}, l′), Z1 is a priced relative facet w.r.t. toy andZ2 is an upper
or lower facet. Now, the following lemmas extend this result to linearly priced
symbolic states in general:

Theorem 5.5 LetA = (L, l0, E, I, P ) be an LPTA. Lete = (l, g, {y}, l′) ∈ E2

with P (e) = p, I(l) = J and letZ = (Z, c0, q) be a linearly priced zone.
Poste((l,Z)) is then equal to:{

(l′, {y}Q⊕ p) | Q ∈ LFy(Z ∧ g)
}

if r(y) ≥ 0{
(l′, {y}Q⊕ p) | Q ∈ UFy(Z ∧ g)

}
if r(y) ≤ 0

Theorem 5.6 LetA = (L, l0, E, I, P ) be an LPTA. LetP (l) = p, I(l) = J and
Z = (Z, c0, q) be a linearly priced zone. The set of delay successorsPostδ((l,Z))
is then equal to:{

(l,Z)
}
∪

{
(l,delay(p, Q) ∧ J) | Q ∈ UF (Z ∧ J)

}
if p ≥

∑
x∈C r(x){

(l,delay(p, Q) ∧ J) | Q ∈ LF (Z ∧ J)
}

if p ≤
∑

x∈C r(x)

In the definition ofPoste the successor set is described as a union of either lower
or upper relative facets w.r.t. to the clocky being reset, depending on the rate of
y (as this will determine whether the minimum is obtained at the lower of upper
boundary). For similar reason, in the definition ofPostδ, the successor-set is ex-
pressed as a union over either lower or upper (individual clock) facets depending
on the rate of the location compared to the sum of clock cost-rates.

2 In the case of a general reset-setr, the notion of relative facets may be generalized to sets of clocks.
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To complete the instantiation of the framework of Section4.2, it remains to
be shown how to compute mincost andv on priced symbolic states. LetZ =
(Z, c0, q) andZ ′ = (Z ′, c′0q′) be linearly priced zones and let(l,Z) and(l′,Z ′)
be corresponding priced symbolic states. Then mincost(l,Z) is obtained by min-
imizing the linear expressionc +

∑
x∈C(q(x) · (x − 0Z(x)) under the (linear)

constraints expressed byZ. Thus, computing mincost reduces to solving a Linear
Programming problem.

To define comparison we follow the philosophy that a linearly priced zone is
better than another if it is as big and as cheap as the other. LetZ = (Z, c0, q) and
Z ′ = (Z ′, c′0, q′). We defineZ v Z ′ iff Z ′ ⊆ Z and cost(v,Z) ≤ cost(v,Z ′) for
all v ∈ Z ′. The last requirement is equal to

c′0 − c0 +
∑
x∈C

(q′(x)− q(x))(v(x)− 0Z(x)) ≥ 0

for all v ∈ Z ′, which can again be reduced to solving a Linear Programming
problem.

Termination of the algorithm of Figure4.2 can be shown as in Section3.6 by
translating the LPTA to its bounded equivalent. The algorithm considers linearly
priced zonesZ with non-negative cost assignments in the sense that cost(v,Z) ≥ 0
for all v ∈ Z. Now, application of Higman’s Lemma [Hig52] ensures thatv is a
well-quasi ordering on priced symbolic states for bounded LPTA. We thus cannot
find an infinite sequence of linearly priced zones that are all incomparable.

5.4 Implementation & Experiments

In this section we give further details on a prototype implementation within the
tool UPPAAL [LPY97] of priced zones, formally defined in the previous sections,
and reports on experiments on the aircraft landing problem and other examples con-
ducted with the prototype tool. The prototype implements thePoste (reset),Postδ
(delay), mincost, andv operations, using extensions of the DBM algorithms out-
lined in [Rok93]. To minimize the number of facets considered and reduce the
size of the LP problems needed to be solved, we make heavy use of the canonical
representation of zones in terms of aminimalset of constraints given in [LLPY97].
For dealing with LP problems, our prototype currently uses a freely available im-
plementation of the simplex algorithm.3

Many of the techniques for pruning and guiding the state-space search de-
scribed in Chapter4 are directly applicable to the algorithm in Figure4.2, i.e.
pruning the state-space according to the variableCOST, computing a lower bound

3 lp solve 3.1a by Michael Berkelaar,ftp://ftp.es.ele.tue.nl/pub/lp solve .
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Table 5.5: Results for seven instances of the aircraft landing problem. Results were
obtained on a Pentium II 333MHz.

problem instance 1 2 3 4 5 6 7
number of planes 10 15 20 20 20 30 44

ru
n-

w
ay

s

number of types 2 2 2 2 2 4 2
optimal value 700 1480 820 2520 3100 24442 1550

1 explored states 481 2149 920 5693 15069 122 662
cputime (secs) 4.19 25.30 11.05 87.67 220.22 0.60 4.27
optimal value 90 210 60 640 650 554 0

2 explored states 1218 1797 669 28821 47993 9035 92
cputime (secs) 17.87 39.92 11.02 755.84 1085.08 123.72 1.06
optimal value 0 0 0 130 170 0

3 explored states 24 46 84 207715 189602 62 N/A
cputime (secs) 0.36 0.70 1.71 14786.19 12461.47 0.68
optimal value 0 0

4 explored states N/A N/A N/A 65 64 N/A N/A
cputime (secs) 1.97 1.53

on the remaining cost, exploring states in minimum cost order, and using heuristics
to quickly guide the search to a goal state.
Example [Aircraft Landing Problem (continued)] Recall the aircraft landing prob-
lem partially described in the introduction. An LPTA model of the costs associated
with landing a single aircraft is shown in Figure5.1(b). When landing several
planes the schedule has to take into account the separation times between planes to
avoid the turbulence of one plane affecting another. The separation times depend
on the types of the planes that are involved. Large aircrafts for example generate
more turbulence than small ones, and successive planes should consequently keep
a bigger distance, if it is preceded by large aircraft.

The LPTA in Figure5.1(c) models the separation times between two types of
planes. The automaton has two clocksc1 andc2 to measure the time since the
last plane of type 1 or 2, respectively has landed. The guardc1>=wait21 then
ensures that the separation time between a plane of type 2 and a plane of type 1 is
bigger than constantwait21 .

Table5.5 presents the results of an experiment that applies the prototype to
seven instances of the aircraft landing problem taken from [BKA00]4. For each
instance, which varies in the number of planes and plane types, we compute the
cost of the optimal schedule. In case the cost is non-zero we increase the number
of runways until a schedule of cost 0 is found. This is always possible as the cost
of landing on target time is 0 and the number of runways can be increased until all
planes arrive at target time. In all instances, the state-space is explored in minimal-

4 These and other benchmarks are available atftp://mscmga.ms.ic.ac.uk/pub/ .
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cost order, i.e. we select from the waiting list the priced zone(l,Z) with lowest
mincost(l,Z). Equal values are distinguished by selecting first the zone which
results from the largest number of transitions, and secondly by selecting the zone
which involves the plane with the smallest target time.

As can be seen from the table, our current prototype implementation is able
to deal with all the tested instances. Beasley et al. [BKA00] solve all problem
instances with a linear programming based tree search algorithm, in cases that the
initial solution – obtained with a heuristic – is not zero. In 7 of the 15 benchmarks
(with optimal solution greater than zero) the time-performance of our method is
better than theirs. These are the instances 4 to 7 with less than 3 runways. This
result also holds if we take into account that our computer is about 50% faster
(according to the Dongarra Linpack benchmarks [Don01]).

It should be noted, however, that our solution-times are quite incomparable to
those of Beasleys. For some instances our approach is up to 25 times slower, while
for others it is up to 50 times faster than the approach in [BKA00]. One reason for
these results is that Beasley et al. solve less but larger LP-problems. Our models
of the aircraft landing problems have usually less than 10 clocks. The priced zones
therefore cannot have more than 110 constraints. The LP-based tree search in con-
trast results in problems with up to 600 variables and 1200 constraints. �

Example [Extended Bridge Problem] To extend the problem from Section4.5.2
we introduce a cost associated with staying on the unsafe side of the bridge. The
problem is now to find a way for the four persons to cross the bridge which results
in the lowest possible cost.

Table 5.6: Schedules and minimum costs for cost extended versions of the bridge problem.

Cost-rates Schedule Cost Time States
A5 B10 C20 D25 -

Min Time BA A CD B BA - 60 1715
Min Time BA A CD B BA - 60 (1536)

1 1 1 1 BA A CA A AD 55 65 301
9 2 3 10 AD A BA A CA 195 65 144
1 2 3 4 BA A CD B BA 140 60 208
1 2 3 10 CD C BC B BA 165 85 262

Table5.6 depicts the minimum costs for five instances of the extended bridge
problem. For each instance we give the four costs assigned to the persons for
residing on the initial side, the schedule (in which step 2 and 4 always represent a
single person crossing the bridge back to the initial side), the minimum cost, the
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time of the generated schedule with minimum cost, and the number of explored
states. All results have been obtained by searching the state-space in minimal-cost
order.

The first result in Table5.6 were measured with a model for finding a time-
optimal solution to the problem. The results on the first line shows that the time-
optimal schedule requires 60 minutes and that 1715 (symbolic) states are explored
to find the solution with the cost-extended version of UPPAAL based on linearly
priced zones. The second line shows (within parenthesis) the number of symbolic
states need to solve the same problem with the version presented in Chapter4 for
UPTAs. Thus, in comparison the general cost version increments the number of
explored states with less than 15% in this example. The prototype for UPTAs is,
however, with 0.2 seconds cpu time on a Pentium III 500MHz much faster than
the prototype for general LPTAs, that needs 8 seconds to solve the minimal time
problem. The four last lines of the table show the number of explored states when
optimizing costs instead of time. From these results we observe that considering
general costs seems to significantly reduce the number of explored symbolic states.
�

Example [Others] In the optimal broadcast problem, UPPAAL is applied to find
schemes for broadcasting messages in a network consisting of several routers con-
nected with two communication channels. The cost and time of using the two
channels differ and the problem is to find a time or cost-optimal schedule for broad-
casting a set of messages to all subscribed routers. So far, we have been able to
solve this problem (with varying communication costs) for up to six routers.

In the testing example, the problem is to find a minimal set of test sequences
to fully cover different aspects of the sender component of the audio protocol in
[BGK+96]. This can be done by annotating the model with edges and testing vari-
ables which are set when an aspect of the specification has been covered. The cost
extended version of UPPAAL can then be applied to find the cheapest possible path
trough the specification which sets all the testing variables. We have been able to
apply this technique in UPPAAL to generate optimal testing sequences for covering
e.g. all location, all synchronization actions, or all edges of the protocol specifica-
tion. �

5.5 Conclusion

In this chapter we have considered the minimum-cost reachability problem for LP-
TAs. The notions of linearly priced zones, and facets of a zone are central con-
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tributions of the chapter underlying our extension of the tool UPPAAL. Our initial
experimental investigations are quite encouraging.

Compared with the existing special-purpose, time-optimizing version of UP-
PAAL [BFH+01a], the presented general cost-minimizing implementation does
only marginally down-grade performance in the number of explored states. In par-
ticular, the theoretical possibility of uncontrolled splitting of zones does not occur
in practice. In addition, the consideration of non-uniform cost seems to signifi-
cantly reduce the number of symbolic states explored.

