
18th International Workshop on
Termination

WST 2022, August 11–12, 2022, affiliated with IJCAR-11 at FLoC 2022
https://sws.cs.ru.nl/WST2022

Edited by

Cynthia Kop

WST 2022 Proceedings

https://sws.cs.ru.nl/WST2022

Preface

This report contains the proceedings of the 18th International Workshop on Termination
(WST 2022), which was held in Haifa during August 11–12 as part of the Federated Logic
Conferences (FLoC) 2022.

The Workshop on Termination traditionally brings together, in an informal setting, re-
searchers interested in all aspects of termination, whether this interest be practical or the-
oretical, primary or derived. The workshop also provides a ground for cross-fertilization
of ideas from the different communities interested in termination (e.g., working on com-
putational mechanisms, programming languages, software engineering, constraint solving,
etc.). The friendly atmosphere enables fruitful exchanges leading to joint research and
subsequent publications. The 18th International Workshop on Termination continues the
successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl
(1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig
(2009), Edinburgh (2010), Obergurgl (2012), Bertinoro (2013), Vienna (2014), Obergurgl
(2016), and Oxford (2018), and the virtual event in 2021.

The WST 2022 program included an invited talk by René Thiemann on Efficient Formal-
ization of Simplification Orders. WST 2022 received 7 regular submissions and 10 abstracts
for tool presentations, 3 of which were accompanied by a system description. After light
reviewing the program committee decided to accept all submissions. The 10 contributions
are contained in these proceedings.

I would like to thank the program committee members for their dedication and effort,
and the workshop chairs of FLoC 2022 for the invaluable help in the organization.

Nijmegen, July 2022 Cynthia Kop

i

ii

Organization

Program Committee

José Divason Universidad de La Rioja
Florian Frohn AbsInt GmbH
Jera Hensel RWTH Aachen
Dieter Hofbauer ASW Saarland
Sebastiaan Joosten Darthmouth College
Cynthia Kop (chair) Radboud University Nijmegen
Akihisa Yamada AIST, Japan
Hans Zantema Eindhoven, University of Technology

iii

iv

Contents

Preface . i

Organization . iii

Invited Talks

Efficient Formalization of Simplification Orders
René Thiemann and Akihisa Yamada . 1

Regular Papers

Tuple Interpretations and Applications to Higher-Order Runtime Complexity
Cynthia Kop and Deivid Vale . 6

A transitive HORPO for curried systems
Liye Guo and Cynthia Kop . 11

Approximating Relative Match-Bounds
Alfons Geser, Dieter Hofbauer and Johannes Waldmann 16

Hydra Battles and AC Termination
Nao Hirokawa and Aart Middeldorp . 21

A Calculus for Modular Non-Termination Proofs by Loop Acceleration
Florian Frohn and Carsten Fuhs . 26

Deciding Termination of Uniform Loops with Polynomial Parameterized Complexity
Marcel Hark, Florian Frohn and Jürgen Giesl . 31

Improved Automatic Complexity Analysis of Integer Programs
Jürgen Giesl, Nils Lommen, Marcel Hark and Fabian Meyer 36

System Descriptions

Automatic Complexity Analysis of (Probabilistic) Integer Programs via KoAT
Nils Lommen, Fabian Meyer, Marcel Hark and Jürgen Giesl 41

CeTA – A certifier for termCOMP 2022
Christina Kohl and René Thiemann . 43

Certified Matchbox
Johannes Waldmann . 45

v

vi

Efficient Formalization of Simplification Orders
René Thiemann
University of Innsbruck, Austria

Akihisa Yamada
National Institute of Advanced Industrial Science and Technology, Japan

Abstract
The weighted path order (WPO) can simulate several simplification orders that are known in term
rewriting. By integrating multiset comparisons into WPO, we show that also the recursive path
ordering is covered. Moreover, we investigate how refinements of the classical simplification orders
can efficiently be integrated: we formally prove the refinements within WPO once and then get them
for free for the other simplification orders by the simulation property. Here, the most challenging
part was to show that a refined version of the Knuth–Bendix order can actually be simulated by
WPO. All of our proofs have been formalized in Isabelle/HOL.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Equational logic and rewriting

Keywords and phrases formalization, Isabelle/HOL, simplification order, termination analysis

Category invited paper

1 Introduction

Automatically proving termination of term rewrite systems has been an active field of research
for half a century. A number of simplification orders [2, 3] are classic methods for proving
termination, and these are still integrated in several current termination tools. Classical
simplification orders are Knuth–Bendix orders (KBO) and lexicographic and recursive path
orders (LPO and RPO). The weighted path order (WPO) [6] was introduced as a simplification
order that unifies and extends classical ones.

When switching from theory to implementations in termination tools, limitations of the
applied simplification orders become visible while studying non-successful termination proofs.
Therefore several refinements of the original definitions of the orders have been developed to
make them more applicable and hence more powerful. At this point the question of soundness
arises, in particular whether the main properties of a simplification order are still maintained
after the integration of the refinements.

To solve this problem we propose to use formal verification, i.e., one should define the
orders within a proof assistant such as Coq or Isabelle and then perform the proofs within that
system. The advantage is that then re-checking of proofs is quite simple, and in particular a
change of a definition (e.g., triggered by some refinement) will immediately point to those
parts of the proof which need an adjustment.

The price of using formal verification is its overhead in comparison to a pure proof on
paper. In this work we present our approach to perform verification efficiently, namely by
exploiting the property that WPO subsumes several simplification orders:

Instead of formally verifying that KBO, LPO, RPO and WPO are simplification orders,
we just prove this fact for WPO and we formally verify that KBO, LPO and RPO are
instances of WPO. To this end, we slightly refine WPO itself by permitting multiset
comparisons.

WST 2022 1

https://sws.cs.ru.nl/WST2022

2 Efficient Formalization of Simplification Orders

We further show that several refinements of simplification orders are sound for WPO,
and hence only have to integrate these refinements into one order, and automatically get
the refinements for the other orders, too.

We perform our formalization using Isabelle/HOL, based on IsaFoR, the Isabelle Formali-
zation of Rewriting [5]. As a result of this work we were able to completely remove the
formal proofs within IsaFoR that RPO is a simplification order (which entails that LPO is a
simplification) order, and we could also remove several formal proofs regarding KBO.

2 Preliminaries

We assume familiarity with term rewriting [1], but briefly recall notions that are used in the
following. A term built from signature F and set V of variables is either x ∈ V or of form
f(t1, . . . , tn), where f ∈ F is n-ary and t1, . . . , tn are terms. A context C is a term with one
hole, and C[t] is the term where the hole is replaced by t. The subterm relation ⊵ is defined
by C[t]⊵ t. A substitution is a function σ from variables to terms, and we write tσ for the
instance of term t in which every variable x is replaced by σ(x).

A reduction pair is a pair (≻,≿) of two relations on terms that satisfies the following
requirements: ≻ is well-founded, ≿ and ≻ are compatible (i.e., ≿ ◦ ≻ ◦ ≿ ⊆ ≻), both are
closed under substitutions, and ≿ is closed under contexts. If additionally ≻ is transitive,
closed under contexts, and contains the strict subterm relation ▷, then ≻ is a simplification
order. The trivial reduction pair is the one where ≻ = ∅ and ≿ relates all terms.

A quasi-precedence is a preorder ⩾ on F , such that > := ⩾ \ ⩽ is well-founded. A
precedence is a quasi-precedence where ⩾ is the reflexive closure of >.

We use the following notation for common extensions of a pair of relations over terms to
pairs of relations over lists of terms.

≻mul and ≿mul are the strict- and non-strict order of the multiset extension of (≻,≿),
where the lists are interpreted as multisets;
There are two variants of the lexicographic extension: the unbounded lexicographic
extension is defined as [s1, . . . , si, . . .] ≻lex [t1, . . . , ti, . . .] iff si ≻ ti and sj ≿ tj for all j < i.
The bounded lexicographic extension is parametrized by some b ∈ N, the bound, and it is
defined as [s1, . . . , sn] ≻lex,b [t1, . . . , tm] iff [s1, . . . , sn] ≻lex [t1, . . . , tm]∧ (n = m∨m ≤ b).
There are similar definitions for ≿lex and ≿lex,b. We sometimes write ≻lex and ≿lex also
for the bounded lexicographic extension if the bound is clear from the context.

3 Structure of Simplification Orders

In this section we first define some quite generic relation (a simplified version of WPO) that
is a template of several simplification orders, and we will then see how KBO, LPO, RPO and
WPO fit into this framework. Moreover, we will also discuss refinements and their soundness.

Let ⩾ be some quasi-precedence. Let b ∈ N be some bound which will be used as parameter
for bounded lexicographic comparisons in the upcoming definition. Let τ : F → {lex, mul}
be a status. Let minimal be some property of constants, such that whenever c is minimal
then f ⩾ c for all f ∈ F . Let (≻,≿) be some reduction pair such that ≻ is transitive, ≿ is a
preorder, and C[t] ≿ t for all terms t. We define a strict and a non-strict relation on terms
(≻RoT and ≿RoT) as follows: s ≻RoT t iff

1. s ≻ t, or
2. s ≿ t and

WST 2022 2

https://sws.cs.ru.nl/WST2022

R. Thiemann and A. Yamada 3

a. s = f(s1, . . . , sn) and ∃i ∈ {1, . . . , n}. si ≿RoT t, or
b. s = f(s1, . . . , sn), t = g(t1, . . . , tm) and

i. ∀j ∈ {1, . . . , m}. s ≻RoT tj and
ii. A. f ≻ g or

B. f ≿ g and τ(f) = τ(g) and [s1, . . . , sn] ≻τ(f)
RoT [t1, . . . , tm].

The relation s ≿RoT t is defined in the same way, where ≻τ(f)
RoT in case 2.b.ii.B is replaced by

≿τ(f)
RoT , and there are two additional subcases in case 2:

c. s = x = t for some x ∈ V, or
d. s = x ∈ V and t = c for some constant c which is minimal.

Using this generic relation on terms we can now define common instances:

Classical LPO is obtained by

using the trivial reduction pair, so that 1 never applies and the condition in line 2 is
always satisfied;
requiring a precedence so that 2.b.ii.B is only applicable if f = g, i.e., only lists of the
same length are compared;
no constant is minimal, so case 2.d is just dropped;
τ(f) = lex for all f ∈ F .

Classical RPO is like LPO without the requirement on τ .
Classical KBO is similar to the setup of LPO, but

instead of the trivial reduction pair one defines (≻,≿) with the help of weight functions
and the multisets of variables of terms;
the structure of KBO and of (≻RoT,≿RoT) is slightly different since in KBO, condi-
tion 2.b.i is not present and case 2.a is also dropped; moreover in KBO there is one
additional case, namely whenever s /∈ V, x ∈ V and s ≿ x, then both s ≻KBO x and
s ≿KBO x.

▶ Remark. The relation ≻RoT defined above looks like a simplified form of WPO, e.g., the
status function π of WPO (for selecting arguments of each individual function symbol) has
been omitted. However, the original WPO does not completely subsume ≻RoT, since the
status function τ of ≻RoT is not included in WPO and one would always compare lists of
terms lexicographically in WPO.

Let us now regard two refinements of the classical simplification orders. The first
refinement are quasi-precedences. When using quasi-precedences it becomes important to
use the bounded version of the lexicographic extension, since otherwise one would be able
to construct an infinite sequence f0(1) ≻RoT f1(0, 1) ≻RoT f2(0, 0, 1) ≻RoT . . . by using a
quasi-precendence where fi ⩾ fj for all i, j and fi > 1 > 0 for all i. The second refinement
are comparisons of the form x ≿ c in case 2.d. For LPO one requires that c is least in
precedence among all symbols, in the same way as in ≻RoT. By contrast, for KBO f ⩾ c is
only required for those f which are constants and have weight w0.

Note that activating both requirements – quasi-precedences and x ≿ c comparisons – is
sound for LPO, requires a special definition of lexicographic extensions for KBO, and is
unsound for RPO.

WST 2022 3

https://sws.cs.ru.nl/WST2022

4 Efficient Formalization of Simplification Orders

▶ Example 1. Consider RPO with both refinements, i.e., (≻,≿) is the trivial reduction pair.
Let ⩾ = F ×F be the trivial precedence where all symbols are equivalent. Let τ(c) = lex and
τ(d) = mul for two constants c, d ∈ F . Then using case 2.d we have x ≿RPO c, but d ≿RPO c

does not hold. Hence, closure under substitutions is violated.

▶ Example 2. Consider a KBO with precedence where all symbols are equivalent, a unary
function symbol f with weight 0, and arbitrary symbols gi with arity i > 1. Then f(x) ≻KBO x;
however, for f(gi(t1, . . . , ti)) ≻KBO gi(t1, . . . , ti) (closure under substitutions), only case
2.b.ii.B is applicable, i.e., one needs lexicographic comparisons [gi(t1, . . . , ti)] ≻lex

KBO [t1, . . . , ti]
with lists of arbitrary lengths, i.e., unbounded lexicographic comparisons, which usually
destroy well-foundedness in combination with unbounded arities.

The problem of Example 1 is easily fixed by just adding one more alternative to 2.b.ii:

2. b. ii. C. f ≿ g and τ(f) ̸= τ(g) and m = 0 (and n > 0 for s ≻RoT t)

That (≻RoT,≿RoT) really forms a reduction pair with this fix has been formally proven.
Actually, we have formalized an extended version of ≻RoT that also includes the other features
of WPO, i.e., a status function π : F → N∗ and Refinements (2c) and (2d) of WPO [6,
Section 4.2], and it is available in the archive of formal proofs [4]. It is the same definition
as if one would take the WPO definition of [6], add multiset comparisons via a status
τ : F → {lex, mul}, and add case 2.b.ii.C for symbols with different status.

▶ Theorem 3. (≻RoT,≿RoT) is a reduction pair and ≻RoT is a simplification order.

4 Simulating Classical Simplification Orders

In the previous section we have already seen that LPO and RPO are just instances of the
WPO (assuming a definition of WPO that includes the status function τ). This covers quasi-
precedences and the x ≿ c refinement. However, such a relationship is not yet established for
KBO with refinements. In particular there are three major differences:

1. minimal constants in KBO are defined differently than in WPO,
2. there is a different syntactic structure, and
3. WPO uses the bounded lexicographic extension, but KBO uses the unbounded extension.

We will address these problems and show how properties of WPO can be transferred to KBO.

1. Recall that in KBO a constant c is minimal if f ⩾ c for all constants f of weight w0,
whereas in WPO f ⩾ c is required for all f ∈ F . We solve this problem by changing the
quasi-precedence ⩾ of KBO into some quasi-precedence ⩾′ in a way that

KBO-minimal constants w.r.t. ⩾ are WPO-minimal w.r.t. ⩾′, and
≿KBO and ≻KBO are unmodified when switching from ⩾ to ⩾′.

2. For the syntactic differences, we prove that they do not affect the defined relations.

The additional case f(C[x]) ≻KBO x of KBO can be simulated since ≻RoT is a simplifi-
cation order.
Assume that f(s1, . . . , sn) ≻KBO f(t1, . . . , tm) was shown by 2.b. Here we use some
properties of KBO to conclude f(s1, . . . , sn) ≻KBO tj for all 1 ≤ j ≤ m. Hence, it does
not matter whether the condition in 2.b.i – which does not occur in the original KBO
definition – is added to the KBO definition.

WST 2022 4

https://sws.cs.ru.nl/WST2022

R. Thiemann and A. Yamada 5

The definition of KBO does not contain case 2.a. However, as in the previous step
we utilize the property of KBO that the corresponding inference rule si ≿KBO t −→
f(s1, . . . , sn) ≻KBO t is still valid for all i ∈ {1, . . . , n}.

Note that for the equivalence proof we already use some properties of KBO, i.e., these
must be proven before we are able to transfer properties of ≻RoT to KBO.

3. One cannot replace the unbounded lexicographic extension by a bounded one if function
symbols of unbounded arity are considered. However, whenever terms s and t are
compared, only finitely many symbols appear in s and t, and thus there is the maximum
arity b among them. For these terms there is no difference in whether b-bounded or
unbounded lexicographic extension is used.

We arrive at the following result.

▶ Theorem 4. Let a KBO with quasi-precedence ⩾ and some bound b be given. Then a
reduction pair (encoding the weight-function) and quasi-precedence ⩾′ can be constructed
as parameters to ≻RoT and ≿RoT (or to WPO), such that (s ≻KBO t) ←→ (s ≻RoT t) and
(s ≿KBO t)←→ (s ≿RoT t) for all terms s, t whose function symbols have arity below b.

▶ Corollary 5. For every KBO over a finite signature there exists an equivalent WPO.

▶ Corollary 6. KBO is transitive, closed under substitutions and well-founded.

Proof. Consider the set of terms {s, t, u, sσ, tσ}, and define b as the maximum arity that
occurs within these terms. From Theorem 3 we conclude s ≻RoT t ≻RoT u −→ s ≻RoT u and
s ≻RoT t −→ sσ ≻RoT tσ. By Theorem 4 and the choice of b, transitivity and closure under
substitutions of KBO are proved.

For well-foundedness of KBO, consider an infinite sequence t1 ≻KBO t2 ≻KBO Define
b′ as the weight of t1. Hence b′ is larger than the weight of all terms in the sequence. Since
the weight is an upper bound for the arities, b′ is also larger than the arities of all ti. Thus,
by Theorem 4 we know t1 ≻RoT t2 ≻RoT . . . in contradiction to Theorem 3. ◀

As future work it remains to be clarified whether the addition of multiset comparisons to
WPO will improve the power of automated termination tools.

References
1 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,

1998. doi:10.1017/CBO9781139172752.
2 Nachum Dershowitz. Orderings for term-rewriting systems. Theor. Comput. Sci., 17:279–301,

1982. doi:10.1016/0304-3975(82)90026-3.
3 Donald E. Knuth and Peter Bendix. Simple word problems in universal algebras. In Com-

putational Problems in Abstract Algebra, pages 263–297. Pergamon Press, New York, 1970.
doi:10.1016/B978-0-08-012975-4.50028-X.

4 Christian Sternagel, René Thiemann, and Akihisa Yamada. A formalization of weighted path
orders and recursive path orders. Archive of Formal Proofs, 2021. https://isa-afp.org/
entries/Weighted_Path_Order.html, Formal proof development.

5 René Thiemann and Christian Sternagel. Certification of termination proofs using CeTA.
In Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009,
Munich, Germany, August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer
Science, pages 452–468. Springer, 2009. doi:10.1007/978-3-642-03359-9_31.

6 Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe. A unified ordering for termination
proving. Sci. Comput. Program., 111:110–134, 2015. doi:10.1016/j.scico.2014.07.009.

WST 2022 5

https://sws.cs.ru.nl/WST2022

Tuple Interpretations and Applications to
Higher-Order Runtime Complexity
Cynthia Kop � Â

Institute for Computation and Information Sciences, Radboud University, The Netherlands

Deivid Vale �Â

Institute for Computation and Information Sciences, Radboud University, The Netherlands

Abstract
Tuple interpretations are a class of algebraic interpretation that subsumes both polynomial and
matrix interpretations as it does not impose simple termination and allows non-linear interpretations.
It was developed in the context of higher-order rewriting to study derivational complexity of
algebraic functional systems. In this short paper, we continue our journey to study the complexity
of higher-order TRSs by tailoring tuple interpretations to deal with innermost runtime complexity.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Complexity analysis, higher-order term rewriting, tuple interpretations

Funding The authors are supported by the NWO TOP project “ICHOR”, NWO 612.001.803/7571
and the NWO VIDI project “CHORPE”, NWO VI.Vidi.193.075.

1 Introduction

The step-by-step computational model induced by term rewriting naturally gives rise to a
complexity notion. Here, complexity is understood as the number of rewriting steps needed
to reach a normal form. In the rewriting setting, a complexity function bounds the length
of the longest rewrite sequence parametrized by the size of the starting term. Two distinct
complexity notions are commonly considered: derivational and runtime. In the former, the
starting term is unrestricted which allows initial terms with nested function calls. The latter
only considers rewriting sequences beginning with basic terms. Intuitively, basic terms are
those where a single function call is performed with data objects as arguments.

