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Abstract. The complexity of today’s embedded systems and their de-
velopment trajectories requires a systematic, model-driven design ap-
proach, supported by tooling wherever possible. Only then, development
trajectories become manageable, with high-quality, cost-effective results.
This paper introduces the Octopus Design-Space Exploration (DSE)
toolset that aims to leverage existing modeling, analysis, and DSE tools
to support model-driven DSE for embedded systems. The current toolset
integrates Uppaal and CPN Tools, and is centered around the DSE Inter-
mediate Representation (DSEIR) that is specifically designed to support
DSE. The toolset architecture allows: (i) easy reuse of models between
different tools, while providing model consistency, and the combined use
of these tools in DSE; (ii) domain-specific abstractions to support dif-
ferent application domains and easy reuse of tools across domains.

Key words: Design-space exploration, Modeling, Analysis, Embedded
Systems, CPN Tools, Uppaal

1 Introduction

High-tech systems ranging from smart phones to printers, from cars to radar
systems, and from wafer steppers to medical imaging equipment contain an em-
bedded electronic core that typically integrates a heterogeneous mix of hardware
and software components. The resulting platform is often distributed, and it typ-
ically needs to support a mix of data-intensive computational tasks with event-
processing control components. These embedded components more and more
often have to operate in a dynamic and interactive environment. Moreover, not
only functional correctness is important, but also quantitative properties related
to timeliness, quality-of-service, resource usage, and energy consumption. The
complexity of today’s embedded systems and their development trajectories is
thus increasing rapidly. At the same time, development trajectories are expected
to produce high-quality and cost-effective products.
?
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Fig. 1. The Y-chart DSE method.

A common challenge in development trajectories is the need to explore ex-
tremely large design spaces, involving multiple metrics of interest (timing, re-
source usage, energy usage, cost). The number of design parameters (number
and type of processing cores, sizes and organization of memories, interconnect,
scheduling and arbitration policies) is typically very large and the relation be-
tween parameter settings and design choices on the one hand and metrics of
interest on the other hand is often difficult to determine. Given these obser-
vations, embedded-system design trajectories require a systematic approach,
that is automated as far as possible. To achieve high-quality results, the de-
sign process and tooling needs to be model-driven. No single modeling approach
or analysis tool is best fit for all the observed challenges. We propose to lever-
age the combined modeling and analysis power of various formal methods tools
into one integrated Design-Space Exploration (DSE) framework, the Octopus
framework. The framework is centered around an intermediate representation,
DSEIR (Design-Space Exploration Intermediate Representation), to capture de-
sign alternatives. DSEIR models can be exported to various analysis tools. This
facilitates reuse of models across tools and provides model consistency between
analyses. The use of an intermediate representation supports domain-specific
abstractions and reuse of tools across application domains.

The design of DSEIR follows the Y-chart philosophy [1, 16] that is popular in
hardware design, see Fig. 1. The Y-chart philosophy is based on the observation
that DSE typically involves the co-development of an application, a platform,
and the mapping of the application onto the platform. Diagnostic information is
used to, automatically or manually, improve application, platform, and/or map-
ping. DSEIR follows the Y-chart philosophy by supporting, and separating, the
specification of its main ingredients, applications, platforms, and mappings. This
separation is important to allow independent evaluation of various alternatives
of one of these system aspects while fixing the others. Often, for example, various
platform and mapping options are investigated for a fixed (set of) application(s).

This paper presents a first version of the Octopus DSE toolset. It integrates
CPN Tools [13] for stochastic simulation of timed systems and Uppaal [2] for
model checking and schedule optimization. Through an illustrative running ex-
ample, we present DSEIR, its translations to CPN Tools and Uppaal, and the
envisioned use of complementary formal analysis tools in a DSE process. We also
evaluated DSEIR on two industrial printer data paths. Simulation and analysis
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times in CPN Tools and Uppaal for automatically generated models are very
similar to the simulation and analysis times for handcrafted models [12].

The paper is organized as follows. We discuss related work in Section 2.
Section 3 introduces a typical DSE question, serving as our running example.
Section 4 briefly presents the toolset architecture and current realization. DSEIR
and the translations to CPN Tools and Uppaal are presented in Sections 5 and
6. Section 7 illustrates the use of the toolset for the running DSE example, and
it summarizes the results for the two printer case studies. Section 8 concludes.