The single, most important question, which calls for future research, is how to
exploit the simple structure of the LP-problems considered. In our approach we
for example encounter, for example, only constraints of the formx − y ∼ m and
x ∼ n, with ∼ ∈ {≤,=,≥}. We may benefit significantly from replacing the
currently used LP package with some package that is tailored towards small-size
problems of this kind.



6

Guiding Polyhedral Reachability Analysis
of Hybrid Systems

6.1 Introduction

Hybrid systems are discrete event systems that interact with a continuous environ-
ment, typically a discrete controller of an analog system. The hybrid automata
model provides a framework to specify and analyze hybrid systems. Hybrid au-
tomata distinguish, like timed automata, between discrete transitions and contin-
uous transitions. But unlike timed automata, which allow only clocks with rate
one, hybrid automata may describe the evolution of the continuous variables by
any kind of differential equation.

To compute all reachable states of a hybrid system one typically searches ex-
haustively for new symbolic states until a fixpoint is reached. A symbolic state is a
pair of a discrete state (or control location) and a set of continuous states. But un-
like timed automata, hybrid automata provide in general no (finite) partition of the
state-space which is closed under taking transitions – either discrete or continuous
ones. There are several approaches that use over-approximations to overcome this
problem. Examples are approximations with orthogonal polyhedra [DM98], pro-
jections to lower dimensional polyhedra [GM99], ellipsoids [KV00], or bounded
polyhedra [CK99, Var98, Feh98].

Another approach to this problem is to restrict the continuous behavior of
the hybrid system such that it becomes suitable to use the exact sets of reach-
able states. The model checker HyTech offers a semi-decidable reachability al-
gorithm for the class of linear hybrid systems [HHWT95]. If the algorithm stops

This chapter covers the publications:

[Feh98] A. Fehnker.Automotive Control Revisited – Linear Inequalities as Approximation of
Reachable Sets.HSCC’98, 1998.

[Feh00b] A. Fehnker.Heuristic Reachability Analysis of Hybrid Systems,Manuscript,2000.
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the exploration, the computed set of reachable states is exact. In addition there
are restricted classes of hybrid automata for which the reachability problem is de-
cidable [HKPV95, LPY99], i.e. it is possible to construct a finite partition of the
state-space which is closed under taking transitions. The classes of decidable and
semi-decidable hybrid systems can be useful, even if a hybrid system is not from
these classes. Rather than approximating the reachable sets, one can analyze an
approximate model of the hybrid system [HH95].

This chapter presents an approach which was put forward in [Feh98], and
which is similar to the approach proposed independently in [Var98]. This approach
uses optimal control theory to approximate the reachable sets of hybrid systems
with uncertain input. The over-approximation was then used in [Feh98] to analyze
an automotive control problem. As an extension to this earlier work we present and
evaluate in this chapter a model checking algorithm similar to the timed automata
algorithm in Chapter3 that allows the use of heuristic search orders.

This chapter deals (unlike the previous chapters) with the full exploration of the
state-space. Also in this case the search order can matter. Exploring first symbolic
states that include others can reduce the overall number of states encountered dur-
ing the search. We will see that even more subtle interactions between the search
order and the performance take place. We show for example that some search or-
ders may lead to starvation of symbolic states on the wait list, a phenomenon that
does not occur in the case of timed automata. If the algorithm searches, for ex-
ample, depth-first – generated states are explored in a last-in-first-out fashion – it
may happen that a state has been generated but will never be explored. Starvation
can also occur with other heuristic search orders and causes non-termination of the
algorithm.

In this chapter we consider two case studies. The first one is an automotive
suspension system that was introduced by T. Stauner et al. in [SMF97], and which
was already dealt with in [Feh98]. The electronic height control (EHC) has to keep
the distance between chassis and the wheel of a car within bounds. The height of
the chassis is controlled by pneumatic suspension. The level can be increased by
pumping air into the system and it can be lowered by opening an escape valve. The
height is measured by a low-pass filter that filters disturbances caused for example
by holes in the road. As a consequence it takes also some time until changes in
height are properly detected.

The second case study arose from an experimental setup used in Computing
Science courses at the University of Nijmegen [Kra00]. This setup is made up
of a train, a train gate and a car, all built from LEGO and controlled by LEGO

M INDSTORM RCX bricks. The car is equipped with two light sensors which allow
it to follow a black line on a white floor. Though it is a rather small example it
exhibits interesting non-trivial hybrid behavior.
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The next section briefly introduces hybrid automata. In Section6.3 we show
how to compute the reachable sets. Section6.4 presents an algorithm for reacha-
bility analysis, and heuristics that select the biggest zones first. In this section we
give an example of an hybrid automaton that may lead to starvation, and show how
to prevent this. The two case studies are described in more detail in Section6.5.
Section6.6 presents the experimental results which show that heuristics can im-
prove the performance, and that avoiding starvation may contribute, too. Section
6.7concludes this chapter.

6.2 Clocked Hybrid Automata

This chapter deals only with small examples that illustrate the use of polyhedra, and
the benefits of heuristics. Therefore, we consider only a restricted class of hybrid
automata, and omit the discussion of important issues such as compositionality,
deadlock, and zeno-ness.

Let v = (v1, . . . , vn)T be a vector ofn continuous variables that range overR.
We writeV for the set of variables{v1, . . . , vn}. The set of all linear inequalities of
the formC v ≤ b with C ∈ Rm×n, b ∈ Rm is denoted byI(V ). We will identify
a polyhedronP with the inequalitiesφ ∈ I(V ) which define the polyhedron. Note
that different inequalities may define the same polyhedron. We callv ∈ Rn an
element ofP, if v |= φ. Let B(V ) be the subset ofI(V ) that define bounded
polyhedra. Bounded polyhedra are also known as polytopes.

Definition 6.1 We consider hybrid automata that can be defined by

• a set Loc of control locations,

• a set of continuous variablesV . A pair (l,v) with l ∈ Loc andv ∈ Rn

will be called a state. We divide the set of continuous variablesV in sets of
locally controllablevariablesX and input variablesU ,

• a set Act of labels,

• an initial location l0 together with an initial constraintφ0 ∈ B(V ) on the
continuous variables,

• an invariant Inv: Loc→ I(V ),

• a setE of discrete transitions of the forme = (l, φ, a, ρ, l′) with l, l′ ∈ Loc,
guardφ ∈ I(V ), a ∈ Act, a reset setρ ⊆ V ,

• and a set oftrajectoriesT overV . A trajectoryτ is a mapping fromR≥0 to
states.
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Figure 6.1: A simple hybrid automaton, with uncertain input and clocked transitions.

A general introduction to hybrid automata is to be found in for example [Hen96]
and [LSV01].

Furthermore, we assume in the remainder of this chapter that the following
holds:

• The continuous behavior in each location of the hybrid automata is specified
by a linear, time invariant differential equations of the following form

ẋ(t) = Ax(t) + Bu(t) (6.1)

In Control Theoryx is known as state of the system, andu called the input.
We assume that the inputu : R≥0 → U is a measurable function, with a
bounded rangeU ∈ B(U).

• The hybrid system has only a finite set of locations, a finite set of discrete
transitions and a finite set of continuous variables.

• The systems isclockedwith sampling timetsample. This means that discrete
transitions may only occur everytsample time units. We introduce a clock
variablet, and assume that each transition is guarded byt = tsample and
resetst.

The last requirement restricts the class to systems in which the discrete controller
samples the input regularly. The environment will not change its dynamics by
itself, but only as a consequence of controller output. The main reason for this
restriction is that it allows to easily implement a prototype model checker that
is applicable to the considered case studies. We show also how to approximate
reachable sets over intervals of time, which is necessary if we want to deal with a
larger class of hybrid systems.
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The next section discusses some basic properties of linear equalities. We will
derive an approximation method that uses ideas from optimal control theory. Sec-
tion 6.4then presents a forward reachability algorithm.

6.3 Approximation of Reachable Sets

Reachability analysis of a hybrid system requires determination of the successors
of a state due to the continuous evolution of the system and due to discrete tran-
sitions of the controller. Many practical systems use conjunctions of linear in-
equalities to define guards on transitions. Polyhedra, which are defined by linear
inequalities, have some useful properties. A nonempty intersection of two polyhe-
dra is a polyhedron, and a nonempty intersection of a polytope with a polyhedron
yields a polytope. Therefore, it is a natural choice to use polyhedra also to approx-
imate sets of successors. We refer to a bounded polyhedron that approximates a
reachable set as azone. In contrast to timed automata we require that zones are
bounded.

To compute a zone that over-approximates the states that are reachable at a
certain time point, starting from a compact (bounded and closed) and convex set of
initial states we need some control theory. The unique solution of the differential
equation (6.1) with initial statex(0) ∈ X0 is given by1

x(t) = eA tx(0) +
∫ t

0
eA (t−σ)Bu(σ)dσ (6.2)

We abbreviate the right-hand side byϕ(x0, t, q).
In Control Theory one often wants to find a time optimal control for the system

(6.1), assumingu : R≥0 → U andx(0) ∈ X0, with U ⊂ Rm andX0 ⊂ Rn

compact and convex sets. LetReach(X0, tf ,U) denote the set of states that can
be reached from the initial setX0 at time tf with inputs fromU. Denote the
boundary of a setS by δ(S).

The set of reachable statesReach(X0, tf ,U) form under these assumptions a
convex and compact set. LetXf beReach(X0, tf ,U). Assume that we havexf ∈
δ(Xf ), then there exists a supporting hyper-plane (tangent plane) that contains
xf . Let cf be the normal on this hyper-plane, thencT

f x ≤ cT
f xf holds for all

reachable statesx ∈ Xf . Figure6.2 sketches this situation. The reachable set,
however, and thusxf will usually be unknown beforehand. But fortunately, it is
possible to find for a givencf andtf , an inputū and an initial statex0 such that
cT
f x ≤ cT

f ϕ(x0, tf , ū) for all x ∈ Xf andu : R≥0 → U. Similarly, one can

1 Note thateAt is a symbolic notation for the fundamental solution ofẋ = Ax
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Figure 6.2: Given an initial setX0, and a normalc0 one can determine an initial statex̄0

on the boundary and an inputu that drives the system from̄x0 to statex̄f on the boundary
of Xf .

determine for a given initial statex0 ∈ X0 with normalc0, an inputū and a normal
cf such that the aforementioned inequality holds.

Lemma 6.2 SupposeX0 ⊆ Rn andU ⊆ Rm are convex and compact sets. Let
tf ∈ R≥0 andc0 ∈ Rn. Letcf := e−AT tf c0. Then there exists āx0 ∈ δ(X0) and
a mappingū : R≥0 → δ(U) such that

cT
0 x̄0 = max

x0∈X0

cT
0 x0 (6.3)

cT
0 e−A tBū(t) = max

u∈U
cT
0 e−A tBu, ∀t ∈ [0, tf ] (6.4)

cT
f x̄f = max

xf∈Xf

cT
f xf (6.5)

with x̄f = ϕ(x̄0, tf , ū) andXf = Reach(X0, tf ,U).