There are many techniques to bound the runtime complexity of term rewriting [2, 4].
However, most of the literature focuses on the first-order case. We take a different approach
and regard higher-order term rewriting. We present a technique that takes advantage of
tuple interpretations [3] tailored to deal with an innermost rewriting strategy. The defining
characteristic of tuple interpretations is to allow for a split of the complexity measure into
abstract notions of cost and size. The former is usually interpreted as natural numbers,
which accounts for the number of steps needed to reduce terms to normal forms. Meanwhile,
the latter is interpreted as tuples over naturals carrying abstract notions of size.

2 Preliminaries

The Syntax of Terms and Rules We assume familiarity with the basics of term rewriting.
We will here recall notation for applicative simply-typed term rewriting systems.

Let B be a set of base types (or sorts). The set TB of simple types is built using the
right-associative ⇒ as follows. Every ι ∈ B is a type of order 0. If σ, τ are types of order n

and m respectively, then σ ⇒ τ is a type of order max(n + 1, m). A signature is a non-empty
set F of function symbols together with a function typeOf : F −→ TB. Additionally, we
assume, for each σ ∈ TB, a countable infinite set of type-annotated variables Xσ disjoint from
F . We will denote f, g, . . . for function symbols and x, y, . . . for variables.

WST 2022 6

https://sws.cs.ru.nl/WST2022

This typing scheme imposes a restriction on the formation of terms which consists of
those expressions s such that s :: σ can be derived for some type σ using the following clauses:
(i) x :: σ, if x ∈ Xσ; (ii) f :: σ, if typeOf(f) = σ; and (iii) (s t) :: τ , if s :: σ ⇒ τ and t :: τ .
Application is left-associative. We denote vars(s) for the set of variables occurring in s and
say s is ground if vars(s) = ∅. A rewriting rule ℓ → r is a pair of terms of the same type
such that ℓ = f ℓ1 . . . ℓm and vars(ℓ) ⊇ vars(r). An applicative simply-typed term rewriting
system (shortly denoted TRS), is a set R of rules. The rewrite relation induced by R is the
smallest monotonic relation that contains R and is stable under application of substitution.
A term s is in normal form if there is no t such that s → t. The innermost rewrite relation
induced by R is defined as follows:

ℓγ →i rγ, if ℓ → r ∈ R and all proper subterms of ℓγ are in R-normal form;
s t →i s′ t, if s →i s′; and s t →i s t′, if t →i t′.

In what follows we only allow for innermost reductions. So, we drop the i from the arrow,
and s → t is to be read as s →i t. We shall use the explicit notation if confusion may arise.

▶ Example 1. We will use a system over the sorts nat (numbers) and list (lists of numbers).
Let 0 :: nat, s :: nat ⇒ nat, nil :: list, cons :: nat ⇒ list ⇒ list, and F, G ∈ Xnat⇒nat; types of
other function symbols and variables can be easily deduced.

map F nil → nil comp F G x → F (G x)
map F (cons x xs) → cons (F x) (map F xs) app F x → F x

d 0 → 0 add x 0 → x

d (s x) → s (s (d x)) add x (s y) → s (add x y)

Functions and orderings A quasi-ordered set (A, ⊒) consists of a nonempty set A and a
quasi-order ⊒ over A. A well-founded set (A, >, ≥) is a nonempty set A together with a
well-founded order > and a compatible quasi-order ≥ on A, i.e., > ◦ ≥ ⊆ >. For quasi-
ordered sets A and B, we say that a function f : A −→ B is weakly monotonic if for all
x, y ∈ A, x ⊒A y implies f(x) ⊒B f(y). If (B, >, ≥) is a well-founded set, then > and ≥
induce a point-wise comparison on A −→ B as usual. If A, B are quasi-ordered, the notation
A =⇒ B refers to the set of all weakly monotonic functions from A to B. Functional equality
is extensional. The unit set is the quasi-ordered set defined by unit = ({u}, ⊒), where u ⊒ u.

3 Higher-Order Tuple Interpretations for Innermost Rewriting

To define interpretations, we will start by providing an interpretation of types (Def. 2). Types
σ are interpreted by tuples LσM that carry information about cost and size. We will first
show how application works in this newly defined cost-size domain (Def. 4). Interpretation
of types will then set the domain for the tuple algebras we are interested in (Def. 7).

▶ Definition 2 (Interpretation of Types). For each type σ, we define the cost-size tuple
interpretation of σ as LσM = Cσ × Sσ where Cσ (respectively Sσ) is defined as follows:

Cσ = N × F c
σ Sι = (NK[ι], ⊒), K[ι] ≥ 1

F c
ι = unit Sσ⇒τ = Sσ =⇒ Sτ

F c
σ⇒τ = (F c

σ × Sσ) =⇒ Cτ ,

where F c
σ⇒τ (Sσ⇒τ) is the set of weakly monotonic functions from F c

σ × Sσ to Cτ (Sσ to Sτ).
The quasi-ordering on those sets is the induced point-wise comparison. The set LσM is ordered
as follows: ((n, f), s) ≻ ((m, g), t) if n > m, f ≥ g and s ⊒ t; and ((n, f), s) ≽ ((m, g), t) if
n ≥ m, f ≥ g and s ⊒ t.

WST 2022 7

https://sws.cs.ru.nl/WST2022

The cost tuple Cσ = N × F c
σ of LσM holds the cost information of reducing a term of type

σ to its normal form. It is composed of a numeric and functional component. Base types,
which are naturally not functional, have the unit set for F c

ι ; the cost tuple of a base type is
then Cι = N × unit. Functional types do possess an intrinsically functional component (the
cost of applying the function), which in our setting is expressed by F c

σ⇒τ = F c
σ × Sσ =⇒ Cτ .

For functional types the numeric component represents the cost of partial application.
To determine the number K[ι], associated to each sort ι, we use a semantic approach that

takes the intuitive meaning of the sort we are interpreting into account. The sort nat for
instance represents natural numbers, which we implement in unary format. Hence, it makes
sense to reckon the number of successor symbols occurring in terms of the form (sn 0) :: nat
as their size. This gives us K[nat] = 1. Another example is the sort list (of natural numbers):
it is natural to regard measures like length and maximum element size. This results in
K[list] = 2. Example 8 below shows how to interpret data constructors using this intuition.

The next lemma expresses the soundness of our approach, that is, cost-size tuples define
a well-founded domain for the interpretation of types.

▶ Lemma 3. For each type σ, the set Cσ is well-founded and Sσ quasi-ordered. Their product,
that is, (LσM, ≻,≽), is well-founded.

Semantic Application To interpret each term s :: σ to an element of LσM (Def. 7), we
will need a notion of application for cost-size tuples. Specifically, given a functional type
σ ⇒ τ , a cost-size tuple f ∈ Lσ ⇒ τM, and x ∈ LσM, our goal is to define the application
f · x of f to x. Let us illustrate the idea with a concrete example: consider the type
σ = (nat ⇒ nat) ⇒ list ⇒ list, which is the type of map defined in Example 1. The function
map takes as argument a function F of type nat ⇒ nat and a list q, and applies F to each
element of q. The cost interpretation of map is a functional in Cσ parametrized by functional
arguments carrying the cost and size information of F and a cost-size tuple for q.

N ×
the functional cost of map︷ ︸︸ ︷

((unit × N =⇒ N × unit)︸ ︷︷ ︸
cost of F

× (N =⇒ N)︸ ︷︷ ︸
size of F

=⇒ (N × (unit︸ ︷︷ ︸
cost of q

× N2
︸︷︷︸

size of q

=⇒ N × unit))),

Hence, we write an element of such space as the tuple (n, f c). Size sets are somewhat simpler
with (N =⇒ N)︸ ︷︷ ︸

size of F

=⇒ N2
︸︷︷︸

size of q

=⇒ N2. Therefore, a functional cost-size tuple f is represented by

f = ⟨(n, f c), f s⟩. An argument to such a cost-size tuple is then an element in the domain of
f c and f s, respectively. Therefore, we apply f to a cost-size tuple x of the form ⟨(m, gc), gs⟩
where gc is the cost of computing F and gs is the size of F . We proceed by applying the
respective functions, so f c(gc, gs) = (k, h) belongs to Clist, and add the numeric components
together obtaining: f · x = ⟨(n + m + k, f c(gc, gs)), f s(gs)⟩. Notice that this gives us a new
cost-size tuple with cost component in N× (Clist =⇒ Clist) and size component in Slist =⇒ Slist.

▶ Definition 4. Let σ ⇒ τ be an arrow type, f = ⟨(n, f c), f s⟩ ∈ Lσ ⇒ τM, and x =
⟨(m, gc), gs⟩ ∈ LσM. The application of f to x, denoted f · x, is defined by:

let f c(gc, gs) = (k, h); then ⟨(n, f c), f s⟩ · ⟨(m, gc), gs⟩ = ⟨(n + m + k, h), f s(gs)⟩

Semantic application is left-associative and respects a form of application rule.

▶ Lemma 5. If f is in Lσ ⇒ τM and x is in LσM, then f · x belongs to LτM.

WST 2022 8

https://sws.cs.ru.nl/WST2022

▶ Remark 6. In order to ease notation, we project sets π1 : A × unit −→ A and π2 : unit ×
A −→ A and compose functions with projections, so a function in unit × A =⇒ B × unit is
lifted to a function in A =⇒ B. The functional cost of map is then read as follows:

N ×
the functional cost of map︷ ︸︸ ︷

((N =⇒ N)︸ ︷︷ ︸
cost of F

× (N =⇒ N)︸ ︷︷ ︸
size of F

=⇒ (N × (N2
︸︷︷︸

size of q

=⇒ N)))

The N component of Cσ⇒τ is specific to innermost rewriting (it does not occur in [3]). We
need this to handle rules of non-base type; for example, if add 0 → id, then the cost tuple of
add 0 is (1, λλx.0). However, since in most cases the first component is 0, we will typically omit
these zeroes and simply write for instance λλFq.f c(F, q) instead of (0, λλF.⟨0, λλq.f c(F, q)⟩).
To compute using Definition 4 we still use the complete form.

Tuple algebras are higher-order weakly monotonic algebras [1] with cost-size tuples as
interpretation domain.

▶ Definition 7 (Higher-order tuple algebra). A higher-order tuple algebra over a signature
(B, F , typeOf) consists of: (i) a family of cost/size tuples {LσM}σ∈TB and (ii) an interpretation
function J which maps each f ∈ F of type σ to a cost-size tuple in LσM.
▶ Example 8. Following the semantics discussed previously, we interpret the constructors
for both nat and list as follows. We call the first component of Slist length and the second
maximum element size. Those are abbreviated using the letters l and m, respectively.

J0 = ⟨0, 0⟩ Js = ⟨λλx.0, λλx.x + 1⟩
Jnil = ⟨0, ⟨0, 0⟩⟩ Jcons = ⟨λλxq.0, λλxq.⟨ql + 1, max(x, qm)⟩⟩

The cost-size tuples for 0 and nil are all 0s, as expected. The size components for s and
cons describe the increase in size when new data is created. We interpret functions from
Example 1 as follows:

Japp = ⟨λλFx.F c(x) + 1, λλFx.F s(x)⟩
Jd = ⟨λλx.x + 1, λλx.2x⟩

Jadd = ⟨λλxy.y + 1, λλxy.x + y⟩
Jcomp = ⟨λλFGx.F c(Gs(xs)) + 1, λλFGx.F s(Gs(x))⟩
Jmap = ⟨λλFq.qlF c(qm) + 1, λλFq.⟨ql, F s(qm)⟩⟩

A valuation α is a function that maps each x :: σ to a cost-size tuple in LσM. Due to
innermost strategy, we can assume the interpretation of every variable x :: ι has zero cost.
This is formalized by assigning α(x) = ⟨(0, u), xs⟩, for all x ∈ X of base type. In this
paper, we shall only consider valuations that satisfy this property. Variables of functional
type, however, may carry cost information even though any instance of a redex needs to be
normalized. Hence, we set α(F) = ⟨(0, f c), f s⟩ when F :: σ ⇒ τ .

▶ Definition 9. We extend J to an interpretation J·Kα,J of terms as follows:

JxKα,J = α(x) JfKα,J = ⟨(n, J c
f), J s

f ⟩, n ∈ N Js tKα,J = JsKα,J · JtKα,J

We are interested in interpretations satisfying a compatibility requirement:

▶ Theorem 10 (Innermost Compatibility Theorem). Let α be a valuation. If JℓKα,J ≻ JrKα,J
for all rules ℓ → r ∈ R, then JsKα,J ≻ JtKα,J , whenever s →i

R t.

One can check that the TRS from Example 1 interpreted as in Example 8 satisfy the
compatibility requirement.

WST 2022 9

https://sws.cs.ru.nl/WST2022

4 Higher-Order Innermost Runtime Complexity

In this section, we briefly limn how the cost-size tuple machinery allow us to reason about
innermost runtime complexity. We start by reviewing basic definitions.

▶ Definition 11. A symbol f ∈ F is a defined symbol if it occurs at the head of a rule, i.e.,
there is a rule f ℓ1 . . . ℓk → r ∈ R. A symbol c of order at most 1 is a data constructor if it
is not a defined symbol. A data term has the form c d1 . . . dk with c a constructor and each
di a data term. A term s is basic if s :: ι and s is of the form f d1 . . . dm with f a defined
symbol and all d1, . . . , dm data terms. The set TB(F) collects all basic terms.

▶ Remark 12. Notice that our notion of data is intrinsically first-order. This is motivated by
applications of rewriting to full program analysis where even if higher-order functions are
used a program has type ι1 ⇒ . . . ⇒ ιm ⇒ κ. The sorts ιi are the input data types and κ

the output type of the program.

▶ Definition 13. The innermost derivation height of s is dhR(s) = {n | ∃t : s →n t}. The
innermost runtime complexity function with respect to a TRS R is ircR(n) = max{dhR(s) |
s ∈ TB(F) ∧ |s| ≤ n}.

To reasonably bound the innermost runtime complexity of a TRS R, we require that size
interpretations of constructors have their components bounded by an additive polynomial,
that is, a polynomial of the form λλx1 . . . xk.

∑k
i=1 xi + a, with a ∈ N.

We can build programs by adding a new main function taking data variables as arguments
and combine it with rules computing functions, including higher-order ones. For instance,
using rules from Example 1, we can compute a program that adds a number x to every
element in a list q as follows: main x q → map (add x) q. Hence, computing this program on
inputs n and list q is equivalent to reducing the term main n q to normal form. Its runtime
complexity is therefore bounded by the cost-tuple of Jmain n qK.

5 Conclusion

In this short paper, we shed light on how to use cost-size tuple interpretations to bound inner-
most runtime complexity of higher-order systems. We defined a new domain of interpretations
that takes the intricacies of innermost rewriting into account and defined how application
works in this setting. The compatibility result allows us to make use of interpretations as
a way to bound the length of derivation chains, as it is expected from an interpretation
method. As current, and future work, we are working on automation techniques to find
interpretations and develop a completely rewriting-based automated tool for complexity
analysis of functional programs.

References

1 C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. In Proc. RTA,
2012. doi:10.4230/LIPIcs.RTA.2012.176.

2 N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair
method. In Proc. IJCAR, 2008. doi:10.1007/978-3-540-71070-7_32.

3 C. Kop and D. Vale. Tuple interpretations for higher-order complexity. In Proc. FSCD,
2021. doi:10.4230/LIPIcs.FSCD.2021.31.

4 L. Noschinski, F. Emmes, and J. Giesel. Analysing innermost runtime complexity of term
rewriting by dependency pairs. JAR, 2013. doi:10.1007/s10817-013-9277-6.

WST 2022 10

https://sws.cs.ru.nl/WST2022

A transitive HORPO for curried systems
Liye Guo �Â

Radboud University Nijmegen, Netherlands

Cynthia Kop � Â

Radboud University Nijmegen, Netherlands

Abstract
The higher-order recursive path ordering is one of the oldest, but still very effective, methods to
prove termination of higher-order TRSs. A limitation of this ordering is that it is not transitive
(and its transitive closure is not computable). We will present a transitive variation of HORPO.
Unlike previous HORPO definitions, this method can be used directly on terms in curried notation.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Higher-order term rewriting, termination, recursive path ordering

Funding The authors are supported by the NWO VIDI project “CHORPE”, NWO VI.Vidi.193.075.

1 Introduction

Termination problems have been studied by the term rewriting community for decades. In
higher-order termination, one of the earliest techniques was HORPO [2], a higher-order
extension of the recursive path ordering [3]. This definition has seen a series of improvements
over the years, culminating in the powerful Computability Path Ordering (CPO) [1].

Interestingly, the relations �horpo and �cpo are not transitive. To obtain a well-founded
ordering, we must use the transitive closure �+

horpo (resp. �+
cpo), but this is not computable.

Hence, for many rules that can in theory be oriented by HORPO, this cannot be found in
practice. This limitation is particularly problematic when HORPO is transposed to formalisms
where lambda abstractions occur more often on the left-hand side of a rule, since we may for
instance have f(λx.g(x), Y) �cpo (λx.g(x)) · Y �cpo g(Y), but not f(λx.g(x), Y) �cpo g(Y).

To address this issue, the second author explored an alternative HORPO in her PhD
thesis [5]: following an idea from the iterative path ordering [4], we use an annotation ? to
mark an obligation to decrease a term. This can be harnessed to obtain a transitive definition.
Like HORPO and CPO, StarHorpo was defined on a formalism with functional (uncurried)
notation; application is encoded as a family of function symbols. Consequently, in curried
specifications, the same few symbols occur over and over, making the method hard to apply.

In this paper, we adapt StarHorpo to a curried system. This is not just a notational
matter: allowing function symbols to take a variable number of arguments poses new technical
challenges. This is work in progress; we will focus on the core aspects of the method. For
now, we omit lambda abstractions and type orderings as used in CPO. However, the eventual
goal is to define a transitive ordering that strictly includes CPO for curried systems.

2 Preliminaries

2.1 Applicative TRS
For presentation, we shall consider an applicative term rewriting system. We assume that
a set S of base types is given, and the set T of simple types is generated by the grammar
T ::= S | (T → T). Right-associativity is assigned to → so that some parentheses in types
can be omitted. We postulate two disjoint sets F and V, called the set of function symbols
and the set of variables, respectively. We assume that every function symbol and variable

WST 2022 11

https://sws.cs.ru.nl/WST2022

has exactly one simple type, and we write a : A for a of type A. In this paper, we let f and
g range over the set F , x over the set V and a over F ∪ V.

The set T of pre-terms is generated by the grammar T ::= F(T, . . . ,T) | V(T, . . . ,T). The
set of terms consists of pre-terms which can be given a simple type by the following rule:

a : A1 → · · · → An → B t1 : A1 . . . tn : An (a ∈ F ∪ V)
a(t1, . . . , tn) : B

A term has only one type. When n = 0, we omit the parentheses and write a instead of a().
The application of a term t = a(t1, . . . , tn) : A→ B to another term tn+1 : A, denoted by

t · tn+1, is defined to be a(t1, . . . , tn, tn+1). We assign to · left-associativity. Type-preserving
functions from variables to terms are called substitutions. Every substitution σ extends to a
type-preserving function σ̄ from terms to terms. We write tσ for σ̄(t) and define it as follows:
f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ), and x(t1, . . . , tn)σ = σ(x) · t1σ · · · tnσ.

A rewrite rule `→ r is an ordered pair where ` and r are terms of the same type, variables
occurring in r also occur in `, and ` = f(t1, . . . , tn). Given a set R of rewrite rules, t→R t′

if and only if one of the following conditions is true:
t = `σ, t′ = rσ and `→ r ∈ R for some substitution σ.
t = t1 · t2, t′ = t1

′ · t2 and t1 →R t1
′.

t = t1 · t2, t′ = t1 · t2′ and t2 →R t2
′.

→R is called the rewrite relation. This paper concerns the well-foundedness of →R.
In the above definition, the application operator · is distinct from the function symbols,

and terms are lists headed by a function symbol or a variable. An equivalent and commonly
used alternative is to consider · as part of term formation and terms as binary trees. In this
view, we would for instance write f · t1 · t2, or just f t1 t2, instead of f(t1, t2). We favor our
current presentation to stress the similarities to the existing recursive path orderings, which
are typically defined on formalisms with functional notation. We do not consider application
as function symbols, as this would be detrimental to our method.