2 Related Work

There exists a plethora of academic and commercial frameworks supporting Y-
chart-based DSE of embedded systems [4–7, 17, 22–25, 28]. Some support formal
analysis, in particular the Metropolis/Metro II [5], SHE [25], and Uppaal-based
[4, 6] frameworks. Others build on simulators, like SystemC or Simulink, and
offer no or limited support for other types of analysis such as formal verification
or scheduler/controler synthesis. Moreover, most frameworks provide their own
modeling and analysis methods and do not support other input and output
formats. In contrast, Octopus is open and extensible. Through its intermediate
representation DSEIR, it provides a generic interface between input languages
and analysis tools; its modeling features can be compared to those of an assembly
language (albeit on a much higher abstraction level). Octopus intends to combine
well established formal methods in one framework, so that every method can be
used for what it is best for. Through its link with Uppaal, it is for example
possible to integrate the schedulability analyses of [4, 6].

Closest to our work is the Metropolis/Metro II [5] framework. This also aims
to be extensible, and to apply formal techniques in DSE. It provides several
backends to interface with different analysis tools. The connection with the SPIN
model checker in particular can be used to verify declarative modeling constraints
expressed in linear temporal logic. The Octopus initiative is complementary to
the Metro II framework in the sense that we have integrated different analysis
tools. If Metro II is made available to the scientific community, then it should
be straightforward to connect the two to combine their strengths.

The already discussed frameworks and tools are all based on the Y-chart
approach. There is also a wide range of DSE tools and approaches for specific
classes of systems that are not (explicitly) based on the Y-chart. These provide
modeling and analysis support and/or automatically explore (parts of) a design
space. A good overview of DSE tools can be found in [9]. More recent examples
of academic tools are [15, 21]. Two industrial frameworks that provide formal
modeling and analysis support for DSE are Scade [8] and SymTA/S [10].

Some other DSE frameworks target generic applicability while focusing on
generic search and optimization algorithms (such as evolutionary algorithms)
needed to explore the design space. Prominent examples are Pisa [3] and Opt4J
[19]. These frameworks focus on automating the dashed feedback edges in Fig.
1. The current version of Octopus focuses on the analysis part of the Y-chart,
i.e., obtaining the performance metrics for design alternatives. It is complemen-
tary to these other frameworks. As future work, we plan to connect Octopus to
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frameworks like Pisa and Opt4J to automate the exploration of those parts of
the design space that are amenable to automatic exploration.

3 Motivating Example

Fig. 2 presents a typical DSE problem. It is used as an illustrative example
throughout the paper and as a test case for the Octopus framework. The ex-
ample shows a pipeline of tasks for processing streams of data objects. The
tasks are executed on a heterogeneous multiprocessor platform with two memo-
ries and a bus-based interconnect. The example system incorporates ingredients
typically observed in today’s embedded systems. The task pipeline exhibits dy-
namic workload variations, depending on the complexity of the data object being
processed. Video decoding and encoding, graphics pipelines, and pdf processing
for printing are applications showing such data-dependent workload variations.
The example platform combines a general-purpose processor (CPU), a graphics
processor (GPU) and an FPGA (Field-Programmable Gate Array). Such a mix
is often chosen for performance and energy efficiency. An FPGA for example
is well suited for executing regular data-intensive computation kernels without
much dynamic variation. Multiple kernels can share an FPGA and execute in
parallel. A typical DSE question for a system as illustrated in Fig. 2 is to optimize
performance while minimizing the resources needed to obtain the performance.
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Fig. 2. A running example.

The detailed specification of the example system is as follows. The applica-
tion has tasks A through G, mapped onto a platform consisting of one CPU,
one GPU, an FPGA, and two memories, all connected by a bus. Tasks process
data objects, one at a time, and need to be executed in an iterative, streaming
fashion. The DSE question is to minimize the memory sizes M1 and M2 such
that throughput in terms of data objects per time unit is maximized, and to find
a simple scheduling policy that achieves this throughput.

Tasks A and G share the CPU. The order of execution can be chosen freely
and preemption is possible. Task B runs on the GPU. Tasks C through F share
the FPGA but can be executed in parallel. The annotated dashed arrows be-
tween tasks and memories specify memory requirements. The indicated amount
is claimed at the task execution start and released at the task completion. The
numbers inside tasks indicate the execution time of one execution of the task. A
task can only be executed if all required memory is available.
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Task A has three execution modes with different workloads (low, normal,
high, with average occurrence frequencies of 20%, 50%, and 30%, resp.). The
different workloads come with different execution times and memory require-
ments as indicated in the small table in the figure. Task F is only executed for
objects with high workloads, indicated in the figure by the ‘[high]’ precondition.

The edges between tasks indicate data dependencies. Five dependencies in-
volve the transfer of data objects between processing resources. These transfers
use the memories, as indicated by the dashed arrows B1 through B5. A data
object corresponds to 10 memory units. The memory for an object to be pro-
duced by a task execution on an output edge is needed at the execution start, to
make sure that sufficient space is available. The data object is available for the
successor task immediately upon completion of the producing task. The mem-
ory of an object being read by a task is released at the execution end, so that
the complete data object is available during the entire task execution. The data
transfers between tasks C, D, and E are handled inside the FPGA.