Equations (6.3) and (6.4) can be established using the fact that there always exists a
maximum of a linear function on a compact and convex set (see [LM67]). It should
be noted that̄x0 and ū are not necessarily unique. Using (6.3), (6.4) and (6.2)
shows straightforward thatcT

f (ϕ(x̄0, tf , ū)− ϕ(x0, tf , u)) ≥ 0 holds for arbitrary
x0 andu, therefore (6.5) is proven. The relations betweenxf , u andx0 given by
this lemma, are used to prove the bang-bang principle (or theorem of Lee-Markus
[LM67]). This principle states that it is always possible to reach an extreme state
with an extreme control.

We can use these relations to obtain an over-approximation of the reachable
sets at timetf ∈ R≥0. Suppose that we have an initial setX0, a subset of bounded
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Figure 6.3: The background shows a superposition of three vector fields. The horizontal
vectors depict the vector field without disturbance. The two others show the vector field, as
result of a maximal disturbance in the vertical directions. The solid lines are the boundaries
of the reachable sets, starting from point(0, 0) after 1, 2 and 3 seconds (from in- to outside).
The dotted lines are the approximations of these sets with polyhedra. Figure (a) and (b)
use different ways to approximate these sets, see text for an explanation. This example is
taken from the automotive height control example in Section6.5.

polyhedronCx ≤ b. Let cT
0 be a row-vector of matrixC, b0 the corresponding

element ofb, andcf := e−AT tf cT
0 . Let x0 be a point on the boundary ofX0

that maximizescT
0 x. According to (6.5) there is an input̄u such thatcT

f x ≤ bf

for all x ∈ Xf , with bf := cT
f ϕ(x̄0, tf , ū). In this way one can find a matrixC′

and vectorb′ such thatReach(X0, tf ,U) satisfiesC′x ≤ b′. This zone can then
serve as initial set for the next iteration step. Figure6.3(a) gives an example of this
approximation procedure.

It has still to be shown that the polyhedronC′x ≤ b′ is indeed bounded. We
will show thatC′x ≤ b′ infers for any normalcf a bound oncf x, i.e. the poly-
hedron is bounded in any direction. Letc0 := eAT tf cf . Since the polyhedron
Cx ≤ b is assumed to be bounded it is possible to determine a vertexp that is
optimal with respect toc0 x. We know – from the termination criterion of the
simplex method for example– that it is possible to writec0 as linear combination
a1c1 + . . . + ancn whereci are proper row-vectors ofC andai ∈ R≥0. Let c′i be
the corresponding row-vectors ofC ′ andb′i the bound onc′i x. We then have that
cf = a1c

′
1 + . . . + anc′n and thus that ifx satisfies the inequalityC ′ x ≤ b it then

satisfies alsocf x ≤ a1b1 + . . . + anbn.
An alternative approach to approximate a set of reachable states chooses first a

matrix C. For each row-vectorcf of C lemma6.2 allows us to determinec0, x0,
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Figure 6.4: The optimum ofc(t) x may jump from one vertex to another. But not infinitely
often in a finite interval.

ū and consequentlyxf , such thatcT
f x ≤ bf for all x ∈ Xf , with bf := cT

f x̄f . If
we repeat this for all row-vectors ofC, we obtain linear inequalitiesCx ≤ b that
includeReach(X0, tf ,U). This alternative approach is depicted in Figure6.3(b).
All approximations use the same matrixC to define the polyhedra.

This approach has several advantages. Since all zones use the sameC, the
inclusion check between two zonesCx ≤ b1 andCx ≤ b2 can be reduced to
checking inequality ofb1 andb2. Similarly, checking whether a guardc x ≤ b is
satisfied can be simplified ifc is a row-vector ofC. Not to mention that we only
have to store the boundsb to define a zone, rather than the full inequalities.

The first approach allows to re-use the tangent points as initial values for the
next iteration. These are points on the boundary of the exact reachable set, even if
the approximation is applied iteratively. The alternative approach cannot guarantee
this, since we are not free to choose an initial point once we have chosencf . A
major disadvantage of the first approach however is, that whenever we take an
intersection of a zone with a guard or invariant, this might add new linear equalities
to the set of inequalities. In this chapter we use the first approach to analyze the
LEGO car, and the second one to analyze the automotive suspension problem.

Often, we are not only interested in the reachable set on certain points in time,
but also in constraints on the reachable states in an interval of time. Lemma6.2
uses the fact that the optimum of a linear function on a compact set will be attained
on the boundary. If we take the optimum over a bounded polyhedron, the opti-
mum will be attained in a vertex of the polyhedron. To be able to approximate the
reachable set in a time interval we need slightly more.

Lemma 6.3 Let P ∈ B(V ) be a polytope and supposec : R≥0 → Rn analytic.
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Then there existtmax > 0 and a vertexp of P such that

c(t)T p = max
x∈P

c(t)T x ∀t ∈ [0, tmax] (6.6)

holds.

This lemma says that there exists a vertex which is optimal att = 0 and stays
optimal for at leasttmax time units. The optimum does not have to be unique, and
if two or more vertices are optimal then all points that are a convex combination of
these points are also optimal. The proof uses the fact that all functionsc(t)T pi are
analytic. Among these there has to be a function that is greater than or equal to the
others on an interval. If this was not the case one could construct a non-constant
analytic function which takes the value zero infinitely often on a finite interval.

Figure6.4 illustrates lemma6.3 for two dimensions. The maximum (6.6) is
attained from0 up to t1 in vertex A. At timet1 the maximum is not unique; it is
attained in every point on edgeAB. Without the assumptionc(t)i analytic, one
can easily construct a functionc(t) (e.g. usingsin(1/t)), such that the maximum
is not constantly attained in one vertex, for any interval[0, tmax].

To get a lemma similar to6.2, we restrictX0 andU. In the remainder of this
section we assume that bothX0 andU are bounded polyhedra. We denote with
Reach(X0, [0, tmax],U) the set of states that can be reached fromX0, with input
in U, and within timetmax.

Lemma 6.4 SupposeX0 ⊆ Rn andU ⊆ Rm are bounded polyhedra. Letcmax

be a vector inRn. Then there exits an̄x0 ∈ δ(X0), and atmax > 0 and a constant
ū ∈ {u|u : [0, tmax] → δ(U)} with

cT
maxeA t x̄0 = max

x0∈X0

cT
maxeA tx0, ∀t ∈ [0, tmax] (6.7)

cT
maxeA (tmax−t)Bū(t) = max

u∈U
cT
maxeA (tmax−t)Bu, ∀t ∈ [0, tmax] (6.8)

cT
maxx̄(t) = max

x(t)∈X(t)
cT
maxx(t), ∀t ∈ [0, tmax] (6.9)

with x̄(t) = ϕ(x̄0, t, ū) andX(t) = Reach(X0, t,U).

The proof uses the existence of an interval[0, tmax1] on which the maximum of
cT
maxeA tx0 is attained in one vertex̄x0 of X0 (see lemma6.3). The same holds for

ū; there exists an interval[0, tmax2] on whichū is constant. Taketmax as minimum
of tmax1 andtmax2. Similar to the proof of lemma6.2we use equation (6.7), (6.8)
and (6.2) to show thatcT

max(ϕ(x̄0, t, ū)− ϕ(x0, t, u)) ≥ 0 holds for arbitraryx0,q
and allt ∈ [0, tmax], and therefore (6.9) is proven. For̄u is constant on[0, tmax]
we are able to simplify the integrals which arise from (6.2)
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SupposeX0 is a bounded polyhedronCx ≤ b0. Lemma6.4 allows us to
find for a given normalcf a boundb(t) such that the setReach(X0, t,U) is con-
tained incT

f x ≤ b(t), for all t in interval [0, tmax]. The upper boundstmax1

and tmax2 depends mostly onC, A, B and setU. Suppose that the maximum
(6.7) is attained in vertexp1 for t ∈ [0, tmax]. Let p2 be a vertex such that
cT
maxeA tmax p1 = cT

maxeA tmax p2. We then know that edgep1p2 is perpendicu-
lar to cT

maxeA tmax . The orientation of the edges however depends only on matrix
C. This allows us to approximate the reachable set even iftsample > tmax. In this
case the approximation technique is applied iteratively to the result of the preceding
approximation.

In some cases one needs a single bound on all states which are reachable within
interval [0, tmax]. For this purpose we take the maximum ofb(t) over the interval
[0, tmax]. This approximation gets of course worse with a longer interval[0, tmax].
It should be noted that{(x; t)|x ∈ Reach(X0, t,U)} is generally not convex, and
hence it is difficult to handle transitions that do not take place at a specified time.
The intersection of this set with a guard may yield a non-convex set. Therefore, we
restrict the model to clocked systems.

Recall the hybrid automaton in Figure6.1. The initial set in location loc1 sat-
isfiesx = 0. Suppose we want to find a constraintx ≤ b(t) on the reachable set.
We thus havecmax = 1. The maximum ofe−t x0 (equation (6.7)) is attained in
vertexx̄0 = 0. With (6.8) we find thatū ≡ 1 on [0, tmax], for all tmax > 0. We
then get that all states that can be reached at timet from x = 0 with input u from
[0, 1] satisfyx ≤ 1− e−t. Analogously, we can find the lower bound0 ≤ x on all
reachable states.

6.4 Reachability Analysis with Heuristics

In order to perform a reachability analysis we have to define a successor relation
between symbolic states. We define a symbolic state as a pair(l,Z) of a loca-
tion l ∈ Loc and azoneZ ∈ B(V ). Let (l,Z) be a symbolic state of hybrid
automaton A with locationsLoc, variablesV and set of discrete transitionsE. Let
approx(l,Z, tsample) be the approximation ofReach(l,Z, tsample), using one of
the two approaches presented in the previous section. We call state(l′,Z′) a suc-
cessor of(l,Z), if there exist a zoneZ′′ = approx(l,Z, tsample) and an actiona
such that((l,Z′′), a, (l′,Z′)) ∈ E. Note that we calculate the successor of a zone
as result of a delay and a discrete transition.

Different search orders are realized by means of aheuristic valueh, which is
associated with each symbolic state. We assume thath ranges over the setR. The
search order is then defined by aheuristic functionH : Loc×B(V )×R → R, that
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PASSED:= {}
WAITING := [(l0,Z0, h0)]
while WAITING 6= [] do

select (l,Z, h) from WAITING

if ∀(l′,Z′) ∈ PASSED. l 6= l′ ∨ Z * Z′

then add (l,Z) to PASSED

forall (l′,Z′, h′) s.t.(l,Z, h)⇒(l′,Z′, h′) do
add (l′,Z′, h′) to WAITING

od
fi

od

Figure 6.5: Reachability algorithm based on extended zones. The functionselect selects
and removes the extended zone from the waiting list with the largest priority.

assign a heuristic value to a symbolic state based on the symbolic state itself and
the heuristic value of its predecessor. We call an extended symbolic state(l′,Z′, h′)
a successor of(l,Z, h), if (l′,Z′) is a successor of(l,Z) andh′ = H(l′,Z′, h). We
denote this relation with(l,Z, h) ⇒ (l′,Z′, h′). The corresponding reachability
algorithm is depicted in Table6.5.

The algorithm starts with an emptyPASSED-list and aWAIT -list that contains
the initial state. As long as theWAIT -list is not empty the symbolic state with the
largest heuristic value is selected. It is checked whether thePASSED-list holds a su-
perset of this state. Subsets of the selected symbolic state will be removed from the
PASSED-list, to keep this list short. If the symbolic state passes the inclusion check,
its successors are computed and added to theWAIT -list. To realize the search order
we change theWAIT -list to a priority list, such that the elements are decreasingly
ordered with respect to the heuristic value. In this way heuristic functions can
postpone or promote the exploration of a state.