2.2 HORPO
We review a simple higher-order recursive path ordering [2] reformulated for the above
formalism. Given a well-founded ordering I on F , called the precedence, s �horpo t if and
only if s has the same type as t and one of the following conditions is true:
(1) s = f(s1, . . . , sm) and ∃i si �horpo t.
(2) s = f(s1, . . . , sm), t = t1 · t2 · · · tn and f(s1, . . . , sm) |� {t1, . . . , tn}.
(3) s = f(s1, . . . , sm), t = g(t1, . . . , tn), f I g and f(s1, . . . , sm) |� {t1, . . . , tn}.
(4) s = f(s1, . . . , sm), t = f(t1, . . . , tm), (s1, . . . , sm) �lex

horpo (t1, . . . , tm) and f(s1, . . . , sm) |�
{t1, . . . , tm}.

(5) s = s1 · s2, t = t1 · t2, s1 �horpo t1, s2 �horpo t2 and s 6= t.
In the above definition, �horpo is the reflexive closure of �horpo, �lex

horpo lexicographically
compares lists of the same length by �horpo, and f(s1, . . . , sm) |� {t1, . . . , tn} stands for
∀i (f(s1, . . . , sm) �horpo ti ∨ ∃j sj �horpo ti). We remark that the multiset extension in the
definition [2] is omitted for simplicity’s sake. The relation �horpo is well-founded, monotonic
(i.e., t1 �horpo t1

′ implies t1 · t2 �horpo t1
′ · t2, and t2 �horpo t2

′ implies t1 · t2 �horpo t1 · t2′),
and stable (i.e., t �horpo t

′ implies tσ �horpo t
′σ for all substitutions σ). If in addition →R is

compatible with �horpo (i.e., ` �horpo r for all `→ r ∈ R), then →R is well-founded.
As an example, consider the following definition of a recursor for the natural numbers:

rec(O, Y, F)→ Y rec(s(X), Y, F)→ F (X, rec(X,Y, F))

WST 2022 12

https://sws.cs.ru.nl/WST2022

where O : nat, s : nat → nat and rec : nat → nat → (nat → nat → nat) → nat are the
function symbols, and the types of the variables X, Y and F can be deduced. In order
to show the well-foundedness of →R, we need only to find a precedence I making →R
compatible with the generated relation �horpo. While rec(O, Y, F) �horpo Y follows from the
first condition, rec(s(X), Y, F) �horpo F (X, rec(X,Y, F)) can be obtained as follows:

F �horpo F

X �horpo X 1s(X) �horpo X

s(X) �horpo X Y �horpo Y F �horpo F 4rec(s(X), Y, F) �horpo rec(X,Y, F)
2rec(s(X), Y, F) �horpo F (X, rec(X,Y, F))

The precedence can be any well-founded ordering on F . The above process of finding the
precedence can be automated by encoding the constraints ` �horpo r in a propositional
formula that is fed to a SAT solver, as demonstrated in [8] for the first-order RPO.

The usefulness of �horpo is limited by the type restriction—only terms of the same type
can be compared. Let us extend the above example with the following rewrite rules:

add(O, Y)→ Y add(s(X), Y)→ s(add(X,Y)) sum(X)→ rec(X, O, add)

where add : nat → nat → nat and sum : nat → nat. If we ignore the rewrite rule on
the right, we need only add I s to complete the proof. Since the rule on the right only
removes occurrences of sum, it seems harmless. However, sum(X) �horpo rec(X, O, add) is
not obtainable due to the type restriction: neither sum(X) nor X has the same type as add
so the necessary premise sum(X) |� {add} does not hold. This problem is addressed in [2] by
introducing computable closures. We will provide an alternative in the next section.

3 StarHorpo

Let F? be F] (F × T), in which a function symbol is either a function symbol f ∈ F , or an
ordered pair (f,A), written as f?

A, where f ∈ F and A ∈ T . We assume f?
A : A and F?∩V = ∅.

With F?, terms are generated and typed likewise. Given a term f(t1, . . . , tn) where ti : Ai

for all i, the newly introduced function symbols allow us to have f?(t1, . . . , tn) : B for any
B, where f? stands for f?

A1→···→An→B. We will omit the type and write just f? whenever
the type can be deduced from the context. In the above translation from f(t1, . . . , tn) to
f?(t1, . . . , tn), marking the head symbol serves two purposes:

f?(t1, . . . , tn) can have a different type from the type of f(t1, . . . , tn).
f?(t1, . . . , tn) encodes an obligation to make f(t1, . . . , tn) smaller [4, 7].

We further assume that every marked function symbol f? in a term is followed by at least
minar(f) arguments, where the function minar : F → N is called the minimal arity.

A term is said to be unmarked if it does not contain any marked function symbol. Given
minar and the precedence I on F , s �? t if and only if s has the same type as t, t is unmarked,
and one of the following conditions is true:

Put s = f(s1, . . . , sm), m ≥ minar(f) and f?(s1, . . . , sm) �? t.
Select s = f?(s1, . . . , sm) and ∃i si · f?(s1, . . . , sm) · · · f?(s1, . . . , sm) �? t.
Copy s = f?(s1, . . . , sm), t = g(t1, . . . , tn), f I g and ∀i f?(s1, . . . , sm) �? ti.

Lex s = f?(s1, . . . , sm), t = f(t1, . . . , tn), (s1, . . . , sminar(f)) �lex
? (t1, . . . , tn)

and ∀i f?(s1, . . . , sm) �? ti.
Mono s = s1 · s2, t = t1 · t2, s1 �? t1, s2 �? t2 and s 6= t.

WST 2022 13

https://sws.cs.ru.nl/WST2022

In the above definition, �? is the union of �? and the identity relation on unmarked terms,
and (s1, . . . , sminar(f)) �lex

? (t1, . . . , tn) if and only if ∃i ≤ min(minar(f), n) (si �? ti ∧ ∀j <
i sj = tj). Occurrences of f?(s1, . . . , sm) in the conditions always have an appropriate type,
and the number of occurrences of f?(s1, . . . , sm) in Select is determined by the type of si.

e : a→ a→ a
f : ((a→ a)→ a→ a)→ a→ a
g : (a→ a)→ a→ a
h : a

g I e

g I h Copy
g?(f?(g)) > h

Lexf?(g, g?(f?(g))) > f(g, h)
Selectg?(f?(g)) > f(g, h) Copy

g?(f?(g)) > e(f(g, h))
Putg(f?(g)) > e(f(g, h))
Selectf?(g) > e(f(g, h))

Putf(g) > e(f(g, h))

Figure 1 Non-well-foundedness from drop-
ping the minar restriction

Put allows us to mark a function symbol
without changing its type. When we do so, it
is required that the marked function symbol
f? takes at least minar(f) arguments. With-
out this restriction, the ordering, denoted by
>, will end up allowing the derivation in Fig-
ure 1. By Mono, we get an infinite sequence
f(g) > e(f(g, h)) > e(e(f(g, h), h)) > · · ·,
which shows that > is not well-founded. The
“minimal arity” restriction is necessary be-
cause Select may cause function symbols to
take extra arguments, which is not the case
for HORPO, and taking into account the ex-
tra arguments in a Lex step can break well-
foundedness, as shown in Figure 1.

We note that marked function symbols play
a role only in generating �?. Because →R
is a relation on unmarked terms, we should
consider the restriction of �? to unmarked terms when showing the well-foundedness of →R.
Like �horpo, the restriction of �? to unmarked terms is well-founded, monotonic and stable,
which means we only need to find a combination of I and minar that makes →R compatible
with the generated relation �?.

For example, sum(X) �? rec(X, O, add) can be obtained as follows, with minar(sum) = 1:

sum I rec
X �? X Selectsum?(X) �? X

sum I O Copy
sum?(X) �? O

sum I add Copy
sum?(X) �? add Copy

sum?(X) �? rec(X, O, add)
Putsum(X) �? rec(X, O, add)

Unlike �horpo, �? is necessarily transitive, which we exemplify with the rewrite sequence

rec(s(s(X)), Y, add)→R add(s(X), rec(s(X), Y, add))→R s(add(X, rec(s(X), Y, add))).

With either �horpo or �?, we can see that in each of the rewrite steps, the term on the
left-hand side is greater than the one on the right-hand side, using only add I s and
minar(rec) = minar(add) = 1. If we skip the term in the middle and try to directly compare
the first and the last in the sequence, �horpo fails unless we further impose rec I s. This
shows that �horpo is not transitive as imposing extra assumptions can be problematic when
there are other rewrite rules in the system. On the other hand, with �?, we do have the
following derivation (with irrelevant part omitted):

add I s

... Lexadd?(rec?(. . .), rec?(. . .)) �? add(X, rec(s(X), Y, add)) Copy
add?(rec?(. . .), rec?(. . .)) �? s(add(X, rec(s(X), Y, add)))

Putadd(rec?(. . .), rec?(. . .)) �? s(add(X, rec(s(X), Y, add)))
Selectrec?(s(s(X)), Y, add) �? s(add(X, rec(s(X), Y, add)))

Putrec(s(s(X)), Y, add) �? s(add(X, rec(s(X), Y, add)))

WST 2022 14

https://sws.cs.ru.nl/WST2022

In the above derivation, we “select” add in rec?(s(s(X)), Y, add) by Select. This reflects the
derivation of rec(s(X), Y, F) �? F (X, rec(X,Y, F)), in which F is selected. This step is
not available with �horpo. Also by Select, add gets two arguments, each with a marked head
symbol. The arguments are later compared with some arguments on the right-hand side by
Lex. This capacity to postpone comparison is vital to the transitivity of �?.

To automate StarHorpo, standard SAT encoding techniques (see, e.g., [8]) can be used.
The only limitation is that, to ensure termination, the number of size-increasing applications
of Select until the right-hand side is decreased should be bounded. This is implemented in
the second author’s termination tool Wanda [6], which features the original StarHorpo.

Finally, let us discuss what would happen if we encoded application as function symbols.
In this perspective, we could ignore types and view a curried system as a first-order (uncurried)
system with a single binary function symbol @. However, all complex terms are thus headed
by the same binary function symbol, which sharply limits the applicability of recursive path
orderings since we can rarely take advantage of the head symbol comparison, when we apply
Copy. Consider the system with only one rewrite rule f(X)→ g(X,X), where f : a→ a and
g : a→ a→ a. This rule is easily oriented by �? (or �horpo) with f I g, but its applicative
first-order counterpart, @(f, X) → @(@(g, X), X), cannot be tackled. Even if we do not
ignore types and introduce a separate symbol @A,B : (A→ B)→ A→ B for any types A
and B, the same problem still arises: @a,a(f, X) �? @a,a(@a,a→a(g, X), X) is not obtainable.

4 Conclusion

We have adapted StarHorpo to an applicative system. Changing the underlying formalism
requires extra attention: the arity restriction of functional notation should not be dropped
naively; instead, we impose the minimal arity, a weaker version of arity, on StarHorpo.
Interestingly, on the same applicative system, our definition of HORPO does not seem in
need of any kind of arity. While this definition is indeed more powerful in some cases,
without Select, which can give function symbols extra arguments, HORPO is not necessarily
transitive. We thus incorporate both Select and minar into StarHorpo to gain transitivity
while maintaining well-foundedness.

In order to have CPO included in StarHorpo for curried systems, we still need to take
into account lambda abstractions and type orderings, as well as the multiset extension, in
our definition. Furthermore, another direction for future work is to apply StarHorpo to
determine the termination of functional programs, which may require us to extend StarHorpo
with support for real-world data types such as integers and floating-point numbers.

References
1 F. Blanqui, J. Jouannaud, and A. Rubio. The computability path ordering: The end of a

quest. In Proc. CSL, 2008.
2 J. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proc. LICS, 1999.
3 S. Kamin and J.-J. Lévy. Two generalizations of the recursive path ordering. Unpublished

Manuscript, University of Illinois, 1980.
4 J.W. Klop, V. van Oostrom, and R. de Vrijer. Iterative lexicographic path orders. In Algebra,

Meaning, and Computation. 2006.
5 C. Kop. Higher Order Termination. PhD thesis, VU Amsterdam, 2012.
6 C. Kop. WANDA – a higher-order termination tool. In Proc. FSCD, 2020.
7 C. Kop and F. van Raamsdonk. A higher-order iterative path ordering. In Proc. LPAR, 2008.
8 P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving termination

using recursive path orders and SAT solving. In Proc. FroCoS, 2007.

WST 2022 15

https://sws.cs.ru.nl/WST2022

Approximating Relative Match-Bounds
Alfons Geser
HTWK Leipzig

Dieter Hofbauer
ASW Saarland

Johannes Waldmann
HTWK Leipzig

Abstract
We present a simple method for obtaining automata that over-approximate match-heights for the
set of right-hand sides of forward closures of a given string rewrite system. The method starts
with an automaton that represents height-indexed copies of right-hand sides, and inserts epsilon
transitions only. Rules that have no redex path in the highest level, are relatively match-bounded,
and thus terminating relative to the others, on the starting language. For height bound 0, we
obtain a generalisation of right barren string rewriting. An implementation of our method proves
termination of 590 out of 595 benchmarks in TPDB/SRS_Standard/ICFP_2010 quickly.

2012 ACM Subject Classification Theory of computation → Rewrite systems

Keywords and phrases Termination, String rewriting, Match-bounds, Right barren

1 Right Barren String Rewriting

Forward closures (“chains” in [10]) are pairs of strings that represent restricted derivations.
The set of right-hand sides of forward closures is denoted by RFC(R). By a Theorem of
Dershowitz [3], termination of a rewrite system R is equivalent to termination of R on RFC(R).
For our purposes, we will employ the characterization RFC(R) = (→R ∪⇁right(R))∗(rhs(R)),
where ⇁right(R) is the suffix rewrite relation induced by the system right(R) = {`1 → r |
(`1`2 → r) ∈ R, `1 6= ε 6= `2}, cf. [6, Lemma 4] for an equivalent variant.

It might be the case that the relation →R is never used when computing RFC(R). This
was observed for one-rule systems by McNaughton [11] (for the non-overlapping case) and
Geser [5] (for the general case). Such systems R are called right barren, and they are always
terminating.

We generalize this approach to an arbitrary number of rules. A string rewrite system
R is called right barren if there is no ` ∈ lhs(R) such that ` is a factor of some string from
RFC(R). Then R terminates on RFC(R), so R terminates everywhere.

The right barren property is decidable: we first compute the regular language L =
(⇁right(R))∗(rhs(R)). By a result of Büchi on prefix rewriting [1, 2] (cf. [8, Sect. 6.1]), this
can be effectively done via an automaton construction. Then we check that L does not
contain any left-hand side of R as a factor, i. e., L ∩ Σ∗ · lhs(R) · Σ∗ is empty.

Our implementation computes the closure of rhs(R) under suffix rewriting w. r. t. right(R)
as follows: We start with a finite state automaton that consists of isolated paths, one for
each string in rhs(R). The set of initial states I (resp. set of final states F) contains all
starting points (resp. end points) of these paths. We then add epsilon transitions as follows:
For each (`1 → r) ∈ right(R), if the automaton contains a path p `1→ q ∈ F for states p and q,
then add an epsilon transition from p to the starting point of the path for r. In this case,
we say that rule `1 → r has a suffix match at state p. Note that this completion procedure
always terminates, since the set of states is constant.

Our implementation keeps the set of epsilon transitions transitively closed after each
addition. This means that when we trace a path, we need to do at most one epsilon step

WST 2022 16

https://sws.cs.ru.nl/WST2022

2 Approximating Relative Match-Bounds

between real steps. In the diagrams below, we suppress transitive edges.
Unless noted otherwise, examples refer to directory SRS_Standard from the Termination

Problems Database (TPDB) 11.0, see https://termination-portal.org/wiki/TPDB.

I Example 1. Consider the one-rule system R = {babbaba → abaabbabba}, which is
Zantema_04/z033. This system is right barren, as certified by the following automaton.
Throughout all state diagrams, initial and final states are indicated by isolated in- or outgoing
edges, respectively, and epsilon transitions are dashed. Here, states correspond to positions
between letters, i. e., for right-hand side r we get states s with 0 ≤ s ≤ |r|.

The completion procedure starts with one path from state 0 to state 10, labelled by the
right-hand side of the rule. For ba ∈ lhs(right(R)) there is the path 8 ba→ 10 ∈ F , so an epsilon
transition from 8 to the initial state 0 is added. Analogously, for babba ∈ lhs(right(R)) the
path 5 babba→ 10 ∈ F results in an epsilon transition from 5 to 0. No further epsilon transitions
need to be added.

0 1 2 3 4 5 6 7 8 9 10a b a a b b a b b a

We observe that the left-hand side ` = babbaba is not a factor of any string in the accepted
language of the resulting automaton, since no path p `→ q for states p and q exists, therefore
R is right barren, thus terminating. J

I Example 2. Our approach also applies to systems with more than just one rule, as
demonstrated by the example R = {aa → cb, bb → ac, cc → ba} (Zantema_04/z087). For
|R| > 1, we choose states as pairs (n, s) with 1 ≤ n ≤ |R| and, as before, s with 0 ≤ s ≤ |r|
for r ∈ rhs(R).
Here, completion starts with an automaton consisting
of three paths, one for each right-hand side. For rule
(a → cb) ∈ right(R) there is a suffix match at state
(3, 1), so we add an epsilon transition from (3, 1) to
(1, 0). Analogously, we get two more epsilon transitions,
from (1, 1) to (2, 0) due to the suffix match of (b →
ac) ∈ right(R) at (1, 1), and from (2, 1) to (3, 0) due to
the suffix match of (c → ba) ∈ right(R) at (2, 1). The
resulting automaton is closed w. r. t. right(R), and its
language does not contain any left-hand side of R as a
factor, so R is right barren, hence terminating.

1,0 1,1 1,2

2,0 2,1 2,2

3,0 3,1 3,2

c b

a c

b a

J

2 Removal of Relatively Right Barren Rules

The algorithm of Section 1 rejects if some left-hand side of R occurs as a factor of RFC(R).
We now describe how to continue in this case.

We call a rule ` → r from R relatively right barren w. r. t. the other rules, if ` does
not occur as a factor of RFC(R). Relatively right barren rules can be removed from the
termination problem: if all rules from S ⊆ R are relatively right barren w. r. t. R \ S, and
R \ S is terminating, then R is terminating. This includes the previous concept as a special
case: if a system is right barren, then all its rules are relatively right barren.

WST 2022 17

https://sws.cs.ru.nl/WST2022

A. Geser and D. Hofbauer and J. Waldmann 3

The definition of relative right barrenness uses RFC(R), and that set might be impossible
to represent by a finite automaton. We therefore extend the previous algorithm to obtain an
over-approximation: for a rule `→ r in R and a redex path p `→ q in the automaton, we add
one epsilon transition from p to the start of r, and one epsilon transition from the end of r
to q.

Again, this procedure obviously terminates. The language L(A) of the resulting automaton
A contains rhs(R), and A is closed w. r. t. →R and ⇁right(R), so L(A) over-approximates
RFC(R). Rules without redex in L(A) are relatively right barren, and can be removed. The
approximation error comes from identifying all reduct paths of each rule.

Example 3 exhibits a system where the algorithm of this section allows to remove a rule,
even though the system is not right barren.

I Example 3. Let R = {ab→ ba, ba→ acb} (Zantema_04/z006). First we add two epsilon
transitions, (1, 1) ε→ (1, 0) due to the suffix match of (a → ba) ∈ right(R) at (1, 1), and
(2, 2) ε→ (2, 0) due to the suffix match of (b→ acb) ∈ right(R) at (2, 2).
As there is a redex path (1, 0) ba→ (1, 2) for
the second rule, we add the epsilon transitions
(1, 0) ε→ (2, 0) and (2, 3) ε→ (1, 2). This creates a
new redex path (1, 0) ba→ (2, 1) for the second rule
(note that this path uses two epsilon transitions),
resulting in (1, 0) ε→ (2, 0) (already present) and
(2, 3) ε→ (2, 1) (a fresh transition). Note that the
existence of these two redex paths entails that R
is not right barren.

1,0 1,1 1,2b a

2,0 2,1 2,2 2,3a c b

The resulting automaton is closed w. r. t. R and right(R), so the completion procedure stops.
As there is no path labelled by ab, the rule ab→ ba can be removed from R. The remaining
system {ba→ acb} is terminating (it is right barren, in fact), proving termination of R. J

3 Approximating Match-Bounds

We refine the approximation of RFC(R) by match-heights [6]. We fix a number B ∈ N, and
let the initial automaton consist of layers 0, 1, . . . , B, where layer h contains disjoint paths
for rhs(R) of match-height h. We put the height information not on the letters, but in the
states: a state of the automaton now is a triple of number of layer, number of rule, and
position in right-hand-side. The initial (final, resp.) states of the automaton are the initial
(final, resp.) states of paths in layer 0.

For each suffix match for a rule (`1 → r) ∈ right(R), a new epsilon transition links to the
starting point of r at height 0.

For each redex path for a rule from R, we compute its match-height h as the minimal
layer of its letter transitions; the path also might contain epsilon transitions, these have
no height. We reject if h = B. Else, we introduce epsilon transitions to, and from, the
reduct path at height h + 1. If we succeed, we obtain an automaton certifying that R is
match-bounded by B on RFC(R), thus R is terminating. The method of Section 1 is the
special case of B = 0.

Example 4 illustrates this approach. This rewrite system is not right barren, and none of
its rules is relatively right barren, so the criteria from Sections 1 and 2 are not successful.

I Example 4. Let R = {abaab → baabbaa}, the reversal of Zantema_04/z034. Our algo-
rithm produces a certificate for match-bound 1 on RFC(R), as follows.

WST 2022 18

https://sws.cs.ru.nl/WST2022

4 Approximating Relative Match-Bounds

0,1,0 0,1,1 0,1,2 0,1,3 0,1,4 0,1,5 0,1,6 0,1,7b a a b b a a

1,1,0 1,1,1 1,1,2 1,1,3 1,1,4 1,1,5 1,1,6 1,1,7b a a b b a a

Completion starts with an automaton consisting of the two paths (0, 1, 0) baabbaa−→ (0, 1, 7) for
height 0, and (1, 1, 0) baabbaa−→ (1, 1, 7) for height 1. For the suffix match of a → baabbaa ∈
right(R) at (0, 1, 6) we add the transition (0, 1, 6) ε→ (0, 1, 0). This creates the R-redex
path (0, 1, 5) a→ (0, 1, 6) ε→ (0, 1, 0) · · · (0, 1, 3) b→ (0, 1, 4) of height 0, and we link to the
reduct path of height 1 by adding (0, 1, 5) ε→ (1, 1, 0) and (1, 1, 7) ε→ (0, 1, 4). There is
a suffix match at (1, 1, 6). It is not for a → baabbaa, since (1, 1, 7) is not final, but for
abaa → baabbaa, via the path (1, 1, 6) a→ (1, 1, 7) ε→ (0, 1, 4) baa→ (0, 1, 7). We add an edge
(1, 1, 6) ε→ (0, 1, 0). Now we have another R-redex path from (1, 1, 5) to (0, 1, 4). This path
has minimal height 0 (only the first step has height 1), so we link to the reduct path at
height 1 by the transitions (1, 1, 5) ε→ (1, 1, 0) and (1, 1, 7) ε→ (0, 1, 4) (the last transition
already existing). The automaton is now closed. J

4 Removal of Relatively Match-Bounded Rules

Match-bounds can be used to remove rules [9]: A set of rules S is match-bounded by B ∈ N
relative to R, on a language L, if in each (possibly infinite) height-annotated (S∪R)-derivation
starting with some zero-annotated string from L, each reduct of S has height ≤ B. Then
S is terminating relative to R on L. We extend the method of Section 3 accordingly: we
let the highest layer B represent all higher layers as well: for a redex path with height B,
we do no longer reject, but we use the reduct path at the same height B. We then remove
the subset of rules where all redex heights are < B. They are match-bounded by B relative
to R, on RFC(R), and thus, they terminate relatively to R. The method of Section 2 is the
special case of B = 0.

I Example 5. For R = {aba → baa, aac → acab}, with B = 2, the algorithm removes the
second rule, since its highest redex is at height 1 only. Methods of earlier sections do not
apply: neither rule is relatively right-barren, and neither R nor its reversal is match-bounded
on RFC. J

5 Experimental Evaluation

We focus on the 595 benchmarks in ICFP_2010. These benchmarks typically contain a large
number of rules (average ICFP: 70, non-ICFP: 3.3) with large total size, i. e., sum of lhs
and rhs lengths (average ICFP: 2340, non-ICFP: 21.5). By construction [4], each of these
systems does admit a natural matrix interpretation. We will not make use of these matrices
(they are stored, in some obfuscated format, in some obscure place) and we do not aim to
reconstruct them. Termination Competitions show that these benchmarks are hard: in 2021,
at a time-out of 5 minutes, 514 benchmarks were solved (86 percent). Over these solved

WST 2022 19

https://sws.cs.ru.nl/WST2022

A. Geser and D. Hofbauer and J. Waldmann 5

benchmarks, the average CPU time of the “virtual best solver” was 90 seconds (median: 28
seconds). Of the 1056 non-ICFP benchmarks, 1017 were solved (96 percent), and the virtual
best solver’s average time was 51 seconds (median: 6 seconds).

The following table shows the number of ICFP benchmarks solved with methods from
the present paper, with a time-out of 10 seconds only. In all cases, the method was tried
for the reversed system as well, and rule removal by weights was also applied, with GLPK
(GNU Linear Programming Kit) as a solver. The methods for rule removal (Sections 2
and 4) were iterated. Data is available on Starexec (Job 51953), and can be navigated at
https://termcomp.imn.htwk-leipzig.de/flexible-table/Query[]/51953.

method (Section) right bar. (1) rel. right bar. (2) rfc-mb (3) rel. rfc-mb (4)
number of problems solved 370 568 588 590
percentage 62.2 95.5 98.8 99.2
average CPU time (seconds) 0.29 0.88 1.37 0.93

These methods are independently implemented in MultumNonMulta [7] and in Matchbox
(https://gitlab.imn.htwk-leipzig.de/waldmann/pure-matchbox).

For non-ICFP benchmarks from TPDB, performance is not that strong. We guess the
reason is that they have shorter rules that create more overlaps, increasing the approximation
error that comes from re-using right-hand sides.

References
1 J. Richard Büchi. Regular canonical systems. Archiv Math. Logik und Grundlagenforschung,

6:91–111, 1964.
2 J. Richard Büchi. Finite Automata, Their Algebras and Grammars – Towards a Theory of

Formal Expressions (Dirk Siefkes, editor). Springer, New York, 1989.
3 Nachum Dershowitz. Termination of linear rewriting systems. In Shimon Even and Oded

Kariv, editors, Automata, Languages and Programming, 8th Colloquium, Acre (Akko), Israel,
July 13-17, 1981, Proceedings, volume 115 of LNCS, pages 448–458. Springer, 1981.

4 Bertram Felgenhauer and Johannes Waldmann. The ICFP 2010 Programming Contest.
https://www.imn.htwk-leipzig.de/~waldmann/talk/10/icfp/, 2010.

5 Alfons Geser. Is Termination Decidable for String Rewriting with only One Rule? Habilita-
tionsschrift, Eberhard-Karls-Universität, Tübingen, Germany, 2001.

6 Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Match-bounded string rewriting
systems. Appl. Algebra Eng. Commun. Comput., 15(3-4):149–171, 2004.

7 Dieter Hofbauer. MultumNonMulta at TermComp 2018. In Salvador Lucas, editor, 16th Intl.
Workshop on Termination, WST 2018, Oxford, U. K., 2018, Proceedings, page 80, 2018.

8 Dieter Hofbauer and Johannes Waldmann. Deleting string rewriting systems preserve regularity.
Theor. Comput. Sci., 327(3):301–317, 2004.

9 Dieter Hofbauer and Johannes Waldmann. Match-bounds for relative termination. In Peter
Schneider-Kamp, editor, 11th Intl. Workshop on Termination, WST 2010, Edinburgh, U. K.,
2010.

10 Dallas S. Lankford and David R. Musser. A finite termination criterion. Technical report,
Information Sciences Institute, Univ. of Southern California, Marina-del-Rey, CA, 1978.

11 Robert McNaughton. The uniform halting problem for one-rule Semi-Thue Systems. Technical
Report 94-18, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, August
1994. See also “Correction to ‘The Uniform Halting Problem for One-rule Semi-Thue Systems’”,
unpublished paper, August, 1996.

WST 2022 20

https://sws.cs.ru.nl/WST2022

Hydra Battles and AC Termination
Nao Hirokawa �

School of Information Science, JAIST, Japan

Aart Middeldorp �

Department of Computer Science, University of Innsbruck, Austria

Abstract
We encode the Battle of Hercules and Hydra as a rewrite system with AC symbols. Its termination
is proved by type introduction and a new termination criterion for AC rewriting.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Rewrite systems; Theory of computation → Computability

Keywords and phrases battle of Hercules and Hydra, term rewriting, termination

Digital Object Identifier 10.4230/LIPIcs.WST.2022.1

Funding Nao Hirokawa: JSPS KAKENHI Grant Numbers 22K11900
Aart Middeldorp: Part of this work was performed when the second author was employed at the
Future Value Creation Research Center of Nagoya University, Japan.

1 Introduction

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever
Hercules in his fight chops off a head, more and more new heads can grow instead, since the
beast gets increasingly angry. Here we model a Hydra as an unordered tree. If Hercules cuts
off a leaf corresponding to a head, the tree is modified in the following way: If the cut-off
node h has a grandparent n, then the branch from n to the parent of h gets multiplied, where
the number of copies depends on the number of decapitations so far. Hydra dies if there are
no heads left, in that case Hercules wins. The following sequence shows an example fight:

✂

1

✂

2

✂

3

✂

4 5

Though the number of heads can grow considerably in one step, it turns out that the fight
always terminates, and Hercules will win independent of his strategy. This can be shown by an
argument based on ordinals [5]. Starting with [2, p. 271], several TRS encodings of the Battle
of Hercules and Hydra have been proposed and studied [1, 3, 4, 7, 8]. Touzet [8] was the first
to give a rigorous termination proof and in [9] the automation of ordinal interpretations is
discussed. In this note we present yet another encoding. In contrast to earlier TRS encodings
that model a specific strategy, it uses AC matching to represent arbitrary battles.

▶ Definition 1. To represent Hydras, we use a signature containing a constant symbol h
representing a head, a binary symbol | for siblings, and a unary function symbol i representing
the internal nodes. We use infix notation for | and declare it to be an AC symbol.

© Nao Hirokawa and Aart Middeldorp;
licensed under Creative Commons License CC-BY 4.0

18th International Workshop on Termination (WST 2022).
Editor: Cynthia Kop; Article No. 1; pp. 1:1–1:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

WST 2022 21

https://sws.cs.ru.nl/WST2022

1:2 Hydra Battles and AC Termination

▶ Example 2. The Hydras in the above example fight are represented by the terms

H1 = i(i(h) | i(i(i(h) | i(h))) | h)
H2 = i(i(h) | i(i(i(h) | h | h)) | h)
H3 = i(i(h) | i(i(i(h) | h) | i(i(h) | h) | i(i(h) | h)) | h)
H4 = i(h | h | h | i(i(i(h) | h) | i(i(h) | h) | i(i(h) | h)) | h | h)
H5 = i(h | h | i(i(i(h) | h) | i(i(h) | h) | i(i(h) | h)) | h | h)

▶ Definition 3. The TRS H consists of the following 14 rewrite rules:

A(n, i(h)) 1−→ h D(n, i(i(x))) 8−→ i(D(n, i(x)))

A(n, i(h | x)) 2−→ A(s(n), i(x)) D(n, i(i(x) | y)) 9−→ i(D(n, i(x)) | y)

A(n, i(x)) 3−→ B(n, D(s(n), i(x))) D(n, i(i(h | x) | y)) 10−→ i(C(n, i(x)) | y)

C(0, x) 4−→ E(x) D(n, i(i(h | x))) 11−→ i(C(n, i(x)))

C(s(n), x) 5−→ x | C(n, x) D(n, i(i(h) | y)) 12−→ i(C(n, h) | y)

i(E(x) | y) 6−→ E(i(x | y)) D(n, i(i(h))) 13−→ i(C(n, h))

i(E(x)) 7−→ E(i(x)) B(n, E(x)) 14−→ A(s(n), x)

The Battle is started with the term A(0, t) where t is the term representation of the initial
Hydra. Rule 1 takes care of the dying Hydra . Rule 2 cuts a head without grandparent
node, and so no copying takes place. Due to the power of AC matching, the removed head
need not be the leftmost one. With rule 3, the search for locating a head with grandparent
node starts. The search is performed with the auxiliary symbol D and involves rules 8–13.
When the head to be cut is located (in rules 10–13), copying begins with the auxiliary symbol
C and rules 4 and 5. The end of the copying phase is signaled with E, which travels upwards
with rules 6 and 7. Finally, rule 14 creates the next stage of the Battle. Note that we make
extensive use of AC matching to simplify the search process.

▶ Theorem 4. If H and H ′ are the encodings in T ({h, i, |}) \ {h} of successive Hydras in
an arbitrary battle then A(n, H) (=AC · → · =AC)+ A(s(n), H ′) for some n ∈ T ({0, s}).

Rather than presenting a proof, we content ourselves with an example.

▶ Example 5. The following sequence simulates the first step in the example fight:

A(0, H1) 3−→ B(0, D(s(0), H1))

=AC · 9−→ B(0, i(D(s(0), i(i(i(h) | i(h)))) | i(h) | h))
8−→ B(0, i(i(D(s(0), i(i(h) | i(h)))) | i(h) | h))

12−→ B(0, i(i(i(C(s(0), h) | i(h))) | i(h) | h))
5−→ B(0, i(i(i(h | C(0, h) | i(h))) | i(h) | h))
4−→ B(0, i(i(i(h | E(h) | i(h))) | i(h) | h))

=AC · 6−→ B(0, i(i(E(i(h | h | i(h)))) | i(h) | h))
7−→ B(0, i(E(i(i(h | h | i(h)))) | i(h) | h))
6−→ B(0, E(i(i(i(h | h | i(h))) | i(h) | h)))

14−→ A(s(0), i(i(i(h | h | i(h))) | i(h) | h)) =AC A(s(0), H2)

WST 2022 22

https://sws.cs.ru.nl/WST2022

N. Hirokawa and A. Middeldorp 1:3

2 Termination Criterion

We present a new AC termination criterion based on weakly monotone algebras.

▶ Definition 6. Let A be a set equipped with a strict order > and let A1, . . . , An be subsets
of A. An n-ary function ϕ : A1 × · · · × An → A is

strictly monotone if ϕ(a1, . . . , ai, . . . , an) > ϕ(a1, . . . , b, . . . , an) for all 1 ⩽ i ⩽ n,
(a1, . . . , an) ∈ A1 × · · · × An, and b ∈ Ai with ai > b,
weakly monotone if ϕ(a1, . . . , ai, . . . , an) ⩾ ϕ(a1, . . . , b, . . . , an) for all 1 ⩽ i ⩽ n,
(a1, . . . , an) ∈ A1 × · · · × An, and b ∈ Ai with ai > b, and
simple if ϕ(a1, . . . , ai, . . . , an) ⩾ ai for all 1 ⩽ i ⩽ n and (a1, . . . , an) ∈ A1 × · · · × An.

▶ Definition 7. An S-sorted F-algebra A = ({SA }S ∈S , {fA }f ∈F) equipped with a strict
order > on the union of all carriers SA is simple monotone if

every carrier SA is non-empty,
(Si)A ⊆ SA for all f : S1 × · · · × Sn → S in F and 1 ⩽ i ⩽ n, and
every interpretation function fA is simple and weakly monotone.

A simple monotone algebra is totally ordered if > is a total order. Let (A, >) be an algebra
equipped with a strict order on A. The order >A induced from A is defined on terms as
usual: s >A t if [α]A(s) > [α]A(t) for all assignments α for A.

In general the order induced from a totally ordered simple monotone algebra is not a
reduction order as it is not closed under contexts. Nevertheless, its compatibility entails AC
termination.

▶ Theorem 8. A TRS R over a finite many-sorted signature F is AC terminating if there
exists a totally ordered simple monotone F-algebra (A, >) such that R ⊆ >A, AC ⊆ =A, and
fA is strictly monotone for all AC symbols f .

Touzet [8] proved total termination of a non-AC version of H by devising a termination
criterion based on totally ordered simple monotone algebras. Related results are presented
in Zantema [11, Section 4]. The above theorem is a proper extension to AC termination as
well as a generalization to many-sorted rewrite systems. The proof is based on a variant of
Touzet’s original proof method.

▶ Example 9. Consider the one-rule TRS R over the single-sorted signature {f(1), g(1), |(2) }:

f(g(x | y)) → g(f(f(x | y)))

We designate | as an AC symbol. So AC consists of the equations (x | y) | z ≈ x | (y | z)
and x | y ≈ y | x. Consider the algebra A on the carrier O of ordinals with the following
interpretation functions:

fA(x) = x + 1 gA(x) = x + ω x |A y = x ⊕ y

Here ⊕ is natural addition on ordinals. Since ⊕ is strictly monotone and + is weakly monotone
in its first argument and strictly monotone in its second argument, the interpretation functions
are weakly monotone. As ⊕ is associative and commutative, AC ⊆ =A holds. Moreover,
R ⊆ >A is verified by the inequality

fA(gA(x |A y)) = (x ⊕ y) + ω + 1 > (x ⊕ y) + ω = (x ⊕ y) + 2 + ω = gA(fA(fA(x |A y)))

where ω + 1 > ω and 2 + ω = ω are used. Hence R is AC terminating.

WST 2022

WST 2022 23

https://sws.cs.ru.nl/WST2022

1:4 Hydra Battles and AC Termination

It is essential for Theorem 8 to demand fA(x1, . . . , xi, . . . , xn) ⩾ xi even if f has the sort
declaration S1 × · · · × Si × · · · × Sn → S with Si ̸= S.

▶ Example 10. Consider the non-terminating TRS R = {a → g(f(a))} over the signature
{a : A, f : A → B, g : B → A} and the algebra A with carriers AA = BA = N and
interpretation functions aA = 1, fA(x) = 0 and gA(x) = x. Observe that the argument sort
(A) and output sort (B) of f are different. If the requirement of fA(x) ⩾ x is dropped from
Theorem 8, the termination of R would be wrongly concluded.

Theorem 8 imposes strict monotonicity on the interpretation functions of AC symbols
and totality on the order of the simple monotone algebra. We do not know whether these
conditions are essential. In the absence of AC symbols, totality of the order can be dropped [11,
Theorem 11].

3 Termination Proof

We show that H is AC terminating. In order to ease its proof we employ type introduction [10].
The following theorem is a special case of [6, Corollary 3.9].

▶ Theorem 11. A non-collapsing TRS over a many-sorted signature is AC terminating
if and only if the corresponding TRS over the unsorted version of the signature is AC
terminating.

The TRS H can be seen as a TRS over the many-sorted signature F ′:

h : O i, E : O → O | : O × O → O 0 : N s : N → N A, B, C, D : N × O → O

where O and N are sort symbols. Since H is non-collapsing, Theorem 11 guarantees that AC
termination of H follows from AC termination of well-sorted terms over F ′. We show the
latter by constructing a suitable simple monotone algebra.

Consider the many-sorted algebra A with carriers OA = (O \ {0, 1}) × N × N and
NA = (N \ {0, 1}) × N × N and the following interpretation functions, where we write n⃗ for
(n1, n2, n3) ∈ NA and x⃗ and y⃗ for (x1, x2, x3), (y1, y2, y3) ∈ OA:

0A = hA = (2, 0, 0) AA(n⃗, x⃗) = (n1 + x1, n2 + 2x2 + 2, 0)
sA(n⃗) = (n1 + 2, 0, 0) BA(n⃗, x⃗) = (2 + n1 + x1, n2 + 2x2 + 1, 0)
iA(x⃗) = (ωx1 , x2 + 1, x3 + 1) CA(n⃗, x⃗) = (x1 · n1, 0, 0)
x⃗ |A y⃗ = (x1 ⊕ y1, x2 + y2, x3 + y3) EA(x⃗) = (x1, x2 + 1, 0)

DA(n⃗, x⃗) = (n1 + x1, n2 + x2, n2 + n3 + x2 + x3)

The carriers OA and NA are equipped with the lexicographic order >O on OA. We write
>N for the restriction of >O to NA. The first component in the interpretation is used to
represent the ordinal value of the Hydra that is encoded in a term. Since natural addition (⊕)
on ordinals is associative and commutative, AC equivalent term representations of Hydras
have the same interpretation. The third component in vectors keeps track of the number of
i symbols that do not occur below E. First we argue that A is simple monotone and |A is
strictly monotone. Due to lack of space, we only treat CA.