Heuristic search orders as well as depth-first search may lead to starvation.
In this case a state is pushed onto theWAIT -list but it is never explored, since
newly generated states are added in front of this state to theWAIT -list. Reacha-
bility analysis of hybrid automata does not have to terminate, but a wrong search
order like depth-first for instance may make things worse. The hybrid automaton
in Figure6.1 illustrates that a certain search order may lead to starvation, while
the algorithm terminates for another search order. Breadth-first exploration of the
automaton shows within a few iterations that the reachable states in both locations
satisfy0 ≤ x ≤ 2+ tsample. If we explore firstly only zones with location loc1, the
exploration can go on forever, since each new zone is slightly bigger than the pre-
vious ones. None of the zones will be included in one of its predecessor. Note that
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an implementation that uses numerical methods like linear programming is likely
to stop eventually, due to numerical errors.

Starvation is a phenomenon which is known, for example, from dynamic sched-
uling in operating systems. There are scheduling policies that avoid starvation and
try to minimize the average waiting time, simultaneously. One assumes that the
processing time is proportional to the size of a job. In model checking this is not
the case; the processing time – the time needed to compute the successor – of a
symbolic state is usually independent of the heuristic value. We consider a strategy
which allows an easy implementation, and does not explicitly concern about the
average waiting time.

We want that the priority of a state increases linearly with an increasing waiting
time, independent of the heuristic value. Let(l,Z, h) and (l′,Z′, h) be then-th
andm-th state that enters theWAIT -list, respectively. We assume that both states
have the same heuristic value, andn < m. We then want that the first state that
entered theWAIT -list has a priority that isλ (m−n) higher than the priority of the
other. It is not necessary to update the priority with each iteration. It is sufficient
to assign to each then-th state, with heuristic value h, priorityp := h − λn.
There is no need to re-order the elements of theWAIT -list. It is sufficient to insert
incoming states according to their priority. To avoid starvation, we have to assume
additionally that the heuristic function is bounded, i.e. there exist ahmax ∈ R
such thatH(l,Z, h) ≤ hmax. If we choose a bigλ the search order becomes
more breadth-first like. In contrast, if we chooseλ to be0, the state-space will be
explored according to the heuristic function.

Even if example6.1 suggest otherwise, the efficiency of the algorithm might
increase, if one chooses the largest zone rather than choosing breadth-first. This
increases the chance that subsequent zones are included and this may reduce the
number of iterations needed to explore the complete state-space. The volume of a
zone may not be the best way to determine the search order. A reset of a continuous
variable for example yields a zone with volume0. Furthermore, to reduce the
overhead we might prefer a measure that is computationally cheap.

As mentioned above, zones are represented by linear inequalities of the form
Cx ≤ b, with C ∈ Rn×m andb ∈ Rm. We refer to the rows of matrixC with
C(i,·) and to the elements of a vectorb with b(i). We then represent the reachable
set by matrixC and a multi-set ofx1, . . . , xm ∈ Rn, that satisfyCxi ≤ b and
C(i,·) xi = b(i). We use these points to compute the successor of a zone. In this
chapter we consider the following heuristic functions:

• Hmean takes
1
n

∑
i=1,...,n

( max
j=1,...,m

xj(i) − min
j=1,...,m

xj(i))
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Figure 6.6: A zoneZ is represented by points on the facets and a matrix with the normals
on the facets. For the zone depicted if this figure we haveHmean(Z) = 0.5 (a+ b) = 1.75,
Hmax(Z) = max(a, b) = 2 andHΣ(Z) = 0.25 (1.5 + 0.75

√
2).

as heuristic value. There is a smallest cube with edges parallel to the axes,
that contains the pointsxi. Hmean takes the average length of the edges.

• Hmax takes

max
i=1,...,n

( max
j=1,...,m

xj(i) − min
j=1,...,m

xj(i))

takes the maximal length of the edges, and

• HΣ uses the sum
1
m

∑
i=1,...,m

C(i,·)xi

to order theWAIT -list, assumed that the rows vectorsC(i,·) have unit length.
HeuristicHΣ takes the mean of the boundsb(i). Figure6.6gives an example
for this heuristic functions.

Besides heuristics there are other possibilities which may improve the effi-
ciency. An approach that has proven to be beneficial is an additional inclusion
check on theWAIT -list. Recall the algorithm in Table6.5. Before a we add a state
to theWAIT -list, it is checked whether the list does not already contain a superset
of that state. We add that state only if this is not the case, and remove all symbolic
states that are a subsets of the state. This overhead may pay off if it eliminates a
sufficient number of symbolic states. In this case we profit from the fact that the
WAIT -list is usually shorter than thePASSED-list. We take this as example to inves-
tigate how ordering with respect to the size combines with common modifications
of theWAIT -list.
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6.5 The Case Studies

This section presents the case studies and the verification results. The results in this
section were obtained for a MATLAB implementation of the reachability algorithm
on a Pentium II 500MHz processor with 256MB memory. The implementation
aims to show that polyhedra are suitable for verification; it spends less attention
to efficiency. For both examples we use the same basic algorithm, as depicted in
Figure6.5. But we use, as mentioned before, different approaches to compute the
successor. We apply the approach that is depicted in Figure6.3(a) to compute the
successor for the LEGO car example. The analysis of the EHC example takes the
alternative approach6.3(b), that uses the same matrixC to define all zones.

As a consequence, the algorithm uses also different ways to compute the inter-
section of zones. If we re-use matrixC it suffices to compare the bounds, and it is
not necessary to use any linear programming. For all instances that we consider we
have also that the bounds are either monotonic increasing or decreasing on interval
[0, tsample]. It is therefore sufficient to consider only the bounds at the begin and
end of the interval.

The algorithm uses MATLAB ’s standard Linear Programming module to deter-
mine the optimum of linear functions on a polyhedron. This introduces numerical
errors. Both problems allow the assumption that these errors remain negligible.
The approximation might introduce an error in the range on10−10. The problems
are such that this error does not propagate. Since a symbolic state is at most the
10 000th successor of the initial state, we can assume a numerical error in the order
of 10−5. Note however that the zones are over-approximations of the actual zones.
This error might propagate if we use the alternative approach of Figure6.3(b), but
we will see that the obtained bounds are nevertheless tight.

6.5.1 The Lego Car

The first case study is taken from a setup that is used at the University of Nijmegen
to illustrate the use and need of formals methods to students from secondary school
and university. The setup consists of a train, a train gate and a car. There are sensors
to detect an approaching train and to detect whether the train gates close properly.
The train gate uses an infrared interface for communication with the train in case
the gate fails. The car has three sensors, two that allow it to follow a black line and
one to detect the state of the traffic light in front of the train gates (Figure6.7(a)).
Jeroen Kratz, who built the setup, verified the correctness of the controller of the
train gate with the model checking tool UPPAAL [Kra00].

The car is equipped with a LEGO RCX brick. This brick periodically executes
a control program written in NQC, a C like language especially designed for the
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Figure 6.7: The LEGO car is controlled by a single RCX brick. The light sensors for the
black line are located between the front wheels. The light sensor at the top in front of the
car is used to detect the traffic light at the train gate.

RCX platform. When the car is put on the black line and switched on, it moves
forward as long as both sensors detect the black line. If the right sensor detects
the white background, the control program reverses the turning direction of the left
caterpillar. This results in a turn to the left, while the central position of the car
remains unchanged. Similar, if the left sensor detects the white background, the
direction of the right caterpillar is reversed. The control program does not take into
account explicitly that both sensors detect the white background. But the control
task for the left and right sensor can and will be executed concurrently in this case,
and the car moves backward.

We model the car by its central position(x, y) and its direction(v, w) (Figure
6.7(b)). If the car moves forward, it has velocityV. The position changes according
to the differential equationṡx = V v andẏ = V w, while the direction remains un-
changed. The positions of the left and right sensors are(x, y)+α(v, w)+β(−w, v)
and(x, y) + α(v, w) + β(w,−v), respectively. The parametersα andβ determine
the distance between the sensor and the center of the car. The black tape stretches,
parallel to the x-axis, between upper boundUB and lower boundLB in the direction
of the y-axis. The left sensor detects the tape as long asLB ≤ y + α w + β v ≤ UB

holds. If this does not hold, but the right sensor does detect the tape, the car turns
to the right. The direction changes according tov̇ = 2π ω w, ẇ = −2π ω v, while
position(x, y) remains unchanged. The parameterω gives the number of revolu-
tions per time unit. If both sensor detect the white background the car will move
back, and if only the left sensor detects the tape it will move left. This behavior is
modeled analogously to moving forward and right.

Table6.8 shows the hybrid automaton which models the full behavior of the
car. Since the black line is assumed to be parallel to the x-axis, we do not need to
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actions goforward ,goback ,goleft ,goright
continuous variables y, v, w ∈ R, tclock ∈ R≥0

discrete variables location ∈ {FORWARD, BACK, LEFT, RIGHT}
initial condition location = FORWARD, LB ≤ y ≤ UB,v2 + w2 = 1, 1/

√
2 ≤ v

discrete transitions
goforward : goback :
Pre:∧ tclock = tsample Pre:∧ tclock = tsample

∧ y + α w − β v ≤ UB ∧ ∨ y + α w − β v ≥ UB

∧ y + α w − β v ≥ LB ∨ y + α w − β v ≤ LB

∧ y + α w + β v ≤ UB ∧ ∨ y + α w + β v ≥ UB

∧ y + α w + β v ≥ LB ∨ y + α w + β v ≤ LB

Eff: location :=FORWARD Eff: location :=BACK

tclock := 0 tclock := 0

goleft : goright :
Pre:∧ tclock = tsample Pre:∧ tclock = tsample

∧ ∨ y + α w − β v ≥ UB ∧ y + α w − β v ≤ UB

∨ y + α w − β v ≤ LB ∧ y + α w − β v ≥ LB

∧ y + α w + β v ≤ UB ∧ ∨ y + α w + β v ≥ UB

∧ y + α w + β v ≥ LB ∨ y + α w + β v ≤ LB

Eff: location :=LEFT Eff: location :=RIGHT

tclock := 0 tclock := 0

trajectories:
ṫclock = 1
tclock ≤ tsample

If location = FORWARD then ẏ = V w, v̇ = 0, ẇ = 0
If location = BACK then ẏ = −V w, v̇ = 0, ẇ = 0
If location = LEFT then ẏ = 0, v̇ = −2πω w, ẇ = 2πω v
If location = RIGHT then ẏ = 0, v̇ = 2πω w, ẇ = −2πω v

Table 6.8: Hybrid automaton for the LEGO car on a straight line.

includex into the model. We assume that the car and the sensors are initially on
the black line and moves forward. The angle between the driving direction and the
x-axis lies initially in the interval[−45, 45] degrees.

Verification Results The physical car is designed to drive on a tape with width
2.5 cm. Its speedV is 13 cm/s, and it can make a full turn within 2.5 seconds,
thusω = (2.5s)−1. We assume that the RCX brick has a sampling timetsample

of 0.1 seconds. The distance between the sensors is 16 mm, the distance between
the center of the sensors to the center of the car is 22 mm, thusα = 2.2 cm and
β = 0.8 cm.