CA(n⃗, x⃗) ⩾O CA(m⃗, x⃗) holds if n⃗ >N m⃗, because (x1 · n1, 0, 0) ⩾O (x1 · m1, 0, 0) follows
from x1 · n1 ⩾O x1 · m1.

WST 2022 24

https://sws.cs.ru.nl/WST2022

N. Hirokawa and A. Middeldorp 1:5

CA(n⃗, x⃗) ⩾O CA(n⃗, y⃗) holds if x⃗ >O y⃗, because (x1 · n1, 0, 0) ⩾O (y1 · n1, 0, 0) follows
from x1 · n1 >O y1 · n1. Note that the condition n1 ∈ N \ {0} is essential as seen by
3 · 0 = 0 ̸>O 0 = 2 · 0.
CA(n⃗, x⃗) >O n⃗ and CA(n⃗, x⃗) >O x⃗ hold, because (x1 · n1, 0, 0) ⩾O (n1, n2, n3) and
(x1 · n1, 0, 0) ⩾O (x1, x2, x3) follow from x1 · n1 > n1 and x1 · n1 > x1. Note that the
conditions x1 /∈ {0, 1} and n1 ∈ N \ {0, 1} are essential as seen by 1 · 1 = 1 ̸>O 1 and
2 · ω = ω ̸>O ω.

Next we argue that A is compatible with H. For brevity we treat only rules 3, 5, 7, 13 and
omit unimportant elements in vectors.

AA(n⃗, i(x⃗)) = (ωx1 , n2 + 2x2 + 4, –) >O (ωx1 , n2 + 2x2 + 3, –) = BA(n⃗, DA(sA(n⃗), iA(x⃗)))
Here ωx1 is obtained from n + ωx1 = ωx1 and n + 2 + ωx1 = ωx1 by exploiting the
condition n1 ∈ N.
CA(sA(n⃗), x⃗) = (x1 · (n1 + 2), – , –) >O (x1 · (n1 + 1), – , –) = x⃗ |A CA(n⃗, x⃗)
Remark that sA(n⃗) is defined as (n1 + 2, 0, 0) rather than (n1 + 1, 0, 0).
iA(EA(x⃗)) = (ωx1 , x2 + 2, 1) >O (ωx1 , x2 + 2, 0) = EA(iA(x⃗))
DA(n⃗, iA(iA(hA))) = (ωω2

, – , –) >O (ω2n1 , – , –) = iA(CA(n⃗, hA))
It follows from ω2 >O 2n1 due to n1 ∈ N. This is the reason why we rely on Theorem 11.

▶ Theorem 12. The TRS H is AC terminating.

From Theorems 4 and 12 we conclude that Hercules eventually beats Hydra in any battle.

References
1 W. Buchholz. Another rewrite system for the standard Hydra battle. In Proc. Mini-Workshop:

Logic, Combinatorics and Independence Results, volume 3(4) of Oberwolfach Reports, pages
3099–3102. European Mathematical Society, 2006.

2 N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. Handbook of Theoretical Computer
Science, volume B: Formal Models and Semantics, pages 243–320. Elsevier, 1990.

3 N. Dershowitz and G. Moser. The Hydra battle revisited. In Rewriting, Computation and Proof,
Essays Dedicated to Jean-Pierre Jouannaud on the Occasion of his 60th Birthday, volume 4600
of Lecture Notes in Computer Science, pages 1–27, 2007. doi:10.1007/978-3-540-73147-4_1.

4 M. C. F. Ferreira and H. Zantema. Total termination of term rewriting. Applicable Algebra in
Engineering, Communication and Computing, 7(2):133–162, 1996. doi:110.1007/BF0119138.

5 L. Kirby and J. Paris. Accessible independency results for Peano arithmetic. Bulletin of the
London Mathematical Society, 14:285–325, 1982. doi:10.1112/blms/14.4.285.

6 A. Middeldorp and H. Ohsaki. Type introduction for equational rewriting. Acta Informatica,
36(12):1007–1029, 2000. doi:10.1007/PL00013300.

7 G. Moser. The Hydra battle and Cichon’s principle. Applicable Algebra in Engineering,
Communication and Computing, 20(2):133–158, 2009. doi:10.1007/s00200-009-0094-4.

8 H. Touzet. Encoding the Hydra battle as a rewrite system. In Proc. 23rd International
Symposium on Mathematical Foundations of Computer Science, volume 1450 of Lecture Notes
in Computer Science, pages 267–276, 1998. doi:10.1007/BFb0055776.

9 H. Zankl, S. Winkler, and A. Middeldorp. Beyond polynomials and Peano arithmetic—
Automation of elementary and ordinal interpretations. Journal of Symbolic Computation,
69:129–158, 2015. doi:10.1016/j.jsc.2014.09.033.

10 H. Zantema. Termination of term rewriting: Interpretation and type elimination. Journal of
Symbolic Computation, 17(1):23–50, 1994. doi:10.1006/jsco.1994.1003.

11 H. Zantema. The termination hierarchy for term rewriting. Applicable Algebra in Engineering,
Communication and Computing, 12(1-2):3–19, 2001. doi:10.1007/s002000100061.

WST 2022

WST 2022 25

https://sws.cs.ru.nl/WST2022

A Calculus for Modular Non-Termination Proofs
by Loop Acceleration
Florian Frohn1 � �

LuFG Informatik 2, RWTH Aachen University, Germany

Carsten Fuhs �

Department of Computer Science and Information Systems, Birkbeck, University of London,
London, UK

Abstract
Recently, a calculus to combine various techniques for loop acceleration in a modular way has been
introduced [5]. We show how to adapt this calculus for proving non-termination. An empirical
evaluation demonstrates the applicability of our approach.

1 Introduction
In the last years, loop acceleration techniques have successfully been used to build static analyses
for programs operating on integers. Essentially, such techniques extract a quantifier-free first-order
formula ψ from a single-path loop T , i.e., a loop without branching in its body, such that ψ
under-approximates (or is equivalent to) T . Recently, a calculus which allows for combining several
acceleration techniques modularly in order to accelerate a single loop has been introduced [5]. As
already observed in [7], certain properties of loops – in particular monotonicity of (parts of) the loop
condition w.r.t. the loop body – are crucial for both acceleration and proving non-termination. In
this paper, we take the next step by adapting the calculus from [5] for proving non-termination. To
this end, we identify acceleration techniques that, if applied in isolation, give rise to non-termination
proofs. Furthermore, we show that the combination of such non-termination techniques via the
calculus from [5] gives rise to non-termination proofs, too. In this way, we obtain a modular framework
for combining several different non-termination techniques in order to prove non-termination of a
single loop. See [6] for an extended version of the current paper, including all proofs.

2 Preliminaries
We use the notation ~x, ~y, ~z, ... for vectors. We consider loops of the form

while ϕ do ~x← ~a (Tloop)

where ~x contains d pairwise different variables over Z, the loop condition ϕ ∈ Conj(~x) is a conjunction
of polynomial inequations p(~x) > 0 over ~x, and ~a ∈ Z[~x]d. Loop denotes the set of all such loops.

We identify Tloop and the pair 〈ϕ,~a〉. Moreover, we identify ~a and the function ~x 7→ ~a, where
we sometimes write ~a(~x) to make the variables ~x explicit. We use the same convention for other
(vectors of) expressions. Similarly, we identify the formula ϕ(~x) (or just ϕ) with the predicate ~x 7→ ϕ.
Our goal is to prove non-termination of Tloop.

I Definition 1 ((Non-)Termination). We call a vector ~x ∈ Zd a witness of non-termination for Tloop
(denoted ~x −→∞〈ϕ,~a〉 ⊥) if ϕ(~an(~x)) holds for all n ∈ N. Here, ~an is the n-fold application of ~a,
i.e., ~a0(~x) = ~x and ~an+1(~x) = ~a(~an(~x)). If there is such a witness, then Tloop is non-terminating.
Otherwise, Tloop terminates.

To find a witness of non-termination, we search for a certificate of non-termination.

1 This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 235950644 (Project GI 274/6-2) and by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - 389792660 as part of TRR 248.

WST 2022 26

https://sws.cs.ru.nl/WST2022

A Calculus for Modular Non-Termination Proofs by Loop Acceleration

I Definition 2 (Certificate of Non-Termination). We call a formula η ∈ Conj(~x) a certificate of
non-termination for Tloop if it is satisfiable and the implication η(~x) =⇒ ~x −→∞〈ϕ,~a〉 ⊥ is valid.

3 Proving Non-Termination via Loop Acceleration
In [5], several techniques for loop acceleration were discussed. For example, Acceleration via
Monotonic Increase applies if ϕ(~x) =⇒ ϕ(~a(~x)) is valid and Acceleration via Eventual Increase
applies if e(~x) ≤ e(~a(~x)) =⇒ e(~a(~x)) ≤ e(~a2(~x)) holds for each inequation e(~x) > 0 in ϕ. It is not
difficult to see that loops where these acceleration techniques apply are usually non-terminating, i.e.,
these techniques give rise to certificates of non-termination. More interestingly, the same holds if a
loop can be accelerated using the calculus from [5], as long as all steps use one of these acceleration
techniques. Thus, we obtain a novel, modular technique for proving non-termination of loops Tloop.

Attempts to prove non-termination operate on a variation of the acceleration problems from [5],
which we call non-termination problems.

I Definition 3 (Non-Termination Problem). A tuple ‖ψ | qϕ | pϕ‖~a where ψ, qϕ, pϕ ∈ Conj(~x) and
~a : Zd → Zd is a non-termination problem. It is consistent if every model of ψ is a witness of
non-termination for 〈qϕ,~a〉 and solved if it is consistent and pϕ ≡ >. The canonical non-termination
problem of a loop Tloop is ‖> | > | ϕ‖~a .

I Example 4. Consider the loop

while x1 > 0 do (x1
x2)←

(
x1+x2
x2+1

)
. (Tev-inc)

Its canonical non-termination problem is ‖> | > | x1 > 0‖(x1+x2
x2+1

) , which is consistent as 〈qϕ,~a〉 =

〈>,
(
x1+x2
x2+1

)
〉 diverges for all valuations of x1 and x2, but not solved as pϕ ≡ x1 > 0 6≡ >.

The first component ψ of a non-termination problem ‖ψ | qϕ | pϕ‖~a is the partial result that has
been computed so far. The second component qϕ corresponds to the part of the loop condition
that has already been processed successfully. As our calculus preserves consistency, ψ is always a
certificate of non-termination for 〈qϕ,~a〉. The third component is the part of the loop condition that
remains to be processed, i.e., we still need to find a certificate of non-termination for the loop 〈pϕ,~a〉.
The goal of our calculus is to transform a canonical into a solved non-termination problem.

More specifically, when we have simplified a canonical non-termination problem ‖> | > | ϕ‖~a
to ‖ψ1 | qϕ | pϕ‖~a , then ϕ ≡ qϕ ∧ pϕ and ψ1 =⇒ ~x −→∞〈 qϕ,~a〉 ⊥. Then it suffices to find some
ψ2 ∈ Conj(~x) such that

(
~x −→∞〈 qϕ,~a〉 ⊥ ∧ ψ2

)
=⇒ ~x −→∞〈 pϕ,~a〉 ⊥. The reason is that we have

−→〈 qϕ,~a〉 ∩−→〈 pϕ,~a〉 = −→〈 qϕ∧ pϕ,~a〉 = −→〈ϕ,~a〉 and thus (ψ1 ∧ ψ2) =⇒ ~x −→∞〈ϕ,~a〉 ⊥, i.e., ψ1 ∧ ψ2 is a
certificate of non-termination for Tloop.

We use a variation of the conditional acceleration techniques from [5], which we call conditional
non-termination techniques, to simplify the canonical non-termination problem of the analyzed loop.

I Definition 5 (Conditional Non-Termination Technique). Let nt : Loop × Conj(~x) ⇀ Conj(~x) be a
partial function. We call nt a conditional non-termination technique if

~x −→∞〈 qϕ,~a〉 ⊥ ∧ nt(〈χ,~a〉, qϕ) implies ~x −→∞〈χ,~a〉 ⊥ for all (〈χ,~a〉, qϕ) ∈ dom(nt), ~x ∈ Zd.

Thus, we obtain the following variation of the calculus from [5].

I Definition 6 (Non-Termination Calculus). The relation nt on non-termination problems is defined
as follows, where we identify conjunctions e1 > 0 ∧ · · · ∧ en > 0 and finite sets {e1 > 0, . . . , en > 0}:

χ ⊆ pϕ nt(〈χ,~a〉, qϕ) = ψ2

‖ψ1 | qϕ | pϕ‖~a nt ‖ψ1 ∧ ψ2 | qϕ ∧ χ | pϕ \ χ‖~a
nt is a conditional non-termination technique

Since nt preserves consistency, we obtain the following theorem, which shows that our calculus
is indeed suitable for proving non-termination.

WST 2022 27

https://sws.cs.ru.nl/WST2022

F. Frohn and C. Fuhs

I Theorem 7 (Correctness of nt). If ‖> | > | ϕ‖~a ∗nt ‖ψ | qϕ | >‖~a , and ψ is satisfiable, then ψ is
a certificate of non-termination for Tloop.

Moreover, termination of nt is trivial, as each step removes an inequation from pϕ. It remains
to present conditional non-termination techniques that can be used with our novel calculus. We first
derive a conditional non-termination technique from Acceleration via Monotonic Increase [5].

I Theorem 8 (Non-Termination via Monotonic Increase). If qϕ(~x) ∧ χ(~x) =⇒ χ(~a(~x)), then
(〈χ,~a〉, qϕ) 7→ χ is a conditional non-termination technique.

I Example 9. Consider the following loop:

while x > 0 do x← x+ 1 (Tinc)

Its canonical non-termination problem is ‖> | > | x > 0‖(x+1) . Thus, in order to apply nt with
Thm. 8, the only possible choice for the formula χ is x > 0. Furthermore, we have qϕ := > and
~a := (x+ 1). Hence, Thm. 8 is applicable if the implication x > 0 =⇒ x+ 1 > 0 is valid, which
is clearly the case. Thus, we get ‖> | > | x > 0‖(x+1) nt ‖x > 0 | x > 0 | >‖(x+1) . Since the latter
non-termination problem is solved and x > 0 is satisfiable, x > 0 is a certificate of non-termination
for Tinc due to Thm. 7.

Clearly, Thm. 8 is only applicable in very simple cases. To prove non-termination of more
complex examples, we now derive a conditional non-termination technique from Acceleration via
Eventual Increase [5].

I Theorem 10 (Non-Termination via Eventual Increase). If

qϕ(~x) ∧ e(~x) ≤ e(~a(~x)) =⇒ e(~a(~x)) ≤ e(~a2(~x)),

holds for all e(~x) > 0 ∈ χ, then the following function is a conditional non-termination technique:

(〈χ,~a〉, qϕ) 7→
∧

e(~x)>0∈χ

0 < e(~x) ≤ e(~a(~x))

I Example 11. We continue Ex. 4. To apply nt with Thm. 10 to the canonical non-termination
problem of Tev-inc, the only possible choice for the formula χ is x1 > 0. Moreover, we again have
qϕ := >, and ~a :=

(
x1+x2
x2+1

)
. Thus, Thm. 10 is applicable if x1 ≤ x1 +x2 =⇒ x1 +x2 ≤ x1 + 2 ·x2 + 1

is valid. Since we have x1 ≤ x1 +x2 ⇐⇒ x2 ≥ 0 and x1 +x2 ≤ x1 + 2 ·x2 + 1 ⇐⇒ x2 + 1 ≥ 0, this
is clearly the case. Hence, we get ‖> | > | x1 > 0‖~a nt ‖0 < x1 ≤ x1 + x2 | x1 > 0 | >‖~a . Since
0 < x1 ≤ x1 + x2 ≡ x1 > 0 ∧ x2 ≥ 0 is satisfiable, x1 > 0 ∧ x2 ≥ 0 is a certificate of non-termination
for Tev-inc due to Thm. 7.

Of course, some non-terminating loops do not behave (eventually) monotonically.

I Example 12. Consider the loop

while x1 > 0 do (x1
x2)← (x2

x1) . (Tfixpoint)

Thm. 8 is inapplicable, since x1 > 0 6=⇒ x2 > 0. Furthermore, Thm. 10 is inapplicable, since
x1 ≤ x2 6=⇒ x2 ≤ x1.

However, Tfixpoint has fixpoints, i.e., there are valuations such that ~x = ~a(~x). Therefore, it can be
handled by existing approaches like [7, Thm. 12]. As the following theorem shows, such techniques
can also be embedded into our calculus.

I Theorem 13 (Non-Termination via Fixpoints). For each expression e, let V(e) denote the set of
variables occurring in e. Moreover, we define closure~a(e) :=

⋃
n∈N V(~an(e)). Then

(〈χ,~a〉, qϕ) 7→
∧

e(~x)>0∈χ

e(~x) > 0 ∧
∧

xj∈closure~a(χ)

xj = ~a(~x)j

is a conditional non-termination technique.

WST 2022 28

https://sws.cs.ru.nl/WST2022

A Calculus for Modular Non-Termination Proofs by Loop Acceleration

I Example 14. We continue Thm. 12 by showing how to apply Thm. 13 to Tfixpoint, i.e., we
have χ := x1 > 0, qϕ := >, and ~a := (x2

x1). Thus, we get closure~a(x1 > 0) = {x1, x2}. So
starting with the canonical non-termination problem of Tfixpoint, we get ‖> | > | x1 > 0‖(x2

x1) nt

‖x1 > 0 ∧ x1 = x2 | x1 > 0 | >‖(x2
x1) . Since the formula x1 > 0 ∧ x1 = x2 is satisfiable, it is a

certificate of non-termination for Tfixpoint by Thm. 7.

Clearly, the conditional non-termination techniques from Thms. 10 and 13 can yield unsatisfiable
formulas. Thus, when integrating these techniques into our calculus, one needs to check the resulting
formula for satisfiability after each step to detect fruitless derivations early.

We conclude this section with a more complex example, which shows how the presented conditional
non-termination techniques can be combined to find certificates of non-termination.

I Example 15. Consider the following loop:

while x1 > 0 ∧ x3 > 0 ∧ x4 + 1 > 0 do
(
x1
x2
x3
x4

)
←
(1
x2+x1
x3+x2
−x4

)

So we have ϕ := x1 > 0∧x3 > 0∧x4 +1 > 0 and ~a :=
(1
x2+x1
x3+x2
−x4

)
. Then the canonical non-termination

problem is ‖> | > | x1 > 0 ∧ x3 > 0 ∧ x4 + 1 > 0‖~a . First, our implementation applies Thm. 8 to
x1 > 0 (as x1 > 0 =⇒ 1 > 0), resulting in ‖x1 > 0 | x1 > 0 | x3 > 0 ∧ x4 + 1 > 0‖~a . Next, it applies
Thm. 10 to x3 > 0, which is possible since x1 > 0 ∧ x3 ≤ x3 + x2 =⇒ x3 + x2 ≤ x3 + 2 · x2 + x1

is valid. Note that this implication breaks if one removes x1 > 0 from the premise, i.e., Thm. 10
does not apply to x3 > 0 without applying Thm. 8 to x1 > 0 before. This shows that our calculus is
more powerful than “the sum” of the underlying conditional non-termination techniques. Hence,
we obtain the non-termination problem ‖x1 > 0 ∧ x2 ≥ 0 ∧ x3 > 0 | x1 > 0 ∧ x3 > 0 | x4 + 1 > 0‖~a
Here, we simplified 0 < x3 ≤ x3 +x2 to x2 ≥ 0∧x3 > 0. Finally, neither Thm. 8 nor Thm. 10 applies
to x4 + 1 > 0, since x4 does not behave (eventually) monotonically: Its value after n iterations is
given by (−1)n ·xinit

4 , where xinit
4 denotes the initial value of x4. Thus, we apply Thm. 13 and we get

‖x1 > 0 ∧ x2 ≥ 0 ∧ x3 > 0 ∧ x4 = 0 | ϕ | >‖~a , which is solved. Here, we simplified the subformula
x4 + 1 > 0 ∧ x4 = −x4 that results from the last acceleration step to x4 = 0.

This shows that our calculus allows for applying Thm. 13 to loops that do not have a fixpoint.
The reason is that it suffices to require that a subset of the program variables remain unchanged,
whereas the values of other variables may still change.

As x1 > 0 ∧ x2 ≥ 0 ∧ x3 > 0 ∧ x4 = 0 is satisfiable, it is a certificate of non-termination by
Thm. 7.