We assume that the car and the sensors are initially on the black line and that
the car is initially moving forward to the right with an angle between−45 and45
degrees with thex-axis. This means the set of initial values for(v, w) constitutes
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Figure 6.9: Projection of the symbolic states of the LEGO car tov andw. The dashed line
in location forward shows the projection of the initial zone.

an arc. The dashed polyhedron in Figure6.9shows the polyhedron which was used
to over-approximate this set.

We were able to verify that the center of the car never exceeds the upper and
lower bound of the tape, and that the car never drives backwards. Analysis of the set
of reachable symbolic states yields that the car moves with at least 8.9 cm/s in the
direction of thex-axis, if it is in FORWARD mode. The right sensor is never closer
to the upper bound than 2.1 mm. Symmetrically, the distance between left sensor
and lower bound is also always greater than 2.1 mm. We can therefore conclude
that the car shows no unexpected behavior, as long as the car is initially placed on
the tape with an angle between the border of the tape and its driving direction of
less than 45 degrees. Experiments with the physical car confirm these results.

6.5.2 The Electronic Height Control

This case study deals with an automotive electronic height controller (EHC) that
keeps the distance between the chassis and a wheel within bounds. This case study
was presented by Stauner, Müller and Fuchs in [SMF97]. We follow their model
as closely as possible. For further technical details and a motivation of the specific
choices within this model see also [Sta97].

The system consists of different components, as depicted in Figure6.10. First,
we have the chassis, whose height can be changed by pneumatic suspension with
a compressor and an escape valve. The measured height passes a low-pass filter,
which filters high-frequency disturbances caused for example by holes in the road.
The electronic height control (EHC) uses the filtered height to decide whether to
use the compressor or the escape valve or to do nothing.

The chassis level is influenced by external disturbances and by the escape valve
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Figure 6.10: The EHC in its environment.

and compressor. The rate of change of the heighth of the chassis is the sum of the
changes due to disturbances, denoted bye, and the changes due to the compressor
and escape valve, denoted byc. The continuous behavior ofh is modeled by the
linear differential equation.

ḣ = e + c (6.10)

If the controller uses the escape valve, the heighth decreases with a ratec in
interval [evmin, evmax], while using the compressor increases the heighth with
c ∈ [cpmin, cpmax]. To ensure that the disturbancese cannot lead to an unbounded
increase or decrease of the height we assumeevmax ≤ e ≤ cpmin. The filter keeps
track of the height, with the restriction that it takes some time until changes in
height are properly detected. This feature is useful, because it limits the influence
of brief and small disturbances. The filter is modeled by differential equation

ḟ =
1
T

(h− t) (6.11)

Here the constantT determines the time the filter needs to adjust the filtered height
properly. Furthermore, the filter can be reset if necessary. The filtered height will
then be set to the set-point, regardless the actual height.

Initially, the controller is in control locationIN TOLERANCEand neither the es-
cape valve nor the compressor are used. Hence, we havec = 0. If the filtered height
exceeds an upper limitotu, then the controller enters control locationDOWN, with
the consequence that the height decreases. If the controller is in locationDOWN and
the filtered height falls below a given upper limititu, then the controller re-enters
control locationIN TOLERANCE and resets the filtered height to the set-pointsp.
Similarly, there is a control locationUP, which is entered if the filtered heightf
falls below a lower limitotl. In this location we havec ∈ [cpmin, cpmax]. The
controller re-entersIN TOLERANCE whenf exceedsitl. The controller resets the
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actions stay, to down, to up,back
continuous variables c, e, f, h ∈ R, tclock ∈ R≥0

discrete variables loc ∈ {DOWN, UP, IN TOLERANCE}, mode ∈ {s, d}
initial condition tclock = 0 ∧ c = 0 ∧ loc = IN TOLERANCE, h = sp, f = sp

discrete transitions:
to down( m): to up( m):
Pre: ∧ tclock = tsample Pre: ∧ tclock = tsample

∧ loc ∈ {IN TOLERANCE, UP} ∧ loc ∈ {IN TOLERANCE, DOWN}
∧ (loc = UP) → (m = mode) ∧ (loc = DOWN) → (m = mode)
∧f ≥ otum ∧f ≤ otlm

Eff: loc := DOWN Eff: loc := UP

tclock := 0 tclock := 0
c :∈ [evmin, evmax] c :∈ [cpmin, cpmax]
mode := m mode := m

stay: back:
Pre: ∧ tclock = tsample Pre: ∧ tclock = tsample

∧∨∧ loc = IN TOLERANCE ∧∨∧ loc = DOWN

∧ ∨ f ∈ [otls, otus] ∧ f ∈ [otlmode, itumode]
∨ f ∈ [otld, otud] ∨∧ loc = UP

∨∧ loc = DOWN ∧ f ∈ [itlmode, otumode]
∧ f ≥ itumode Eff: loc := IN TOLERANCE

∨∧ loc = UP tclock := 0
∧ f ≤ itlmode c := 0

Eff: tclock := 0 f := sp

trajectories:
ṫclock = 1 ḟ = 1

T
(h− f)

tclock ≤ tsample ḣ = e + c
e ∈ [cpmax, evmin]
If loc = IN TOLERANCE then c = 0
If loc = UP then c ∈ [cpmin, cpmax]
If loc = DOWN then c ∈ [evmin, evmax]

Table 6.11: Hybrid automaton modeling the automotive control problem

filter, to avoid an accumulation of errors in the filter. To get a realistic model, we
assumeotl ≤ itl ≤ sp ≤ itu ≤ otu.

If the controller leavesIN TOLERANCE it makes a nondeterministic choice be-
tween the modesdriving andstopped. The hybrid automaton of the EHC (Table
6.11) uses the modess for the stopped car andd for the driving car. The controller
uses different values forotl, itl, itu, otu, depending on the mode. The thresholds
of the driving car are smaller, i.e. closer to the set-point. The model assumes addi-
tionally that transitions can only be taken everytsample seconds.

Reachability analysis of the EHC The EHC case study was used in several
papers to illustrate hybrid verification. They all derived bounds on the actual height
of the chassis with respect to the setpoint. Most authors use a restricted model that
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Figure 6.12: The symbolic states of the EHC withT = 2, tsample = 1 sec andmode = s.
The dash-dotted lines depict the guards.

considers only the modes of a stopped car. This restriction seems to be justified,
since the tolerance limits of the driving mode are tighter. As a consequence the
reachable height in the moded is likely to be smaller than in modes. We use for
most experiments the restricted model. The results of the full model show that the
restriction was justified.

We derived the bounds of the chassis level for a system withcpmin = 1mm
s ,

cpmax = 2 mm
s , evmin = −2 mm

s , evmax = −1 mm
s andsp = 0mm. The outer tol-

erance limits of the stopped car are defined to beotls = −40 mm, otus = 20mm.
This inner tolerance limits areitls = −6 mm, itus = 16 mm. The corresponding
parameters of a driving cars areotld = −10 mm, otud = 10 mm,itld = −6 mm
anditud = 6mm.

Stauner et al. approximate the system with linear hybrid system, i.e. a hybrid
system with piecewise constant derivatives. This method is based on the method
presented in [HWT96, HH95]. Stauner et al use as time constant of the filterT =
2s and as sampling timetsampe = 1s. Using this setting they verify that the chassis
level h is always in[−47 mm, 27 mm]. This means that the outer limitsotls and
otus are never exceeded by more than7 mm. They expect that the results can be
improved by using a smaller time constantT and a smaller sampling time [Sta97].

We re-examine these results forT ∈ {2s, 1s} andtsample ∈ {0.5s, 1s}. The
zones are defined by bounds on the heighth, the filtered heightf and the difference
f−h. Matrix C is consequently(1 0;−1 0; 1 −1; −1 1; 0 1; 0 −1). The bounds
on the height for both the restricted and the full model are
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tsample = 1s tsample = 0.5s
T = 2s [−43.00, 23.54] [−42.50, 23.24]
T = 1s [−42.00, 22.10] [−41.50, 21.60]

These bounds are based on an over-approximation of the reachable states. But the
example trace in Table6.13shows that these bounds are reasonably tight.

Bemporad and Morari use linear/mixed-integer programming to analyze this
case study [BM99]. They derive bounds of[−44.54 mm, 25.00 mm] for the re-
stricted model with only three control locations, and withT = 2 andtsample = 1.
They use orthogonal polyhedra to approximate reachable states. Elia and Brandin
examine the same model in [EB99]. They formulate the reachability problem as
a number of linear programming problems, and derive that if the system starts
IN TOLERANCE thenh ∈ [−43.00, 23.00]. This result is based on the assump-
tion that the maximum height can be reached with maximal disturbancee. Table
6.13 shows that this assumption does not need to hold if discrete transitions are
involved.

Table 6.13: Trace of the EHC withT = 2, tsample = 1 s andmode = s. The con-
troller detects the deviation after 23 seconds. The valve opens and the controller enters
IN TOLERANCE again after another 14 seconds, and resetsf to 0.

∆t c e t f h location
delay 0.1 0 0 0.10 0.00 0.00 IN TOLERANCE

delay 22.9 0 1 23.00 20.90 22.90 IN TOLERANCE

transition - - - 23.00 20.90 22.90 DOWN

delay 7.0 -2 1 30.00 17.77 15.90 DOWN

delay 7.0 -1 1 37.00 15.95 15.90 DOWN

transition - - - 37.00 0.00 15.90 IN TOLERANCE

delay 0.5 0 0 37.50 3.51 15.90 IN TOLERANCE

delay 6.5 0 1 44.00 19.97 22.40 IN TOLERANCE

delay 1.0 0 1 45.00 21.15 23.40 IN TOLERANCE

Step response of the EHC Reachability of a state is the most basic property to
verify. One analyzes which states can be reached, assumed that all possible input
and disturbances may occur. In Control Theory one also analyzes a systems be-
havior in reaction to a well defined event. Disturbances of step shape are typical
test functions to examine the stability of a controller. In the remainder of this sub-
section we assume that there is only one disturbance of step shape. At an arbitrary
moment, when the system in locationIN TOLERANCE, moded andf = 0mm,
the height makes a jump toj. We assume additionally that no other disturbances
occur, thuse = 0 mm

s .
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Figure 6.14: Step response due to a jump in[13mm, 14 mm] starting attclock = 0.

Stauner et al. assume a jumpj ∈ (16mm, 18mm]. Additionally they assume
that the escape valve operates at its minimum value, henceevmin = evmax =
1 mm

s . This restriction was necessary to avoid arithmetic overflows. For this setting
they find that the controller leavesIN TOLERANCE at most4.3 s after the distur-
bance and re-enters it after at most22.3 s. They verify that the chassis level then
lies in [−1 mm, 6 mm].

For the same parameter values we can show a stronger result, namely that the
controller leaves locationIN TOLERANCE after at most3 seconds. The controller
re-entersIN TOLERANCE after at most16.9 seconds and the chassis level then
lies in the interval[3.0 mm, 4.1 mm]. We investigated the step response also for a
system withevmin = −2 andevmax = −1. Figure6.14illustrates the behavior of
the EHC due to jumps in[13mm, 14 mm] occurring attclock = 0. We see that the
EHC enters locationDOWN after 3 seconds and re-enters locationIN TOLERANCE

after at most 13 seconds. All reachable states ultimately converge to points on the
diagonal, for the filtered height converges to the real height.