4 Experiments and Conclusion
We implemented our approach in our open-source tool LoAT.2 It uses Z3 [10] and Yices2 [4] to

LoAT AProVE iRankFinder RevTerm Ultimate VeryMax
NO 206 200 205 133 205 175
YES 0 1301 1298 0 965 1299
fail 1305 10 8 1378 341 37

avg rt 0.04s 16.09s 1.40s 39.31s 21.71s 3.17s
avg rt NT 0.02s 10.65s 1.34s 4.55s 8.27s 14.52s

check implications. To
evaluate our approach, we
used the examples from
the evaluation of [5]. All
tests have been run on
StarExec [11]. To prove
non-termination, our im-
plementation applies the conditional non-termination techniques from Sec. 3 with the following prior-
ities: Thm. 8 > Thm. 10 > Thm. 13. We compared our implementation in LoAT with several leading
tools for proving non-termination of integer programs: AProVE [8], iRankFinder [1], RevTerm [2],
Ultimate [3], and VeryMax [9]. We used a timeout of 60s for each tool.

2 https://aprove-developers.github.io/LoAT/

WST 2022 29

https://sws.cs.ru.nl/WST2022

F. Frohn and C. Fuhs

The results can be seen in the table above. They show that our novel calculus is competitive
with state-of-the-art tools. Both iRankFinder and Ultimate can prove non-termination of precisely
the same 205 examples. LoAT can prove non-termination of these examples, too. In addition, it
solves one benchmark that cannot be handled by any other tool:

while x > 9 ∧ x1 ≥ 0 do (x
x1)←

(
x2

1+2·x1+1
x1+1

)

We conjecture that the other tools fail for this example due to the presence of non-linear arithmetic.
Our calculus from Sec. 3 just needs to check implications, so as long as the underlying SMT-solver
supports non-linearity, it can be applied to non-linear examples, too.

For more details on our experiments, our benchmark collection, more details about the results of
our evaluation, and a pre-compiled binary (Linux, 64 bit) we refer to [6].

Conclusion
We showed how the calculus from [5] can be adapted for proving non-termination, and we presented
three non-termination techniques that can be combined with our novel calculus. Our experiments
show that our approach is competitive in practice.

References
1 Amir M. Ben-Amram, Jesús J. Doménech, and Samir Genaim. Multiphase-linear ranking

functions and their relation to recurrent sets. In SAS ’19, LNCS 11822, pages 459–480, 2019.
doi:10.1007/978-3-030-32304-2_22.

2 Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, and Dorde Zikelic. Proving
non-termination by program reversal. In PLDI ’21, pages 1033–1048, 2021. doi:10.1145/
3453483.3454093.

3 Yu-Fang Chen, Matthias Heizmann, Ondrej Lengál, Yong Li, Ming-Hsien Tsai, Andrea Turrini,
and Lijun Zhang. Advanced automata-based algorithms for program termination checking. In
PLDI ’18, pages 135–150, 2018. doi:10.1145/3192366.3192405.

4 Bruno Dutertre. Yices 2.2. In CAV ’14, LNCS 8559, pages 737–744, 2014. doi:10.1007/
978-3-319-08867-9_49.

5 Florian Frohn. A calculus for modular loop acceleration. In TACAS ’20, LNCS 12078, pages
58–76, 2020. doi:10.1007/978-3-030-45190-5_4.

6 Florian Frohn and Carsten Fuhs. A calculus for modular loop acceleration and non-termination
proofs, 2021. URL: https://arxiv.org/abs/2111.13952.

7 Florian Frohn and Jürgen Giesl. Proving non-termination via loop acceleration. In FMCAD ’19,
pages 221–230, 2019. doi:10.23919/FMCAD.2019.8894271.

8 Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas
Ströder, Stephanie Swiderski, and René Thiemann. Analyzing program termination and
complexity automatically with AProVE. J. Autom. Reasoning, 58(1):3–31, 2017. doi:10.1007/
s10817-016-9388-y.

9 Daniel Larraz, Kaustubh Nimkar, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert
Rubio. Proving non-termination using max-SMT. In CAV ’14, LNCS 8559, pages 779–796,
2014. doi:10.1007/978-3-319-08867-9_52.

10 Leonardo de Moura and Nikolay Bjørner. Z3: An efficient SMT solver. In TACAS ’08, LNCS
4963, pages 337–340, 2008. doi:10.1007/978-3-540-78800-3_24.

11 Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: A cross-community infrastructure
for logic solving. In IJCAR ’14, LNCS 8562, pages 367–373, 2014. doi:10.1007/
978-3-319-08587-6_28.

WST 2022 30

https://sws.cs.ru.nl/WST2022

Deciding Termination of Uniform Loops with
Polynomial Parameterized Complexity
Marcel Hark # Ñ �

Florian Frohn #Ñ �

Jürgen Giesl #Ñ �

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Abstract
In [3, 4] we showed that for so-called triangular weakly non-linear loops over rings S like Z, Q, or
R, the question of termination can be reduced to the existential fragment of the first-order theory
of S. For loops over R, our reduction implies decidability of termination. For loops over Z and Q,
it proves semi-decidability of non-termination. In this paper, we show that there is an important
class of linear loops where our decision procedure results in an efficient procedure for termination
analysis, i.e., where the parameterized complexity of deciding termination is polynomial.

2012 ACM Subject Classification Theory of computation → Program analysis; Theory of computa-
tion → Parameterized complexity and exact algorithms

Keywords and phrases Termination, Linear Loops, Decision Procedure, Complexity, Closed Form

Funding funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-235950644
(Project GI 274/6-2), by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-
389792660 as part of TRR 248, and by the DFG Research Training Group 2236 UnRAVeL

1 Introduction

In [3, 4], we showed that termination of linear loops whose update matrix only has rational
eigenvalues is Co-NP-complete. In this paper, we present a special case of linear loops
(so-called uniform loops) and show that for these loops deciding termination is polynomial, if
one fixes the number of eigenvalues of the update matrix.

In Sect. 2, we introduce uniform loops and state our main result (Thm. 3). To prove it,
we use our decision procedure from [3, 4] which instantiates the variables in the loop guard
by closed forms for the iterated update of the loop (Sect. 3). For uniform loops, this results
in formulas of a special structure that can be checked in polynomial time (Sect. 4).

2 Uniform Loops and the Parameterized Complexity Class XP

A linear loop over a ring S has the form while (φ) do x⃗ ← A · x⃗ (or (φ,A · x⃗) for short).
Here, x⃗ is a vector of d ≥ 1 pairwise different variables that range over S and A is a d× d
matrix over S. For loops while (φ) do x⃗← A · x⃗+ c⃗, note that c⃗ ∈ Sd can be eliminated by
introducing an additional variable. The guard φ is a quantifier-free formula over the atoms
{f ▷ 0 | f ∈ S[x⃗]lin, ▷ ∈ {≥,>}}, where S[x⃗]lin contains all polynomials of degree at most 1.

▶ Definition 1 (Uniform Loop). A linear loop (φ,A · x⃗) over S ∈ {Z,Q,RA} (where RA are
the real algebraic numbers) is uniform if each eigenvalue λ of A is a non-negative number
from S whose eigenspace w.r.t. A is one-dimensional, i.e., λ has geometric multiplicity 1.

The latter property is equivalent to requiring that there is exactly one Jordan block for
each eigenvalue in A’s Jordan normal form. Fig. 1 shows an example for a uniform loop. In
contrast, a loop which updates each xi to λ ·xi is not uniform. To give an intuition how hard
the restriction to uniform loops is, the TPDB category for “Termination of Integer Transition

WST 2022 31

https://sws.cs.ru.nl/WST2022

2 Deciding Termination of Uniform Loops

while (φ) do
x⃗← A · x⃗ A =

[1 1 0 0 0
0 1 0 0 0
0 0 2 1 0
0 0 0 2 1
0 0 0 0 2

]
q⃗ =




x1 + n · x2
x2

x3 · 2n +
(

x4
2 − x5

8

)
· n · 2n + x5

8 · n2 · 2n

x4 · 2n + x5
2 · n · 2n

x5 · 2n




Figure 1 Uniform Loop and its Normalized Closed Form

Systems” at the Termination and Complexity Competition contains 467 polynomial loops
with non-constant guard, where 290 (62 %) are uniform. We show that termination of
uniform loops is in the parameterized complexity class XP.

▶ Definition 2 (Parameterized Decision Problem, XP [2]). A parameterized decision problem is
a language L ⊆ Σ∗×N, where Σ is a finite alphabet. The second component is the parameter
of the problem. L is an element of the complexity class XP if the time needed for deciding the
question “(x, k) ∈ L?” is in O(|x|f(k)) where f is a computable function depending only on k.

In the remainder, we show that for any fixed k ∈ N, termination of uniform loops with k
eigenvalues is decidable in polynomial time. For the full version of our paper, we refer to [4].

▶ Theorem 3 (Parameterized Complexity of k-Termination). We define the parameterized
decision problem k-termination as follows: ((φ,A · x⃗), k) ∈ Lk-termination iff the loop (φ,A · x⃗)
terminates over S and A has k eigenvalues. For uniform loops, k-termination is in XP.

Our result is surprising as it shows that for these loops, termination is easier to decide than
satisfiability of the guard (e.g., unsatisfiability of linear formulas over RA is Co-NP-complete).
Intuitively, our class prohibits multiple updates like xi ← xi where variables “stabilize”, as
termination is essentially equivalent to unsatisfiability of the guard for such loops.

3 Deciding Termination

To decide termination, we first transform the uniform loop (φ,A · x⃗) such that the update
matrix is in Jordan normal form. Let λ1 < . . . < λk be A’s eigenvalues, let Q be A’s Jordan
normal form where the Jordan blocks are ordered such that the numbers on the diagonal are
weakly monotonically increasing, and let T be the corresponding transformation matrix, i.e.,
A = T−1 ·Q · T . Moreover, let η be the automorphism defined by η(x⃗) = T · x⃗. As shown
in [3, 4], instead of termination of the original loop on Sd, we can prove termination of the
transformed loop on (η−1(φ), Q · x⃗) = (φ′, Q · x⃗) on T · Sd. Here, η−1(φ) results from φ

by applying η−1 to all polynomials that occur in φ. For S ∈ {Q,RA}, the transformation
matrix T is an invertible matrix over S. Therefore, we obtain T · Sd = Sd, i.e., we now have
to analyze termination of (φ′, Q · x⃗) over S. In contrast, if S = Z, then the transformation
matrix T or its inverse may contain non-integer rational numbers. Thus, we focus on uniform
loops over S ∈ {Q,RA} and refer to [4] for S = Z.

So we now assume that the update matrix of our loop (φ,A · x⃗) is in Jordan normal form.
As shown in [4], one can easily compute a normalized closed form q⃗ of A, i.e., q⃗ is a vector of
d arithmetic expressions over x⃗ and a designated variable n such that q⃗ = An · x⃗ for all large
enough n ∈ N (see Fig. 1 for such a q⃗ in our example). Then (φ,A · x⃗) is non-terminating iff

∃x⃗ ∈ Sd, n0 ∈ N. ∀n ∈ N>n0 . φ(q⃗) is valid, (1)

where φ(q⃗) = φ[x⃗/q⃗]. To check this, we examine the dominant terms in φ(q⃗)’s inequations.
Let p ▷ 0 occur in φ(q⃗), where ▷ ∈ {≥, >}. Then we order p’s addends according to their

asymptotic growth w.r.t. n. Here, let QS =
{

r
s

∣∣ r ∈ S, s ∈ S>0
}

be the quotient field of S.

▶ Definition 4 (Ordering Coefficients). Marked coefficients are of the form α(b,a) where α ∈
QS [x⃗]lin, b ∈ S>0, and a ∈ N. We define unmark(α(b,a)) = α and α

(b1,a1)
1 ≺coef α

(b2,a2)
2 if

WST 2022 32

https://sws.cs.ru.nl/WST2022

M. Hark, F. Frohn, and J. Giesl 3

b1 < b2 or b1 = b2 ∧ a1 < a2. Let p =
∑ℓ

j=1 αj · naj · bn
j , where αj ̸= 0 for all 1 ≤ j ≤ ℓ.

Then the marked coefficients of p are coefs (p) = {0(1,0)}, if ℓ = 0, and coefs (p) = {α(bj ,aj)
j |

1 ≤ j ≤ ℓ} otherwise. W.l.o.g., let α(bi,ai)
i ≺coef α

(bj ,aj)
j for all 1 ≤ i < j ≤ ℓ.

▶ Example 5. In Fig. 1, let φ = f > 0∧f ′ > 0 for f = −x1 +3 ·x3 +4 and f ′ = 2 ·x1−5. So
φ(q⃗) = f(q⃗) > 0∧ f ′(q⃗) > 0 = p > 0∧ p′ > 0. We have p = f(q1, . . . , q5) = −q1 + 3 · q3 + 4 =

(−x1 + 4)− x2 · n+ 3 · x3 · 2n +
(3·x4

2 − 3·x5
8

)
· n · 2n + 3·x5

8 · n2 · 2n. (2)

So coefs(p) = {α(1,0)
1 , α

(1,1)
2 , α

(2,0)
3 , α

(2,1)
4 , α

(2,2)
5 }, where α1 = −x1 + 4, α2 = −x2, α3 = 3 · x3,

α4 = 3·x4
2 − 3·x5

8 , and α5 = 3·x5
8 .

For v⃗ ∈ Sd, we have p(v⃗) > 0 for large enough values of n iff the coefficient of the
asymptotically fastest growing addend α(v⃗) ·na ·bn that does not vanish (i.e., where α(v⃗) ̸= 0)
is positive. Similarly, we have p(v⃗) < 0 for large enough n iff α(v⃗) < 0. If all addends of p
vanish when instantiating x⃗ with v⃗, then p(v⃗) = 0. Thus, ∃x⃗ ∈ Sd, n0 ∈ N. ∀n ∈ N>n0 . p ▷ 0
holds iff there is a v⃗ ∈ Sd such that unmark

(
max≻coef (coefs (p(v⃗)))

)
▷ 0. This is equivalent

to satisfiability of red(p ▷ 0), where

red(p > 0) =
∨ℓ

i=1
(αi > 0 ∧

∧ℓ

j=i+1
αj = 0) and red(p ≥ 0) = red(p > 0) ∨

∧ℓ

j=1
αi = 0.

▶ Example 6. We continue Ex. 5. Here, ∃x⃗ ∈ Sd, n0 ∈ N. ∀n ∈ N>n0 . p ▷ 0 is valid iff
∃x1, x2, x3, x4, x5 ∈ Z. red(p > 0) is valid, where red(p > 0) is

(α1 > 0 ∧ α2 = 0 ∧ . . . ∧ α5 = 0) ∨ (α2 > 0 ∧ α3 = 0 ∧ . . . ∧ α5 = 0)
∨ (α3 > 0 ∧ α4 = 0 ∧ α5 = 0) ∨ (α4 > 0 ∧ α5 = 0) ∨ α5 > 0.

To lift our reduction to quantifier-free formulas ξ, let the formula red(ξ) result from ξ by
replacing each atom p ▷ 0 in ξ by red(p ▷ 0). Then, we obtain the following decision procedure.
▶ Theorem 7 (Deciding Termination). A loop (φ,A · x⃗) over S with normalized closed form
q⃗ is non-terminating iff ∃x⃗ ∈ Sd. red(φ(q⃗)) is valid.

4 Interval Conditions

For uniform loops, red(p ▷ 0) can be expressed as a disjunction of interval conditions, whose
satisfiability is particularly easy to check. More precisely, for any p = f(q⃗) with f ∈ S[x⃗]lin
and any 1 ≤ i ≤ ℓ, in [4] we show how to construct an interval condition ρf,i in polynomial
time from q1, . . . , qd and f which is equivalent to αi > 0 ∧ ∧ℓ

j=i+1 (αj = 0), and we also
introduce an interval condition ρf,0 which is equivalent to

∧ℓ
j=1 (αj = 0).

▶ Example 8. For p = f(q⃗) = (2) from Ex. 5, red(p > 0) is equivalent to ic(p > 0) =
ρf,1 ∨ ρf,2 ∨ ρf,3 ∨ ρf,4 ∨ ρf,5 =

(−x1 + 4 > 0 ∧∧5
j=2 xj = 0) ∨ (−x2 > 0 ∧∧5

j=3 xj = 0)
∨ (x3 > 0 ∧ x4 = 0 ∧ x5 = 0) ∨ (x4 > 0 ∧ x5 = 0) ∨ (x5 > 0).

The formulas ρf,s are so-called interval conditions.
▶ Definition 9 (Interval Condition). For 1 ≤ i, i′ ≤ d, i ̸= i′, I ⊆ {1, . . . , d}, sg ∈ {−1, 1},
and 0 ̸= c ∈ QS , an interval condition has one of the following forms:

(a)
∧

j∈I (xj = 0)
(b) sg · xi > 0 ∧ ∧

j∈I\{i} (xj = 0)

WST 2022 33

https://sws.cs.ru.nl/WST2022

4 Deciding Termination of Uniform Loops

(c) xi′ = c ∧ ∧
j∈I\{i′} (xj = 0)

(d) sg · xi > 0 ∧ xi′ = c ∧ ∧
j∈I\{i,i′} (xj = 0)

(e) sg · xi + c > 0 ∧ ∧
j∈I\{i} (xj = 0)

To decide satisfiability of the formulas ic(p ▷ 0), we only have to regard instantiations of
the variables with values from {0, 1, -1, ⋆}, where ⋆ stands for one additional non-zero value.

▶ Definition 10 (Evaluation). Let ρ be a formula built from ∧, ∨, and atoms of the form
sg · x + c > 0 and x = c for sg ∈ {1,−1}, c ∈ QS , and x ∈ {x1, . . . , xd}. Moreover, let
v⃗ ∈ {0, 1, -1, ⋆}d. The evaluation of ρ w.r.t. v⃗ (written ρ(v⃗)↓) results from ρ(v⃗) = ρ[x⃗/v⃗]
by simplifying (in)equations without ⋆ to true or false, and by simplifying conjunctions and
disjunctions with true resp. false. We write v⃗ ⊨? ρ if ρ(v⃗)↓ ≠ false.

So if ρ is (x1 − 5
2 > 0) ∧ (x2 = 0) and v⃗ = (⋆, 0), then ρ(v⃗)↓ is ⋆− 5

2 > 0. Hence, v⃗ ⊨? ρ.
Thus, we have v⃗ ⊨? ρ whenever there could be a value w for ⋆ such that ρ[x⃗/v⃗, ⋆ /w]↓ = true.

Let ν1, . . . , νk be the algebraic multiplicities of the eigenvalues λ1, . . . , λk. So in Fig. 1
we have λ1 = 1, λ2 = 2, ν1 = 2, and ν2 = 3. Then we define the blocks Bλ1 = {1, . . . , ν1},
Bλ2 = {ν1 + 1, . . . , ν1 + ν2}, . . . , and Bλk

= {ν1 + . . .+ νk−1 + 1, . . . , d}. Note that if λ1 = 0,
then all entries q1, . . . , qν1 of q⃗ are 0. Thus, we assume that 0 is not an eigenvalue of A.

Now we define candidate assignments cndAssg(ρf,i) for the formulas ρf,i which contain
all v⃗ ∈ {0, 1, -1, ⋆}d that may satisfy ρf,i (if a suitable value for ⋆ is found). However, for
each block B, at most one variable xj with j ∈ B may be assigned a non-zero value (i.e., 1,
-1, or ⋆). Moreover, the value ⋆ may only be used in the block B1 for the eigenvalue λ = 1.

▶ Definition 11 (Sets of Candidate Assignments). For all 0 ≤ s ≤ ℓ, we define cndAssg(ρf,s) =

{v⃗ ∈ {0, 1, -1, ⋆}d | v⃗ ⊨? ρf,s, vj = ⋆ =⇒ j ∈ B1,

∀ B ∈ {Bλ1 , . . . , Bλk
}. there is at most one j ∈ B with vj ̸= 0}

▶ Example 12. For ρf,4 = (x4 > 0 ∧ x5 = 0) in Ex. 8, v⃗ ⊨? ρf,4 implies v4 = 1 and v5 = 0.
Here, v4 = ⋆ is not possible, because 4 does not belong to the block B1 = {1, 2} for the
eigenvalue 1. Since at most one value for each block may be non-zero, we have v3 = 0. In
contrast, v1 and v2 can be arbitrary, but at most one of them may be non-zero. Hence, we
obtain the following for ρf,4 and for ρf,0 = (x1 = 4) ∧∧5

j=2(xj = 0):

cndAssg(ρf,4) = {
[1

0
0
1
0

]
,

[⋆
0
0
1
0

]
,

[-1
0
0
1
0

]
,

[0
1
0
1
0

]
,

[0
⋆
0
1
0

]
,

[0
-1
0
1
0

]
,

[0
0
0
1
0

]
}, cndAssg(ρf,0) = {

[⋆
0
0
0
0

]
}

We lift cndAssg to inequations by defining cndAssg(ic(p > 0)) =
⋃ℓ

i=1 cndAssg(ρf,i) and
cndAssg(ic(p ≥ 0)) = cndAssg(ic(p > 0)) ∪ cndAssg(ρf,0). Then we have

|cndAssg(ic(p ▷ 0))| ≤ (d+ 2) · (3 ·max{νi | 1 ≤ i ≤ k}+ 1)k
. (3)

To analyze termination of uniform loops, we use Alg. 1 to decide whether (1) is valid
(i.e., whether the uniform loop is non-terminating). Our algorithm computes ic(φ(q⃗)) by
replacing each atom f(q⃗) ▷ 0 in φ(q⃗) (where f ∈ S[x⃗]lin) by ic(f(q⃗) ▷ 0), and then checks each
candidate assignment from cndAssg(ic(φ(q⃗))) =

⋃
f(q⃗)▷0 atom in φ(q⃗) cndAssg(ic(f(q⃗) ▷ 0)).

To this end, it calls a method SMT(ψ,V,S) which checks whether the linear formula ψ
in the variables V is satisfiable. In our case, V = {⋆} and thus, |V| = 1. With this restriction,
the method SMT has polynomial runtime (see [1, 5]). More precisely, SMT is called in Alg. 1
to determine whether ⋆ can be assigned a non-zero value such that ψ(v⃗)↓ is satisfiable. Here,
we have to assign all occurrences of ⋆ in the formula ψ(v⃗)↓ the same value.

WST 2022 34

https://sws.cs.ru.nl/WST2022

REFERENCES 5

Input: a formula φ over the atoms {f ▷ 0 | f ∈ S[x⃗]lin, ▷ ∈ {>,≥}},
a normalized closed form q⃗, and a ring S ∈ {Z,Q,RA}

Result: ⊤ if ∃x⃗ ∈ Sd. ic(φ(q⃗)) is valid, ⊥ otherwise
ψ ← ic(φ(q⃗))
foreach v⃗ ∈ cndAssg(ψ) do

ψ′ ← ψ(v⃗)↓
if SMT((ψ′ ∧ ⋆ ̸= 0), {⋆},S) then return ⊤

return ⊥
Algorithm 1 Checking Interval Conditions

The formula ic(φ(q⃗)) and each element of cndAssg(ic(φ(q⃗))) can be computed in polyno-
mial time. By (3), cndAssg(ic(φ(q⃗))) has at most |φ| · (d+ 2) · (3 ·max{νi | 1 ≤ i ≤ k}+ 1)k

elements, where |φ| is the number of atoms in φ and νi ≤ d for all 1 ≤ i ≤ k. Thus,
cndAssg(ic(φ(q⃗))) can be computed in polynomial time for fixed k. Moreover, evaluating a
formula w.r.t. v⃗ according to Def. 10 is possible in polynomial time, too. So the runtime of
Alg. 1 is polynomial when regarding k as a parameter.

▶ Example 13. Reconsider the loop in Fig. 1 and φ, p, p′ in Ex. 5. Here, ψ = ic(φ(q⃗)) =
ic(p > 0) ∧ ic(p′ > 0), where ic(p > 0) =

∨5
i=1 ρf,i as in Ex. 8. Note that coefs(p′) =

{α′
1

(1,0)
, α′

2
(1,1)} with α′

1 = 2 · x1 − 5 and α′
2 = 2 · x2. Moreover, ic(p′ > 0) = ρf ′,1 ∨ ρf ′,2

with ρf ′,1 = (x1 − 5
2 > 0) ∧ (x2 = 0) and ρf ′,2 = (x2 > 0). Consider v⃗ = (⋆, 0, 0, 0, 0). Then

(ρf,1 ∧ ρf ′,1)(v⃗)↓ = (− ⋆+4 > 0) ∧ (⋆− 5
2 > 0) is satisfiable with the model ⋆ = 3. Hence,

this model also satisfies ψ(v⃗)↓ ∧ ⋆ ̸= 0. Thus, Alg. 1 proves validity of ∃x⃗ ∈ Sd. ic(φ(q⃗)) and
therefore, non-termination of the uniform loop over S for both S = Q and S = RA.

5 Conclusion

We presented an approach to decide termination of uniform loops over S ∈ {Q,RA} in
polynomial time, if the number of eigenvalues of the update matrix is fixed. To this end, we
first transform the uniform loop such that the update matrix is in Jordan normal form and
then compute its normalized closed form. Afterwards, Alg. 1 can decide its termination.

The approach also works for uniform loops over Z if the update matrix is already in
Jordan normal form. Otherwise, we have to analyze termination of the transformed loop
(φ′, Q · x⃗) over T · Zd. As shown in [4], this is also possible by a slight modification of Alg. 1.
Thus, termination of uniform loops is in XP for all rings S ∈ {Z,Q,RA}, i.e., our decision
procedure can indeed be used as an efficient technique for termination analysis.

References

1 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic Ge-
ometry. Algorithms and Comp. in Math. 10. Springer, 2006. doi:10.1007/3-540-33099-2.

2 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

3 Florian Frohn, Marcel Hark, and Jürgen Giesl. Termination of polynomial loops. In Proc.
SAS, LNCS 12389, pages 89–112, 2020. doi:10.1007/978-3-030-65474-0_5.

4 Marcel Hark, Florian Frohn, and Jürgen Giesl. Termination of triangular polynomial loops.
CoRR, abs/1910.11588, 2022. URL: https://arxiv.org/abs/1910.11588.

5 Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Math.
Oper. Res., 8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

WST 2022 35

https://sws.cs.ru.nl/WST2022

Improved Automatic Complexity Analysis of
Integer Programs
Jürgen Giesl !Ï

Nils Lommen !Ï

Marcel Hark ! Ï

Fabian Meyer !Ï

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Abstract
In former work [4], we developed an approach for automatic complexity analysis of integer programs,
based on an alternating modular inference of upper runtime and size bounds for program parts. In
this paper, we show how recent techniques to improve automated termination analysis of integer
programs (like the generation of multiphase-linear ranking functions and control-flow refinement) can
be integrated into our approach for the inference of runtime bounds. Our approach is implemented
in the complexity analysis tool KoAT.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Program analysis; Software and its engineering → Automated static analysis

Keywords and phrases Automatic Complexity Analysis, Integer Programs, Ranking Functions,
Control-Flow Refinement

Funding funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
235950644 (Project GI 274/6-2) and the DFG Research Training Group 2236 UnRAVeL

1 Introduction

There are many techniques and tools for automated complexity analysis of programs. Most of
them infer variants of (mostly linear) polynomial ranking functions which are then combined
to get a runtime bound for the overall program. However, linear ranking functions are
incomplete for complexity analysis, even for loops with only linear arithmetic. For example,
consider the loop from [2,8], which terminates, but does not admit a linear ranking function:

while (x > 0) do (x, y)← (x + y, y − 1) (1)

Its runtime is linear in the initial values of x and y, if they are positive initially. The reason is
that if y > 0, then x grows first but it is decreased with the same “speed” once y has become
negative. By multiphase-linear ranking functions (MΦRFs, see, e.g., [2, 3, 8]), one detects
that the program has two phases: First y is decremented until it is negative. Afterwards, x is
decremented until it is negative and the loop terminates. In [2], it is shown that the existence
of an MΦRF for a loop implies linear runtime complexity. In this paper, we show how to
integrate MΦRFs into our modular approach for complexity analysis of integer programs
from [4]. In contrast to [2], we infer MΦRFs for parts of the program and combine the
so-obtained bounds to an overall runtime bound. In this way, we obtain a powerful technique
which can infer finite runtime bounds for programs containing loops like (1).

Different forms of control-flow refinement are used for program analysis (see, e.g., [5, 6,
10]) and such refinements have also been used to improve the automatic termination and
complexity analysis of programs further. The basic idea is to gain “more information” on the
values of variables to sort out certain paths in the program. We show how to integrate the
technique for control-flow refinement from [5] into our modular analysis in a non-trivial way.

WST 2022 36

https://sws.cs.ru.nl/WST2022

2 Improving Automatic Complexity Analysis of Integer Programs

See [7] for the full version of our paper and [9] for a further improvement which integrates a
special handling for sub-programs that correspond to triangular weakly non-linear loops.

2 Improving Runtime Bounds by Multiphase-Linear Ranking Functions

ℓ0 ℓ1 ℓ2
t0

t1 : τ = z > 0
η(x) = z − 1
η(y) = z − 1

t2 : τ = x > 0
η(x) = x + y

η(y) = y − 1
t3 : τ = z > 0
η(z) = z − 1

Figure 1 Integer Program with two Nested Loops

Instead of while loops as in (1),
we use a formalism based on tran-
sitions. Fig. 1 depicts an inte-
ger program with locations L =
{ℓ0, ℓ1, ℓ2} and variables V =
{x, y, z}. T is the set of transitions
t = (ℓ, τ, η, ℓ′), i.e., directed edges
from a location ℓ to ℓ′ which are
labeled with a guard τ and an up-
date function η : V → Z[V]. In Fig. 1 we omitted trivial guards, i.e., τ = true, and trivial
updates of the form η(v) = v. Note that transition t2 corresponds to the loop in (1).

When evaluating the transition t, one moves from location ℓ to ℓ′ if the guard τ is fulfilled,
and the current state σ : V → Z is updated according to η. We denote such an evaluation
step by (ℓ, σ)→t (ℓ′, σ′), where σ′(v) = σ(η(v)) for all v ∈ V. Moreover, →T is

⋃
t∈T →t.

To over-approximate the runtime of programs, we compute a runtime bound RB(t) for
every transition t ∈ T . Here, RB(t) is an arithmetic expression over the variables V such
that |σ|(RB(t)) over-approximates the number of applications of t in any evaluation starting
with the initial state σ, where |σ|(v) = |σ(v)| for all v ∈ V.

Our approach is modular, i.e., program parts are analyzed as standalone programs and
the results are then lifted to contribute to the overall analysis. To lift local to global runtime
bounds, we also compute size bounds SB(t, v). The arithmetic expression SB(t, v) over-
approximates the absolute value that the variable v may have after the transition t in any
possible run. Since size bounds are needed to compute runtime bounds and vice versa, we
compute and improve them in an alternating way.

To compute runtime bounds, we use ranking functions. Essentially, a ranking function
must decrease by at least one in every evaluation step when a specific transition is applied.
Moreover, the ranking function has to be non-negative before we apply a transition. Thus, if
the function becomes negative, then the program terminates. An MΦRF extends this idea
and uses a ranking function fi for every “phase” 1 ≤ i ≤ d of a program. When the phases 1
to i− 1 are finished, the functions f1, . . . , fi−1 remain negative and decreasing, but now fi

becomes decreasing as well. If all functions are negative, then the program terminates.
The following definition corresponds to so-called nested MΦRFs from [2, 8]. Here, the

sum of fi−1 and fi must be larger than the updated function fi for all i. We set f0 to
0. Then f0 + f1 = f1 must be decreasing with each update. If f1 becomes negative, then
f1 + f2 < f2 and thus, f2 has to be decreasing with every update, and so on until fd becomes
decreasing. The program eventually terminates, since fd must be non-negative whenever the
program can be executed further. In contrast to [2,8], we define MΦRFs for sub-programs
T ′

> ⊆ T ′ ⊆ T which is crucial for our modular approach (see Thm. 3). Let Z[V]lin denote
the set of linear polynomials (i.e., of degree at most 1) over Z in the variables V.

▶ Definition 1 (MΦRFs for Sub-Programs). Let ∅ ̸= T ′
> ⊆ T ′ ⊆ T and d ≥ 1. A tuple

f = (f1, . . . , fd) of functions f1, . . . , fd : L → Z[V]lin is an MΦRF of depth d for T ′
> and T ′

if for all evaluation steps (ℓ, σ)→t (ℓ′, σ′):
(a) If t ∈ T ′

>, then σ (fi−1(ℓ)) + σ (fi(ℓ)) ≥ σ′ (fi(ℓ′)) + 1 for all 1 ≤ i ≤ d and σ (fd(ℓ)) ≥ 0.

WST 2022 37

https://sws.cs.ru.nl/WST2022

J. Giesl, N. Lommen, M. Hark, F. Meyer 3

(b) If t ∈ T ′ \ T ′
>, then we have σ (fi(ℓ)) ≥ σ′ (fi(ℓ′)) for all 1 ≤ i ≤ d.

For instance, (f1, f2) is an MΦRF for T ′
> = {t2} and T ′ = {t2, t3} in the program of

Fig. 1, where f1(ℓ1) = f1(ℓ2) = y + 1 and f2(ℓ1) = f2(ℓ2) = x. So f1, f2 correspond to the
two phases of the program, i.e., f2 decreases once y has become negative.

We define the set of entry transitions of ℓ ∈ L as Tℓ = {t | t = (ℓ′, τ, η, ℓ)∧ t ∈ T \T ′} and
the set of entry locations is ET ′ = {ℓin | Tℓin ̸= ∅ ∧ ∃ℓ′ : (ℓin, τ, η, ℓ′) ∈ T ′}. Moreover, the
entry transitions of T ′ are ET T ′ =

⋃
ℓ∈ET ′ Tℓ. So for the program in Fig. 1 and T ′ = {t2, t3},

we have Tℓ1 = {t0}, Tℓ2 = {t1}, ET ′ = {ℓ2}, and ET T ′ = {t1}.
Now Lemma 2 gives rise to a runtime bound βℓ. In any run through T ′ starting in (ℓ, σ),

all functions fi of the MΦRF become negative after at most |σ|(βℓ) many T ′
>-evaluations. To

use the bound βℓ in our modular approach, it must be weakly monotonically increasing. To
transform polynomials into such bounds, we replace their coefficients by their absolute values
(and denote this transformation by ⌈·⌉). So for example, ⌈−x + 2⌉ = | − 1| · x + |2| = x + 2.
▶ Lemma 2 (Local Runtime Bound for Sub-Program). Let ∅ ̸= T ′

> ⊆ T ′ ⊆ T and let
f = (f1, . . . , fd) be an MΦRF for T ′

> and T ′. For all 1 ≤ i ≤ d we define the constants
γi ∈ Q, and for all ℓ ∈ ET ′ we define the arithmetic expression βℓ:
• γ1 = 1 and γi = 2 + γi−1

i−1 + 1
(i−1)! for i > 1

• βℓ = 1 + d! · γd · (⌈f1(ℓ)⌉+ . . . + ⌈fd(ℓ)⌉)
Then for any run (ℓ, σ) (→∗

T ′\T ′
>
◦ →T ′

>
)n (ℓ′, σ′) with n ≥ |σ|(βℓ) and any 1 ≤ i ≤ d, we

have σ′(fi(ℓ′)) < 0.
We have γ1 = 1 and γ2 = 2 + 1

1 + 1
1 = 4. So if T ′ = {t2, t3} in Fig. 1 is interpreted as a

standalone program, then t2 can be executed at most |σ|(βℓ2) = |σ|(1 + 2! · γ2 · (⌈f1(ℓ2)⌉+
⌈f2(ℓ2)⌉)) = 8 · |σ|(x) + 8 · |σ|(y) + 9 many times when starting in the configuration (ℓ2, σ).

Note that βℓ in Lemma 2 is only a (linear) local bound w.r.t. the values of the variables at
the start of the sub-program T ′. In an evaluation of the full program, we enter T ′ by an entry
transition t ∈ Tℓ to an entry location ℓ ∈ ET ′ . Thus, to lift βℓ to a (possibly non-linear) global
bound, we have to instantiate the variables in βℓ by (over-approximations of) the values that
the variables have when reaching the sub-program T ′, i.e., after the transition t. To this end,
we use size bounds SB(t, v) which over-approximate the largest absolute value of v after the
transition t. We also use the notation SB(t, b) for arithmetic expressions b, where SB(t, b)
results from b by replacing each variable v in b by SB(t, v). Hence, SB(t, βℓ) is a (global)
bound on the number of applications of transitions from T ′

> if T ′ is entered once via the
entry transition t. Here, weak monotonic increase of βℓ ensures that the over-approximation
of the variables v in βℓ by SB(t, v) indeed leads to an over-approximation of T ′

>’s runtime.
However, for every entry transition t we also have to take into account how often the

sub-program T ′ may be entered via t. We over-approximate this value by RB(t). This leads
to Thm. 3. The analysis starts with a runtime bound RB and a size bound SB which map all
transitions to ω, except for the transitions t outside of strongly connected components (SCCs),
where RB(t) = 1. Afterwards, RB and SB are refined repeatedly (see [4] for the computation
of size bounds). Instead of using a single ranking function for the refinement of RB as in [4],
Thm. 3 now allows us to replace RB by a refined bound RB′ based on an MΦRF.
▶ Theorem 3 (Refining Runtime Bounds Based on MΦRFs). Let RB be a runtime bound, SB
a size bound, ∅ ̸= T ′

> ⊆ T ′ ⊆ T such that T ′ does not contain any initial transitions, and βℓ

be as in Lemma 2. Then RB′ is also a runtime bound, where RB′(t) = RB(t) for t /∈ T ′
> and

RB′ (t>) =
∑

ℓ∈ET ′

∑
t∈Tℓ

RB(t) · SB(t, βℓ) for all t> ∈ T ′
>.

▶ Example 4. In Fig. 1, t1 and t3 are evaluated at most z times (this can be shown by

WST 2022 38

https://sws.cs.ru.nl/WST2022

4 Improving Automatic Complexity Analysis of Integer Programs

while (x < 0) do
if y < z then

y ← y − x

else
x← x + 1

Figure 2 Original Loop

while (x < 0 ∧ y < z) do
y ← y − x

while x < 0 ∧ y ≥ z do
x← x + 1

Figure 3 After Control-Flow Refinement

ranking functions for T ′ = {t1, t2, t3} and T ′
> = {t1} resp. T ′

> = {t3}). Hence, RB(t0) = 1
and RB(t1) = RB(t3) = z is a runtime bound. So by Thm. 3 and SB(t1, v) = z for all v ∈ V ,
we get RB(t2) = RB(t1) · SB(t1, βℓ2) = z · (8 · SB(t1, x) + 8 · SB(t1, y) + 9) = 16 · z2 + 9 · z.
Thus, the runtime of the full program is bounded by

∑3
i=0RB(ti) = 16 · z2 + 11 · z + 1.

3 Improving Runtime Bounds by Control-Flow Refinement
Now we discuss another technique to improve the automated complexity analysis of integer
programs, so-called control-flow refinement. The idea is to transform a program P into a
new program P ′ which is “easier” to analyze. Of course, we ensure that the runtime of P ′ is
at least the runtime of P. Then it is sound to infer upper runtime bounds for P ′ instead
of P. Our approach is based on the partial evaluation technique of [5]. For example, this
technique transforms the program in Fig. 2 into the equivalent one in Fig. 3. Clearly, Fig. 3
is easier to analyze as the two consecutive loops do not interfere with each other: x and z are
constants in its first loop, while y and z are constants in its second loop. We integrated the
technique for control-flow refinement from [5] into our modular analysis in a non-trivial way.

More precisely, we improved the “locality” of control-flow refinement and use partial
evaluation as an SCC-based refinement technique. We refine a non-trivial SCC TSCC of
an integer program into multiple SCCs by considering “abstract” evaluations which do not
operate on concrete states but on sets of states. These sets of states are characterized by
constraints, i.e., a constraint φ stands for all states σ with σ(φ) = true. To formalize this,
we label every location ℓ in the SCC by a constraint φ which describes (a superset of) those
states σ which can occur in this location. So for any location ℓ, all reachable configurations
have the form (ℓ, σ) such that σ(φ) = true.

We begin with labeling the entry locations of TSCC by the constraint true. The constraints
for the other locations in the SCC are obtained by considering how the updates of the
transitions affect the constraints of their source locations and their guards. The resulting
pairs of locations and constraints then become the new locations in the refined program.