The following table shows for jumpsj within the specified intervals how long
it takes until the controller detects the disturbance, i.e. enters locationDOWN. The
escape value opens and the height decreases. The third row gives the time the
controller needs at most, to detect the disturbance and to steer the system back to
locationIN TOLERANCE. The intervals in the fourth row are the bounds on height
when the EHC entersIN TOLERANCE.

jump j in interval [11,12] [12,13][13,14][14,15][15,16][16,17][17,18][18,19][19,20]
max. time to detect 5.8 4.6 4.0 3.6 3.2 3.0 2.8 2.7 2.5
max. time to recover 13.8 13.6 14.0 14.6 15.2 16.0 16.8 17.7 18.5
final heighth [0.1,4.4][0,4.4] [0,4.3] [0,4.4] [0,4.3] [0,4.3] [0,4.2] [0,4.3] [0,4.2]
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Figure 6.15: Computational results of the LEGO car example. The figures show the
number of states that were explored vs. number of iterations. Result for breadth-first (thin
solid line), and the heuristic withλ = 0 (solid),0.001 (dashed),0.01 (dashed-dotted),0.1
(dotted).

6.6 Computational Results

We consider several instances of the two case studies to examine the basic effects
of heuristics on the performance of the reachability algorithm. Some heuristics can
have positive as well as negative effects. It also depends on the particular instance
which effect will eventually prevail.

6.6.1 The Lego Car

As pointed out before, we expect that ordering theWAIT -list with respect to the
size of the zones may increase the efficiency. Selecting the biggest zones first can
lead to a faster exploration of the state-space. The results for the heuristicsHmean,
Hmax andHΣ confirm this (Figure6.15). Within less iterations more states are
generated compared to the breadth-first search order. The heuristics withλ = 0.1
behaves similar to breadth-first. The heuristics that sorts theWAIT -list with respect
to the size only, are outperformed by the starvation free heuristics withλ = 0.001.

The results in Figure6.15shows that even though the heuristic search orders
Hmean, Hmax andHΣ show a speedup in the beginning, none of them can profit
from this advantage. Breadth-first as well as the heuristics need 94 iterations to
explore the state-space. Since the heuristics explore the state-space faster in the
beginning, they build up thePAST-list faster. A biggerPAST-list has as conse-
quence that the inclusion check becomes more expensive. Each symbolic state has
to be compared to the states in thePAST-list. In particular, comparing zones is
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expensive, as it involves linear programming. The following table shows for each
heuristic the cpu-time and the number comparisons between zones.

BF Hmean Hmax HΣ

λ 0.1 0.010.001 0 0.1 0.010.001 0 0.1 0.010.001 0
# comparisons1192 1195 1265 1372 1396 1217 1330 1370 1365 1198 1207 1209 1226
cpu-time 42.7642.8244.0746.4747.1943.5845.5346.6246.3843.2343.1343.3743.52

It is obvious that ordering theWAIT -list with respect to the priority has in all cases
a negative effect on the number of comparisons and thus on the required cpu-time.

This situation changes if we sort not only theWAIT -list but also the past list. If
we move states that turned out to be supersets of other states to the head of the list,
we may expect a positive effect. This expectation is based on the assumption that
these states are more likely supersets of other states, too. If these states are in the
beginning of the list, we can expect that it take less comparisons to find a superset
of another zone. If we compare a state that is not a subset of any state on the list,
then the ordering does not matter. We have to compare it to the full list. Sorting
thePAST-list yields the following results.

BF Hmean Hmax HΣ

λ 0.1 0.010.001 0 0.1 0.010.001 0 0.1 0.010.001 0
# comparisons 733 733 733 733 733 733 733 733 733 733 733 733 733
cpu-time 31.6231.7631.6431.8631.9531.5231.6731.5631.5431.5031.5131.6031.49

The number of comparisons and hence the cpu-time decreases dramatically, and it
does not matter which heuristic was used.

As mentioned before, an additional inclusion check on theWAIT -list is often
used to increase the efficiency. The rationale is that the overhead pays off if it re-
duces the number of waiting states sufficiently. The following table gives besides
the cpu-time and the number of comparisons with zones on the past list also the
number of comparisons of zones on the wait list.

BF Hmean Hmax HΣ

λ 0.1 0.010.001 0 0.1 0.010.001 0 0.1 0.010.001 0
# comp.WAIT 476 490 778 1404 1032 572 1248 1168 1112 494 602 712 580
# comp.PAST 733 733 733 733 733 733 733 733 733 733 733 733 733
cpu-time 42.1142.9150.1470.4760.0244.2563.8563.0663.1142.7746.1850.2247.18
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These results show that for the LEGO car example not a single comparison with
zones on thePAST-list was saved. As a matter of fact, not a single state was re-
moved from theWAIT -list. Additionally there is of course an overhead by the
additional inclusion check. This overhead is larger for a largerWAIT -list. This
is a disadvantage for the heuristic search orders, which do not only build up the
PAST-list faster, but also theWAIT -list. It must be pointed out that the LEGO car
example shows extraordinary behavior. Even though the different heuristics search
the state-space in a different order, as shown in Figure6.15, they all need 94 itera-
tions to explore 45 states and to find 49 states that are included in thePAST-list and
not a single explored state is either a sub- or superset of a state on theWAIT -list.

6.6.2 The Electronic Height Control

The first instance of the EHC that we consider has only modes andtsample = 1
andT = 2. For this instance we obtain the following results for the reachability
analysis without ordering thePAST-list and without inclusion check on theWAIT -
list.

λ iterations # comparisons explored states cpu-time
BF 2343 925 144 1717 1018.78

0.1 2059 789 537 1479 859.92
0.01 1973 636 290 1356 715.46

Hmean 0.001 1855 588 495 1278 671.51
0 1716 620 007 1223 653.18

0.1 2025 670 857 1416 749.62
0.01 1903 605 087 1302 683.31

Hmax 0.001 1893 645 219 1322 697.63
0 1704 604 820 1214 636.88

0.1 2061 765 498 1477 856.82
0.01 1907 617 030 1314 688.92

HΣ 0.001 1845 591 157 1274 651.55
0 1700 607 325 1211 644.18

In contrast with the previous example ordering theWAIT -list does have a positive
effect. The heuristics reduces the number of iterations, explored states, compar-
isons and the cpu-time. A smallerλ yields in most cases a better result.

Ordering thePAST-list does have a positive effect, too. Moving states that
include an active state reduces the number of comparisons, and consequently the
cpu-time, as shown by the following table.
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λ iterations # comparisons explored states cpu-time
BF 2343 878 877 1717 984.74

0.1 2059 733 162 1479 817.44
0.01 1973 570 910 1356 665.46

Hmean 0.001 1855 534 959 1278 629.95
0 1716 603 610 1223 642.70

0.1 2025 612 555 1416 704.92
0.01 1903 546 789 1302 638.94

Hmax 0.001 1893 598 911 1322 664.94
0 1704 589 374 1214 631.36

0.1 2061 706 494 1477 796.98
0.01 1907 553 255 1314 640.75

HΣ 0.001 1845 538 400 1274 614.51
0 1700 591 805 1211 633.51

The effect of this modification is not as dramatic as for the LEGO example. The
number of comparisons decreases slightly, compared to the results without ordering
the PAST-list. Note that the least number of comparisons is attained for heuristics
with λ = 0.001 or λ = 0.01, even though they explore more states and iterate
more often than heuristics withλ = 0. The number of iterations, the number of
explored states and the number of comparisons are only loosely related, but they
all are positively related with the cpu-time.

The additional inclusion check on theWAIT -list pays off, if it deletes a suffi-
cient number of states. For the LEGO car example this was clearly not the case.
The additional inclusion check was pure overhead. The results of the EHC show
that pruning states from theWAIT -list can improve the efficiency. The number of
iterations, explored states and the cpu-time decreases in all cases, the number of
comparisons decreases in most cases.

λ iterations # comp.WAIT # comp.PAST explored states cpu-time
BF 1312 84 935 537 298 1114 620.91

0.1 1348 90 550 522 571 1144 624.53
0.01 1289 62 697 403 652 1071 500.28

Hmean 0.001 1330 37 113 416 639 1057 484.14
0 1556 29 487 539 178 1168 569.02

0.1 1374 84 857 476 196 1142 563.34
0.01 1402 40 324 466 113 1122 511.85

Hmax 0.001 1422 26 982 466 787 1080 495.96
0 1544 30 089 525 482 1159 549.35

0.1 1384 97 833 51 4464 1176 607.08
0.01 1322 56 919 413 006 1089 483.41

HΣ 0.001 1382 25 093 450 867 1060 479.73
0 1539 29 904 527 898 1156 552.73

Heuristic search orders reduce the cpu-time with up to 20 %. This does not
justify running the algorithm several times to find an optimal heuristic. We apply
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the best heuristics of the previous paragraph,HΣ with λ = 0.01 andλ = 0.001,
to other instances of the EHC, to see whether the results that were obtained in
previous paragraph extend to other instances.
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1 1 1 226 252 244 182 204 196 30.3 31.7 30.8
1 0.5 1 593 612 579 520 544 515 146.7 138.4 124.7
2 1 2 8588 7816 9866 6727 6585 7846 10818.3 9949.0 10049.6
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1 1 2 1588 1179 1295 1157 913 949 380.3 300.4 294.9
1 0.5 2 5508 3596 3908 4106 3049 3336 3159.2 2416.4 2434.9

If we compare the results of the heuristic search orders, with the results of breadth-
first, we see as well an increase as a decrease in the number of iterations and ex-
plored states. Still, in most cases we see a decrease of the cpu-time with up to 25%,
except for two cases with a slight increase up to about 5%.

The inclusion check on theWAIT -list can effectively reduce the number of com-
parisons, and thus the cpu-time. Nevertheless, the LEGOcar example demonstrated
that the overhead of this inclusion check does not need to pay off. Re-ordering the
PAST-list in contrast is the only modification that showed a positive effect for that
case study. Since this modification is only based on a notion of superset, it can be
incorporated in any type of forward reachability algorithm.

Heuristic search orders have in many cases a positive effect, too. But also
in this case the LEGO car showed to be resistant to efforts to improve the search
order. The results for the EHC show that ordering theWAIT -list with respect to
the size can improve the results. But, this ordering can also lead to starvation. We
suggested a simple modification, which takes also into account the waiting time of
a symbolic state. It turns out that heuristics, based on weighted sum of the size and
the waiting time of a state, can outperform search orders that are based on the size
of a state only or, like breadth-first, on the waiting time only.

6.7 Conclusion

The computational results show that it clearly matters in which order the states are
searched, even if we explore the full state-space. But if we want to explore the full
state-space, we would prefer an heuristic that is applicable in many cases, rather
than a heuristic that is tailored to the problem. This in contrast to the case, when
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we want to find an (error) trace to a particular state. A heuristic that takes the size
of a symbolic state and the waiting time into account seems to be a good candidate
for an improved state-space exploration, even if the LEGO car example turned out
to be stubborn.

We consider only two case studies, which is certainly not sufficient to draw
conclusions that are applicable to all cases. They indicate however that search
orders other than breadth-first can improve the performance. Other criteria than
size of a zone may turn out to be useful as well. The results show however that
other modifications can reduce the influence of heuristic search orders.