Nevertheless, control-flow refinement may lead to an exponential blow-up of the program.
Therefore, we heuristically minimize the strongly connected part of the program on which
we apply partial evaluation, i.e., it is only applied on-demand on those transitions where our
current runtime bounds are “not yet good enough”. Such a sub-SCC-based partial evaluation
results in considerably shorter runtimes than the SCC-based partial evaluation.

4 Evaluation of our Complexity Analysis Tool KoAT

In our evaluation we consider all 484 programs from the category for complexity analysis of
C programs in the Termination Problems Data Base (TPDB) which is used in the annual
Termination and Complexity Competition (where at most 366 of them might have finite
runtime). In Fig. 4, we compare our implementation in the tool KoAT to the main other tools
for complexity analysis of integer programs: CoFloCo [6], KoAT1 (the old version of KoAT
from [4]), Loopus [11], and MaxCore [1]. For example, there are 24 + 228 = 252 programs
where KoAT + MΦRF5 + CFR shows that the program has at most linear runtime w.r.t. the

WST 2022 39

https://sws.cs.ru.nl/WST2022

J. Giesl, N. Lommen, M. Hark, F. Meyer 5

O(1) O(n) O(n2) O(n>2) O(EXP) <∞ AVG+(s) AVG(s)
KoAT+MΦRF5+CFR 24 228 65 11 0 328 4.77 16.40
KoAT+MΦRF5+CFRSCC 24 228 65 11 0 328 5.72 16.53
KoAT + CFR 25 216 68 11 0 320 5.14 11.67
KoAT + CFRSCC 28 216 66 10 0 320 6.00 11.93
MaxCore 23 214 66 7 0 310 1.94 5.24
KoAT + MΦRF5 23 204 71 12 0 310 2.11 5.16
CoFloCo 22 195 66 5 0 288 0.81 2.95
KoAT1 25 168 74 12 6 285 2.36 2.97
KoAT 23 176 70 12 0 281 2.05 2.76
Loopus 17 169 49 4 0 239 0.84 0.72

Figure 4 Evaluation on the Category Complexity_C_Integer from the TPDB

initial values, and “<∞” is the number of examples where a finite (possibly non-polynomial)
bound on the runtime could be computed within the time limit of 5 minutes. “AVG+(s)” is
the average runtime of the tool on successful runs in seconds, whereas “AVG(s)” considers
all runs including timeouts. Both MaxCore and KoAT + MΦRF5 (which applies MΦRFs
of depth 5) solve 310 examples. In contrast, KoAT + CFRSCC (which uses control-flow
refinement on the complete SCC) solves 320 examples, which makes KoAT the strongest tool
on the benchmark set. KoAT + CFR uses our local sub-SCC approach which improves the
runtime without reducing the number of solved examples. When enabling both control-flow
refinement and multiphase-linear ranking functions then KoAT is even stronger, as KoAT +
MΦRF5 + CFR solves 328 examples (i.e., 90 % of the potentially terminating ones). Moreover,
it is faster than the equally powerful configuration KoAT + MΦRF5 + CFRSCC. A detailed
evaluation, a web interface of KoAT, and its source code, binary, and a Docker image are
available at https://aprove-developers.github.io/ComplexityMprfCfr/.

References
1 E. Albert, M. Bofill, C. Borralleras, E. Martín-Martín, and A. Rubio. Resource Analysis

driven by (Conditional) Termination Proofs. TPLP, 19(5-6):722–739, 2019.
2 A. M. Ben-Amram and S. Genaim. On Multiphase-Linear Ranking Functions. In Proc. CAV,

LNCS 10427, pages 601–620, 2017.
3 A. M. Ben-Amram, J. J. Doménech, and S. Genaim. Multiphase-Linear Ranking Functions

and Their Relation to Recurrent Sets. In Proc. SAS, LNCS 11822, pages 459–480, 2019.
4 M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Analyzing Runtime and Size

Complexity of Integer Programs. ACM TOCL, 38(4), 2016.
5 J. J. Doménech, J. P. Gallagher, and S. Genaim. Control-Flow Refinement by Partial

Evaluation, and its Application to Termination and Cost Analysis. TPLP, 19:990–1005, 2019.
6 A. Flores-Montoya and R. Hähnle. Resource Analysis of Complex Programs with Cost

Equations. In Proc. APLAS, LNCS 8858, pages 275–295, 2014.
7 J. Giesl, N. Lommen, M. Hark, and F. Meyer. Improving Automatic Complexity Analysis

of Integer Programs. In The Logic of Software: A Tasting Menu of Formal Methods, LNCS
13360. 2022.

8 J. Leike and M. Heizmann. Ranking Templates for Linear Loops. LMCS, 11(1), 2015.
9 N. Lommen, F. Meyer, and J. Giesl. Automatic Complexity Analysis of Integer Programs via

Triangular Weakly Non-Linear Loops. In Proc. IJCAR, LNCS 13385, 2022. To appear.
10 K. L. McMillan. Lazy Abstraction with Interpolants. In Proc. CAV, LNCS 4144, pages

126–136, 2006.
11 M. Sinn, F. Zuleger, and H. Veith. Complexity and Resource Bound Analysis of Imperative

Programs Using Difference Constraints. J. Autom. Reason., 59(1):3–45, 2017.

WST 2022 40

https://sws.cs.ru.nl/WST2022

Automatic Complexity Analysis of (Probabilistic)
Integer Programs via KoAT
Nils Lommen �Â

Fabian Meyer �Â

Marcel Hark � Â

Jürgen Giesl �Â

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Abstract
In former work [3], we developed an approach for automatic complexity analysis of integer programs,
based on an alternating modular inference of upper runtime and size bounds for program parts.
Recently, we extended and reimplemented this approach in a new version of our open-source tool
KoAT (see [7, 10]). In order to compute runtime bounds, we analyze subprograms in topological
order, i.e., in case of multiple consecutive loops, we start with the first loop and propagate knowledge
about the resulting values of variables to subsequent loops. By inferring runtime bounds for one
subprogram after the other, in the end we obtain a bound on the runtime complexity of the whole
program. We first try to compute runtime bounds for subprograms by means of multiphase linear
ranking functions (MΦRFs [1, 2, 7, 9]). If MΦRFs do not yield a finite runtime bound for the
respective subprogram, then we apply a technique to handle so-called triangular weakly non-linear
loops (twn-loops [5, 6, 8, 10]) on the unsolved parts of the subprogram. Moreover, we integrated
control-flow refinement via partial evaluation [4] to improve the automatic complexity analysis of
programs further. Additionally, in [11] we introduced the notion of expected size which allowed us to
extend our approach to the computation of upper bounds on the expected runtimes of probabilistic
programs.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Program analysis; Software and its engineering → Automated static analysis

Keywords and phrases Automatic Complexity Analysis, (Probabilistic) Integer Programs, Ranking
Functions, Decidable Subclasses, Control-Flow Refinement

Funding funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
235950644 (Project GI 274/6-2) and the DFG Research Training Group 2236 UnRAVeL

References
1 Amir M. Ben-Amram and Samir Genaim. On Multiphase-Linear Ranking Functions. In Proc.

CAV, LNCS 10427, pages 601–620, 2017. doi:10.1007/978-3-319-63390-9_32.
2 Amir M. Ben-Amram, Jesús J. Doménech, and Samir Genaim. Multiphase-Linear Ranking

Functions and Their Relation to Recurrent Sets. In Proc. SAS, LNCS 11822, pages 459–480,
2019. doi:10.1007/978-3-030-32304-2_22.

3 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl. Analyzing
Runtime and Size Complexity of Integer Programs. ACM Transactions on Programming
Languages and Systems, 38, 2016. doi:10.1145/2866575.

4 Jesús J. Doménech, John P. Gallagher, and Samir Genaim. Control-Flow Refinement by
Partial Evaluation, and its Application to Termination and Cost Analysis. Theory Pract. Log.
Program., 19(5-6):990–1005, 2019. doi:10.1017/S1471068419000310.

5 Florian Frohn and Jürgen Giesl. Termination of triangular integer loops is decidable. In Proc.
CAV, LNCS 11562, pages 426–444, 2019. doi:10.1007/978-3-030-25543-5_24.

6 Florian Frohn, Marcel Hark, and Jürgen Giesl. Termination of Polynomial Loops. In Proc.
SAS, LNCS 12389, pages 89–112, 2020. Full version available at https://arxiv.org/abs/
1910.11588. doi:10.1007/978-3-030-65474-0_5.

WST 2022 41

https://sws.cs.ru.nl/WST2022

2 Improving Automatic Complexity Analysis of Integer Programs

7 Jürgen Giesl, Nils Lommen, Marcel Hark, and Fabian Meyer. Improving Automatic Complexity
Analysis of Integer Programs. In The Logic of Software: A Tasting Menu of Formal Methods,
LNCS 13360. 2022. To appear. Also in CoRR, abs/2202.01769. URL: https://arxiv.org/
abs/2202.01769.

8 Marcel Hark, Florian Frohn, and Jürgen Giesl. Polynomial Loops: Beyond Termination. In
Proc. LPAR, EPiC 73, pages 279–297, 2020. doi:10.29007/nxv1.

9 Matthias Heizmann and Jan Leike. Ranking Templates for Linear Loops. Logical Methods in
Computer Science, 11(1), 2015. doi:10.2168/LMCS-11(1:16)2015.

10 Nils Lommen, Fabian Meyer, and Jürgen Giesl. Automatic Complexity Analysis of Integer
Programs via Triangular Weakly Non-Linear Loops. In Proc. IJCAR, LNCS, 2022. To appear.

11 Fabian Meyer, Marcel Hark, and Jürgen Giesl. Inferring Expected Runtimes of Probabilistic
Integer Programs Using Expected Sizes. In Proc. TACAS, LNCS 12651, pages 250–269, 2021.
doi:10.1007/978-3-030-72016-2_14.

WST 2022 42

https://sws.cs.ru.nl/WST2022

CeTA – A certifier for termCOMP 2022
Christina Kohl
University of Innsbruck, Austria

René Thiemann
University of Innsbruck, Austria

Abstract
CeTA is a certifier that can be used to validate automatically generated termination and complexity
proofs during the termination competition 2022. We briefly highlight some features of CeTA that
have been recently added.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Automated reasoning

Keywords and phrases Certification, Isabelle/HOL, Termination, Complexity, Confluence

CeTA is a certifier for automatically generated proofs. Its soundness – if CeTA accepts
a proof of a certain property, then the property holds – is proven in the Isabelle/HOL [2]
formalization IsaFoR [3]. A complete list of supported proof techniques as well as IsaFoR
and CeTA itself are available at http://cl-informatik.uibk.ac.at/software/ceta/. We
highlight some recent extensions of CeTA for validating termination proofs.

Improved Support for Confluence of TRS Certain termination technique are only valid
for confluent TRSs, e.g., the switch between termination and innermost termination in
(non)termination proofs [1]. Here, the improvement consists of adding development closed-
ness [4] as new confluence criterion to IsaFoR and CeTA.

Improved Support of Weighted Path Order The weighted path order (WPO) [5] unifies
several existing reduction orders. However, the original definition of WPO does not generalize
the recursive path order (RPO), since it does not contain the status of RPO that can select
between lexicographic or multiset comparison of arguments. We generalized WPO by adding
such a status and further proved that RPO is an instance of this generalized WPO within
IsaFoR. So far, the certification problem format (CPF) does not specify how such a generalized
WPO should be specified. We are looking forward to collaborate with tool authors that would
like to exploit this more general WPO, i.e., we can negotiate the design of the generalized
WPO within CPF and will extend CeTA accordingly.

Improved Efficiency of Parsing In Isabelle 2018 the modeling of characters was completely
changed, where from that point onwards only ASCII symbols (characters 0–127) have been
allowed, since target languages differ in their treatment of characters outside the ASCII
range. However, CeTA was also getting slower because of that change since characters
have been encoded as tuples of Booleans, an effect which in particular materializes during
parsing CPFs. Since often the processing time after parsing is much higher than the parsing
time itself, this effect got unnoticed, until Johannes Waldmann recently gave us a detailed
problem report with CPFs of a different style, namely large proofs using rather easy-to-
check (non)termination-techniques. As a consequence, IsaFoR and CeTA now include a more
efficient implementation of characters (that avoids the tuple representation, and is logically
equivalent), so that parsing is now roughly 4 times faster than before.

WST 2022 43

https://sws.cs.ru.nl/WST2022

2 CeTA – A certifier for termCOMP 2022

References
1 Bernhard Gramlich. Abstract relations between restricted termination and confluence

properties of rewrite systems. Fundam. Informaticae, 24(1/2):2–23, 1995. doi:10.3233/
FI-1995-24121.

2 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL – A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.
doi:10.1007/3-540-45949-9.

3 René Thiemann and Christian Sternagel. Certification of termination proofs using CeTA. In
Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem
Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich,
Germany, August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer Science,
pages 452–468. Springer, 2009. doi:10.1007/978-3-642-03359-9_31.

4 Vincent van Oostrom. Developing developments. Theor. Comput. Sci., 175(1):159–181, 1997.
doi:10.1016/S0304-3975(96)00173-9.

5 Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe. A unified ordering for termination
proving. Sci. Comput. Program., 111:110–134, 2015. doi:10.1016/j.scico.2014.07.009.

WST 2022 44

https://sws.cs.ru.nl/WST2022

Certified Matchbox
Johannes Waldmann
HTWK Leipzig

Abstract
We describe the Matchbox termination prover that takes part in the category of certified termination
of string rewriting in the Termination Competition 2022.

1 Introduction

Matchbox originally (2003) [7] computed RFC-matchbound certificates for termination of
string rewriting, via completion of automata. It was extended (2006) to compute matrix
interpretations [4], via constraint solving. A recent addition (2019) is sparse tiling [2].
For participation in Termination Competition 2022, Matchbox will produce termination
certificates to be checked with CeTA [6]. Therefore, the range of methods is restricted (no
RFC matchbounds, no sparse tiling). Still, with an efficient implementation of available
methods, performance comes near non-certified Matchbox of last year.

2 Interpretations

Matchbox uses matrix interpretations over natural and over arctic numbers. Conditions
for interpretations are formulated with the ersatz library (Kmett 2010, https://hackage.
haskell.org/package/ersatz). In particular, we use a representation of unary and binary
numbers of fixed bit width, with an extra overflow bit. Constraints are solved with Kissat
(Biere 2020, http://fmv.jku.at/kissat/). Kissat is accessed via a Haskell API (https:
//github.com/jwaldmann/ersatz-kissatapi) that, in turn, uses Kissat’s C API that
conforms to the IPASIR standard (Balyo 2017, https://github.com/biotomas/ipasir).

Matchbox looks for quasi-periodic interpretations (QPI) [9] as well, and presents them to
CeTA as arctic matrix interpretations [5]. The constraint system for a QPI is smaller, and
can often be solved faster, than the corresponding arctic matrix constraint. QPIs seem to be
helpful for Wenzel_16 and Waldmann_07 systems.

Matchbox looks for weights, described by a system of linear inequalities, solved by GLPK
(Makhorin 2000, https://www.gnu.org/software/glpk/), accessed via hmatrix-glpk (Ruiz
and Steinitz 2018, https://hackage.haskell.org/package/hmatrix-glpk).

3 Non-Sparse Tiling

Since sparse tiling is not certified currently, Matchbox applies “full tiling”: an R over Σ is
transformed to an equivalent R′ over the set of k-tiles Σk. This corresponds to semantic
labeling in the k-shift algebra, for the (k − 1)-fold left-context-closed system.

The resulting labeled system may be large, so Matchbox will only use weights (not
matrices) to remove labeled rules. To keep the search space (and the certificates) small, we
unlabel immediately. This method solves many ICFP_2010 problems.

4 Loops and Transport Systems

Matchbox finds loops by enumerating forward closures. Closures are kept in a priority queue.
The priority of a closure (l, r) with k rewrite steps is log2 log2 k − 4 log2 log2 |l| − 0.5 log2 |r|.
That function was determined experimentally.

WST 2022 45

https://sws.cs.ru.nl/WST2022

Matchbox searches for Transport Systems (TS) [8], and presents them to CeTA as
loops. Enumeration of TS candidates uses tiering operations of Leancheck (Matela 2017,
https://hackage.haskell.org/package/leancheck).

5 Strategy

Matchbox will first remove rules via tiling. Then it applies the dependency pairs trans-
formation [1], for both the original and the mirrored system in parallel, with recursive
decomposition of the estimated dependency graph [3]. It will then remove dependency pairs
via interpretations, considering usable rules only.

Matchbox has a language for specifying the search strategy. It allows to control elementary
steps (e.g., search for QPI), to restrict searches (e.g., only if number of rules is below some
bound), and to combine searches sequentially and concurrently.

In preparation for competition, we used an evolutionary algorithm that modifies parame-
ters in strategy expressions

6 Performance

In a pre-competition test run (starexec job 52669, https://termcomp.imn.htwk-leipzig.
de/flexible-table/Query%20%5B%5D/47876/52669), certified-matchbox 2022 obtains 1250
YES, 184 NO. That is 95 percent of uncertified-matchbox 2021.

Matchbox does write large proofs sometimes: full k-tiling will multiply system size by
|Σ|2(k−1). Conversion of a transport system to a loop gives an exponential blow-up. CeTA’s
proof format is verbose: both from built-in redundancies, and from XML representation.

The (2-tiling) certificate for ICFP_2010/26132 has size 325 MB. The certificate that
represents a loop of length 1024 for Wenzel_16/abaaaaa-aaaaaaabababab has size 173
MB. The total certificate size over a test run was 24 GB. These certificates are highly
compressible—down to 0.3 percent on average.

References
1 Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs. Theor.

Comput. Sci., 236(1-2):133–178, 2000.
2 Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Sparse tiling through overlap closures

for termination of string rewriting. In Herman Geuvers, editor, FSCD, LIPIcs 131, 2019.
3 Nao Hirokawa and Aart Middeldorp. Dependency pairs revisited. In Vincent van Oostrom,

editor, RTA, LNCS 3091, pages 249–268. Springer, 2004.
4 Dieter Hofbauer and Johannes Waldmann. Termination of string rewriting with matrix

interpretations. In Frank Pfenning, editor, RTA, LNCS 4098, pages 328–342. Springer, 2006.
5 Adam Koprowski and Johannes Waldmann. Max/Plus Tree Automata for Termination of

Term Rewriting. Acta Cybern., 19(2):357–392, 2009.
6 René Thiemann and Christian Sternagel. Certification of termination proofs using ceta. In

Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, TPHOLs,
LNCS 5674, pages 452–468. Springer, 2009.

7 Johannes Waldmann. Matchbox: A tool for match-bounded string rewriting. In Vincent van
Oostrom, editor, RTA, LNCS 3091, pages 85–94. Springer, 2004.

8 Johannes Waldmann. Non-termination. Austro-Japanese Rewriting Workshop, https://www.
imn.htwk-leipzig.de/~waldmann/talk/07/ajrw/, 2007.

9 Hans Zantema and Johannes Waldmann. Termination by quasi-periodic interpretations. In
Franz Baader, editor, RTA, LNCS 4533, pages 404–418. Springer, 2007.

WST 2022 46

https://sws.cs.ru.nl/WST2022

	Preface
	Organization
	Efficient Formalization of Simplification OrdersRené Thiemann and Akihisa Yamada
	Tuple Interpretations and Applications to Higher-Order Runtime ComplexityCynthia Kop and Deivid Vale
	A transitive HORPO for curried systemsLiye Guo and Cynthia Kop
	Approximating Relative Match-BoundsAlfons Geser, Dieter Hofbauer and Johannes Waldmann
	Hydra Battles and AC TerminationNao Hirokawa and Aart Middeldorp
	A Calculus for Modular Non-Termination Proofs by Loop AccelerationFlorian Frohn and Carsten Fuhs
	Deciding Termination of Uniform Loops with Polynomial Parameterized ComplexityMarcel Hark, Florian Frohn and Jürgen Giesl
	Improved Automatic Complexity Analysis of Integer ProgramsJürgen Giesl, Nils Lommen, Marcel Hark and Fabian Meyer
	Automatic Complexity Analysis of (Probabilistic) Integer Programs via KoATNils Lommen, Fabian Meyer, Marcel Hark and Jürgen Giesl
	CeTA – A certifier for termCOMP 2022Christina Kohl and René Thiemann
	Certified MatchboxJohannes Waldmann