Search orders that depend on the size of the zone of a symbolic state are not
restricted to a certain representation of zones. Other representations that use for ex-
ample orthogonal polyhedra, ellipsoids, projections or others allow search orders
that are based on the size of the zones, too. This extends to model checkers for lin-
ear hybrid automata like HyTech [HHWT95], rectangular automata [PKHWT98]
or timed automata like KRONOS [Yov97] or UPPAAL [LPY97].

The verification results show that the proposed approximation technique gives
tighter bound on the reachable states than those obtained in [SMF97] and [BM99].
It allows us to consider hybrid systems with continuous behavior, that is defined
by a linear system with bounded and uncertain input. It uses the full dynamics
of the continuous behavior, but needs restrictions on the discrete dynamics. The
most restrictive assumption is that the system has to be clocked, which excludes
autonomous switching of the dynamics by, for example, collisions. However, many
real-life problems within a controller-environment setting have this property, as
illustrated by the LEGO car example.

The main disadvantage of the model checking approach is illustrated by the
computational results of EHC. By introducing one extra mode, the algorithm has
to explore up to 10 times more states. This problem can be solved partially, if one
solves the problem of how to take the (non-convex) union of symbolic states. A
promising approach based on orthogonal polyhedra was put forward in [Dan99].
The verification results for the EHC show also the advantage of the model checking
approach. When analyzing the behavior of a system by hand instead, a supposedly
true assumption is made easily, as shown by the example trace in Table6.13.

The LEGO car example itself is, to our opinion, a nice contribution of this
work. In spite of the fact that it is a rather small system, with only four locations
and less than 50 symbolic states, it shows interesting non-trivial hybrid behavior.
This example can be scaled up easily, for example by considering its behavior in
bends, if it is going downhill and starts slipping, or if the two caterpillars do not
have the same speed. It shows that hybrid automata are suitable to analyze real life
problems even if it is in this case literally a toy example.
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Conclusions

This is the last chapter of this thesis, and despite of each of the foregoing chapters
having its own conclusion, this chapter briefly summarizes what has been achieved,
gives some general comments on conducting experiments, and sketches directions
for future research.

7.1 On this Thesis

This thesis shows in Chapter2 how to model planning and scheduling problems as
network of timed automata. The Sidmar steel plant model with up to 28 processes
and 26 clocks was one of the largest timed automata networks, at that time. To get
the required answers for this model we had to modify both the timed automaton
framework and the model checking algorithm.

The problems is not to verify whether a state is reachable, but to compute the
optimal trace to a goal state. Chapter3 proposesLinearly Priced Timed Automata
to capture cost that are attached to delays and transitions. The basic notion of a
Priced Regionthen allows to obtain an algorithm that computes the optimal solu-
tion. We show that this algorithm terminates for any LPTA. This algorithm however
is guaranteed to be fairly inefficient, since it is based on an extension of regions.

The extension of zones, which are used by current model checking algorithm to
represent sets of states, to priced zones leads to more efficiency. Chapter4 presents
for the sub-class ofUniformly Priced Timed Automata, which allows modeling of
minimal time scheduling problems, an algorithm that is essentially as efficient as
the model checking algorithm for timed automata, with the difference that it yields
the optimal trace to the goal state and not just the first trace that it encounters.

Chapter5 introduces priced zones for the full class of Linearly Priced Timed
Automata. The necessary operations on zones require the use of linear program-
ming in the implementation. Results with a prototype indicate a decrease of ef-
ficiency when it comes to minimal time problems, but experiments show clearly
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that this approach can compete with other approaches when it comes to scheduling
problems that lie outside the restricted class of minimal time problems.

Linearly Priced Timed Automata allow to assign costs to delays and transi-
tions. Data structures based on priced zones then allow to represent sets of states
efficiently. But the problem remains that the timed automaton models, and thus
the state spaces, tend to be large. Guiding the state-space exploration proved to be
an effective remedy to this problem. Chapter4 presents a modified algorithm that
allows to define heuristics search orders.

Chapter6 is based on earlier work on how to over-approximate the reachable
states of hybrid systems. It shows for two case studies from a restricted class
of hybrid systems that approximation with polyhedra can lead to tight bounds on
the set of reachable states. As a complement to the experiments in the foregoing
chapters, it investigates how heuristic search orders can improve the efficiency of
the exploration of a complete state-space.

7.2 On Experiments

The work that is presented in this thesis led to prototype implementations that
have been applied to a number of case studies and examples. When it comes to
comparison with other approaches one faces the problem that case studies from
literature do in many cases not provide sufficient information to redo the modeling.
Even if there is such information, different models of the same problem tend to
differ in details, which may and often does influence the results significantly. For
example, the model of the Sidmar steel plant in [Feh99] and the model in Chapter
2 differ in many aspects, mainly because ambiguities in the informal description
have been clarified in the meanwhile.

Benchmarks can serve to circumvent the problems of ambiguous informal prob-
lem descriptions. A prerequisite for a good benchmark is a precise, ideally formal,
description of the problem. The instances of the job shop problem and the aircraft
landing problems (Chapter4) are typical benchmarks; each instance can be effec-
tively represented as a single matrix. The Electronic Height Control serves also as
a benchmark, given the formal definition in [SMF97]. But not any formal model
constitutes a good benchmark; it should be free from details that derive from a par-
ticular approach or tool. The UPPAAL models of job shop problems as presented
in Section4.5.3, for example, use urgent channels, a concept that is not present in
other timed automaton model checkers. Even though the models are precise and
formal, they are not suitable for comparison of different tools. This is in contrast
with generic job shop problems, which can be modeled in any timed automaton
framework.



7.2 On Experiments 139

If we want to compare the efficiency of an approach, benchmarks are often not
sufficient. The are numerous results for the job shop problem, but most of them
are unfortunately outdated. The performance of a modern computers exceeds the
performance of those that were used to obtain the results in the literature by several
orders of magnitude. Experiments with different approaches on the same computer
are in practice frustrated by the fact, that the executable or source codes are only in
a few cases available.

The LINPACK benchmark [Don01] provides a way to compare the perfor-
mance of different computers, but when running the benchmark on modern PCs,
one has to face the problem that the execution time of the benchmark might be
smaller than the granularity of the timer. Only a modification of the function that
is used to time the cpu time allowed us to benchmark the Pentium II 330MHz that
is used in Chapter5. These results have been in included in recent versions of
[Don01].

Even if we have a precise problem description and the computers are compa-
rable, it remains that little differences between models, even when they have no
semantical implications, may lead to a different outcomes. Changing the posi-
tion of two automata in the system description for example, may turn a tractable
problem into a intractable one. In contrast with other experimental sciences, we
cannot lean on the principle of strong causality, namely that small causes should
have small consequences. Rerunning the same experiment several times does not
help, since this kind of coincidence is reproducible. Guiding the state-space explo-
ration helps to soften this problem for the model checking experiments that were
conducted for this thesis, since it restricts the possible evaluation orders.

Experiments in this thesis, and in Computer Science in general, can be used for
three different purposes. First, there are experiments that should prove the concept.
The problem to be solved serves often only to illustrate a new methodology. These
experiments give the experimenter the freedom to include interesting aspects into
the problem. The bridge problem in this thesis is a typical example, since it is used
to illustrates several extensions of the model checking algorithm.

Secondly, this thesis contains a number of experiments related to case studies.
These serve to show the applicability of an approach in practice. These experi-
ments might solve the proposed problem, but they also help the researcher to learn
about the needs of the field, and vice versa, the field learns about what method-
ologies are available and applicable. Finally, we have experiments on benchmarks
that allow to compare different approaches. Libraries of benchmarks are extremely
useful for this kind of research, and fortunately there are some good libraries with
optimization benchmarks available online. It would certainly ease doing experi-
mental research in formal methods, if similar libraries with verification problems
would be available, too.
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7.3 On Future Research

An obvious first direction of future research is to work on stable implementations
of the prototypes that have been developed for LPTAs and UPTAs. The syntax that
is accepted by the current prototypes is very restricted, such that modeling costs
and heuristics can become cumbersome. It allows on the other hand to violate
basic sanity properties, like that the sum of the cost and the remaining cost should
not decrease. Future work on these issue is necessary to come to an implementation
that can be distributed, either as integrated part of UPPAAL or as a separate cost-
optimizing version.

We identified the class of job shop problems as a larger class that fits in this
framework of LPTA. The same holds for similar problems with as objective to
minimize the tardiness or earliness, like the aircraft landing problem. But for most
other scheduling or planning problems, the only way to show that they can be
modeled as LPTA, is actually to model them as LPTA. Future research should focus
on identifying bigger classes of scheduling problems that are covered by LPTA; if
possible it should aim at giving sufficient and necessary conditions for a problem
to be in the class of problems that can be modeled by a LPTA.

Heuristics search orders have proven to be a suitable way to reduce the searched
state-space. In this thesis most heuristic orders are tailored to a specific problem.
It would be valuable to identify heuristics that can be applied to several problems.
This thesis presents some first results on minimal-cost heuristics in Chapter4, and
on heuristics that depend on the size of a zone in Chapter6. Partial order reduc-
tion of untimed systems has proven to be a powerful mechanism to reduce the
state-space, but the results, unfortunately, do not extend easily to timed and hybrid
systems. A promising direction of future research would be to investigate whether
a kind of ”light-weight” partial order reduction can be obtained by heuristic search
orders.

Model checking technology has proven over the last decades to be suitable for
verification of hard- and software systems. In this thesis we have shown that this
technology can be successfully applied in the domain of scheduling and planning.
As a next step future research should focus on extending the application domain of
model checking techniques further; a direction that has recently been suggested is
to use model checking for the generation of test cases.
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Samenvatting

Et is betteröm met ’n laaien te werken,
Äs met ’n dummen.

Nedersaksische gezegde

Om een gevaarte met ruim 290 ton vloeibaar ruw ijzer van de hoogovens naar
de gieterij te vervoeren is op zich al een hele taak. Temeer als nietéén maar
meerdere charges tegelijk verwerkt moeten worden, welke op weg naar de gieterij
een aantal behandelingen moeten ondergaan die van charge tot charge en afhanke-
lijk van de beoogde kwaliteit staal kunnen verschillen. Het wordt er niet makkelijk-
er op als de machines die het ijzer behandelen hooguitéén charge tegelijk kunnen
verwerken, en als de twee kranen die men voor elk transport moet gebruiken het-
zelfde spoor moeten delen; de ene kraan kan de andere de weg versperren, charges
kunnen elkaar hinderen. En bovendien mag het ruwe ijzer eer het bij de gieterij
arriveert niet te ver afkoelen, en moet de toevoer zodanig zijn, dat de gieterij een
continue stroom staal naar de warmwalserij kan garanderen.

Dit planningsprobleem was een van de zes casestudy’s van the EU onderzoek-
sprojectVerificatie van Hybride Systemen. Naast de groep Informatica voor Tech-
nische Toepassingen van de Katholieke Universiteit Nijmegen namen een tiental
onderzoeksinstellingen en bedrijven uit Nederland, België, Duitsland, Frankrijk,
Zwitserland, Denemarken, Zweden en Israël deel aan dit project, dat het onder-
zoek op het gebied van Formele Methodes moest stimuleren. De bedoeling was
om inzicht te krijgen hoe met name verificatietechnieken voor hybride systemen
kunnen bijdragen aan de oplossing van enkele uitdagende problemen. Het boven
beschreven probleem werd voorgesteld door Sidmar, een vlakstaal-producent te
Gent, Belgïe.

Een systeem ishybrideals het gedrag van het systeem essentieel bepaald wordt
door de interactie van discrete componenten zoals microcontrollers met continue
processen waarin fysische grootheden en tijd een rol spelen. MetFormele Metho-
denworden in de informatica methoden en technieken bedoeld om de correctheid
van een systeemontwerp mathematisch aan te tonen. Men gebruikt op wiskunde
gebaseerde talen om een hard- of softwaresysteem te beschrijven, die ons dan in
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staat stellen om te bewijzen of een ontwerp aan gewenste eigenschappen voldoet.
Dit proces wordtverificatiegenoemd. Typerend is te laten zien dat een systeem
nooit in een onveilige toestand kan verkeren, waarbij onveilig bijvoorbeeld op een
rekenfout, op fout ontvangen informatie of op het overschrijden van de maximaal
toelaatbare fysische grootheid kan slaan. Een voorbeeld waarbij een afrondfout tot
een verkeerd gemeten snelheid, en uiteindelijk tot een explosie heeft geleid is het
mislukken van de eerste vlucht van de Ariane 5 raket.

Het met de hand bewijzen van de correctheid van een ontwerp kan zelfs voor
een klein model een nogal tijdrovende en vooral foutgevoelige bezigheid zijn.
Model checkingis een van de meest gebruikte computerondersteunde technieken
voor verificatie; men begint bij de beginsituatie van het systeem, en loopt dan au-
tomatisch alle mogelijke paden die het systeem kan nemen af. Zodoende wordt
bijvoorbeeld geverifieerd dat het systeem nooit in een onveilige toestand kan be-
landen. Als traditionele algoritmen voor model checking een onveilige toestand
en dus een fout vinden, kunnen deze ook informatie verstrekken hoe deze fout
bereikt kan worden. Deze informatie is belangrijk om na te trekken waar de fout
in het ontwerp zit. Voor bepaalde klassen modellen is gegarandeerd dat het model-
checkingalgoritme altijd stopt. Men zegt dan dat het model-checkingprobleem
voor deze klassebeslisbaaris.

Met eenautomaatwordt een formeel model bedoeld dat het gedrag van een
hard- en softwaresysteem beschrijft als overgangen vanéén toestand naar de an-
dere. Getimede automaten zijn een variant die toestaat om het continue verstrijken
van de tijd te modelleren. Ondanks dat continue tijd tot een oneindig en zelf over-
aftelbaar aantal toestanden leidt, is het model-checkingprobleem voor getimede au-
tomaten beslisbaar als men met verzamelingen toestanden werkt. Model-checking-
tools voor getimede automaten, zoals UPPAAL en KRONOS, hebben in de afgelopen
jaren aangetoond dat zij een belangrijke bijdrage kunnen leveren aan het correcte
ontwerp van soft- en hardwaresystemen.

Om terug te keren tot de staalfabriek van Sidmar. Hier gaat het er niet om om
een fout in het ontwerp te vinden, maar om een oplossing voor een planningsprob-
leem te bepalen. We zijn niet geı̈nteresseerd om uit te sluiten dat ooit een onveilige
toestand bereikt kan worden, maar we willen aantonen dat een gewenste toestand
bereikbaar is, namelijk een toestand waarin alle charges in de gewenste volgorde
en op tijd bij de gieterij gearriveerd zijn. Het is mogelijk het planningsprobleem
als getimede automaat te modelleren en om een model-checkingalgoritme naar een
gewenste toestand te laten zoeken. Het “tegenvoorbeeld” dat aantoont hoe deze
toestand te bereiken is, kan vervolgens als oplossing van het planningsprobleem
worden beschouwd.

Er zijn echter ook verschillen tussen traditionele algoritmes die optimisatie-
problemen oplossen en het model-checkingalgoritme. Ten eerste maakt het model-
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checkingalgoritme geen verschil tussen goede en slechte oplossingen. De kosten
die aan een oplossing worden verbonden kunnen bijvoorbeeld afhangen van de
totale tijd die nodig is om het bijbehorende rooster uit te voeren. Model check-
ing wordt gebruikt om fouten te vinden, en zal stoppen zodra het de eerste fout
tegenkomt. Als we hetzelfde algoritme gebruiken om planningsproblemen op te
lossen, zal het stoppen zodra het een oplossing vindt, ongeacht de kosten die eraan
verbonden zijn. Er is geen garantie dat dit de optimale of zelfs maar een goede
oplossing is.

Een ander verschil is dat men bij het model checken de optimistische aanname
maakt, dat men geen ongewenste toestand tegen zal komen, en dat men dus alle
toestanden moet gaan doorzoeken. Het algoritme is derhalve zo opgezet dat het
de gehele toestandsruimte efficiënt exploreert. Als we een optimisatieprobleem
oplossen is daarentegen bekend dat de toestandsruimte een gewenste toestand be-
vat. Vaak heeft men enig idee waar een (goede) oplossing te vinden valt, en als het
mogelijk zou zijn om gericht naar een oplossing te zoeken, zou dit de tijd die het
algoritme nodig heeft drastisch kunnen verkorten.

Dit proefschrift onderzoekt hoe het model-checkingalgoritme voor getimede
automaten uitgebreid kan worden, opdat het geschikt kan worden gemaakt voor
het oplossen van planningsproblemen. Het proefschrift laat eerst zien hoe plan-
ningsproblemen als getimede automaat gemodelleerd kunnen worden. Vervol-
gens wordt een notie van kosten geı̈ntroduceerd. We introduceren een gemodi-
ficeerd model-checkingalgoritme, en tonen aan dat dit desondanks gegarandeerd
ooit zal stoppen, en dat het, mits een oplossing bestaat, de optimale oplossing
vindt. Verder wordt aandacht besteed aan efficiënte datastructuren, en aan hoe
het algoritme aangepast kan worden, zodat gericht zoeken naar goede oplossin-
gen mogelijk wordt. Deze aanpassingen kunnen echter ook een positief effect
hebben op model checking ter verificatie. Het proefschrift introduceert een model-
checkingalgoritme voor een algemenere klasse hybride systemen, en onderzoekt of
gericht zoeken ook voor deze klasse een positieve invloed op de performance kan
hebben.

Dit proefschrift is als volgt opgebouwd. Na de inleiding in Hoofdstuk1 wordt
in Hoofdstuk2 uitvoerig ingegaan op het getimede automaten model voor de Sid-
mar casestudy, en hoe met het tool UPPAAL een oplossing gevonden kan wor-
den. Verder beschrijft het hoofdstuk hoe Job-Shop problemen – een algemene
klasse planningsproblemen – vertaald kunnen worden naar getimede-automaten-
modellen. In Hoofdstuk3 worden linear geprijsde getimede automaten (LPTA)
gëıntroduceerd, een uitbreiding van getimede automaten waarbij de kosten stuks-
gewijs lineair kunnen stijgen met het verstrijken van tijd. Dit hoofdstuk presenteert
een algoritme dat gegarandeerd het optimale pad naar een gegeven eindtoestand
vindt, en het wordt aangetoond dat dit algoritme voor alle LPTA-modellen en elk
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willekeurige eindtoestand termineert.
Het algoritme dat in Hoofdstuk3 wordt gëıntroduceerd is niet bijzonder ef-

ficient. Hoofdstuk4 beperkt zich daarom tot de klasse van de uniform geprijsde
getimede automaten (UPTA). De kosten in een UPTA stijgen uniform met verstri-
jken van tijd. Deze klasse bevat ondermeer problemen waar de totale tijd die de
uitvoering van een rooster nodig heeft geminimaliseerd moet worden. Het hoofd-
stuk presenteert een algoritme dat in feite even efficient is als het oorspronkelijke
model-checkingalgoritme voor getimede automaten. Verder presenteert het hoofd-
stuk aanpassingen van het algoritme die het toestaan om de volgorde waarin toes-
tanden gëexploreerd worden te beı̈nvloeden.

Het volgende hoofdstuk5 introduceert een efficiënte datastructuur voor de
gehele klasse van LPTAs. Enkele voorbeelden tonen aan dat de datastructuren en
het toestaan van gericht zoeken tot een competitief algoritme leiden. Naast voor-
beelden ter illustratie worden resultaten voor andere casestudy’s en benchmarks uit
de literatuur gepresenteerd. Het blijkt dat gericht zoeken ook een positieve invloed
kan hebben op model checken als verificatietechniek, dus ook in gevallen waar het
er slechts om gaat om een fout te vinden.

Hoofdstuk6 staat in zekere zin los van de eerdere hoofdstukken omdat het een
algemenere klasse van hybride systemen beschouwt. Dit zijn systemen waar niet
alleen tijd maar ook de evolutie van continue grootheden zoals temperatuur, snel-
heid of positie een essentiële rol spelen. In tegenstelling tot getimede automaten
is het model-checkingprobleem voor deze klasse in het algemeen niet beslisbaar.
Maar zelf als terminatie van het algoritme niet gegarandeerd is kan model check-
ing een belangrijke rol bij de analyse van hydride systemen spelen. Hoofdstuk
6 beschrijft hoe men de bereikbare toestanden van een beperkte klasse systemen
door veelhoeken kan overapproximeren. De overapproximatie kan dan worden ge-
bruikt in een model-checkingalgoritme, welk op twee casestudy’s toegepast wordt.
Omdat in eerdere hoofdstukken bleek dat gericht zoeken een positief effect op het
model checken van getimede automaten kan hebben, wordt in de tweede helft van
dit hoofdstuk onderzocht of dit ook voor deze klasse het geval is. De resultaten
blijken positief te zijn, maar zijn helaas verre van eenduidig.

In het laatste hoofdstuk met de conclusies wordt een kort overzicht gegeven
van hetgeen dat bereikt is. Verder wordt uitvoerig stilgestaan bij de problemen die
experimenteel onderzoek op het gebied van formele methoden met zich mede kan
brengen. Dit hoofdstuk eindigt met een beschouwing van verder onderzoek dat uit
dit proefschrift voort kan vloeien of aan dit proefschrift gerelateerd is.
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Stellingen

behorende bij het proefschrift

Citius,Vilius, Melius.

van

Ansgar Fehnker

Stelling 1 The cost-optimal reachability problem for linearly priced timed automata is decidable.
(Theorem3.21)

Stelling 2 The computing the cheapest path to a given location for uniformly priced timed automata
is essentially as efficient as model checking of timed automata. It is justifiable to consider a UPTA
as a timed automaton with a special clock.(Section4.3)

Stelling 3 Results on the shortest path in a discrete graph do not need to extend to transition graphs
of timed automata.(Subsection4.4.1)

Stelling 4 The search order of a symbolic model checker has an influence on the number of explored
symbolic states.(Chapter4 to 6)

Stelling 5 A hybrid system might not get farthest with a constant extreme input(Table6.13). The
same holds for driving (car, bike, roller blades).

Stelling 6 Being a native speaker does not mean that you know your native language.

Stelling 7 Evolutie bekommert zich niet om keuzes van het individu.

Stelling 8 Elke forensende promovendus heeft tenminsteéén stelling over het openbaar vervoer.

Stelling 9 Een constitutionele monarchie is slechts in theorie een republiek met een erfelijk staat-
shoofd.

Stelling 10 The Dutch language has at least 20 different expressions for “drinking coffee”.
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