For simplicity, we assume that context switching time (on the CPU) and time
needed for data transfers over the bus are included in the task execution time.

We would like to leverage existing formal analysis tools to solve the sketched
DSE problem. The system combines a stochastic part, the A-B subsystem, and
a relatively static part, the B-G subsystem. Simulation tools like CPN Tools are
particularly suitable to analyze stochastic (sub)systems, whereas model checking
tools like Uppaal are well suited to optimize non-stochastic (sub)systems.

4 The Octopus Architecture and Current Realization

The Octopus toolset aims to be a (i) flexible toolset that provides (ii) formal
analysis support for DSE by (iii) leveraging existing tools, also in combina-
tion; the toolset should be applicable (iv) across application domains within
the embedded-systems domain, and it should allow (v) domain-specific modeling
abstractions. To achieve these goals, the most important architectural choice,
illustrated in Fig. 3, is to separate the main ingredients of the Y-chart approach
into separate components with well-defined interfaces, centered around an in-
termediate representation, DSEIR, specifically designed for Y-chart-based DSE.
We distinguish three groups of components: (i) editing support, for applications,
platforms and mapping; (ii) analysis support; (iii) diagnostics and visualization.

The design of DSEIR is crucial in achieving our goals. It should be sufficiently
expressive to allow the specification of design alternatives at the required level
of detail. At the same time, it should be well structured and precisely defined, to
allow model transformations to various analysis tools that preserve properties of
interest and that provide models that can be efficiently analyzed in the targeted
tools. The next two sections explain DSEIR and the transformations to CPN
Tools and Uppaal that currently have been implemented. Section 7 provides
experimental results that indicate that DSEIR achieves its goals.

The right part of Fig. 3 shows the current Octopus implementation. At
the core is a Java library implementing DSEIR. Modules DSEIR2CPN and
DSEIR2Uppaal implement the interfaces with CPN Tools and Uppaal. A domain-
specific Data Path Editor for modeling printer data paths has been developed
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Fig. 3. The Octopus toolset: Architecture (left) and current realization (right).

and will be integrated in the near future. A printer data path is the electronic
heart of a printer that does the image processing for printing, scanning, and
copying. Analysis output is visualized through Excel, for (trends in) typical per-
formance metrics such as throughput and memory usage, and ResVis, a simple
but powerful tool for visualizing Gantt charts and resource usage over time.

5 DSEIR

DSEIR is implemented as a Java library. Specifications can be entered directly in
Java or in an XML format derived from the Java implementation. We present the
main principles of DSEIR, focusing on the Java interface. The formal definition
of DSEIR and its operational semantics can be found in [26].

Application modeling: DSEIR captures the application side of the Y-chart
by means of Parameterized Timed Partial Orders (PTPOs). A PTPO is a stan-
dard task graph, extended with (i) task parameters – for simplifying large (and
even infinite), albeit structured, precedence relations, (ii) time – for specifying
minimal timing delays between tasks, and (iii) four different types of precedence
rules, for fine-grained specifications in terms of task enabling and completion
events. The expressivity of PTPOs is that of timed event-based partial orders;
every PTPO can, in principle, be unfolded to such a, possibly infinite, structure.

Fig. 4a shows the PTPO for our example. Tasks have a parameter p, iden-
tifying the objects being processed. Its range is specified in the top left. The
condition above F restricts the scope of p for F to objects with high workloads
(with size 7–9). A condition p′ = p on an edge denotes that the precedence only
exists between the same instance of the left and right tasks (the p′ is the p of
the right task). The PTPO thus specifies that A(1) should be executed before
B(1), B(1) before C(1), etc. There is no direct causal relationship between e.g.
A(2) and C(1). The self-loop precedences with condition p′ = p + 1 eliminate
auto-concurrency, i.e., they ensure that no two instances of the same task can
be executed at the same time. The self-loop for task F requires condition p′ > p
because, due to the conditional execution, the range of objects it processes may
be non-consecutive. We need only the CE precedence type, specifying a causal
relation between the completion (C) of one task and the enabling (E) of another.
The other three E-C combinations are typically used for specifying task periods
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b) Parameter p = dseir.addParameter("p", 1, 2000);
PTask A = dseir.getApplication().addTask("A", TRUE, p);

...
ParameterProperty size_p = p.addProbProperty("Size", 0, 9,

ParameterProperty.Type.PROBABILISTIC);
PTask F = dseir.getApplication().addTask("F", ge(cnst(size_p), cnst(7)), p);
PTask G = dseir.getApplication().addTask("G", TRUE, p);
dseir.getApplication().addEdge(A, A, EdgeType.CE,

eq(cnst(p,true),add(cnst(p),ONE)), ZERO);
dseir.getApplication().addEdge(A, B, EdgeType.CE, eq(cnst(p,true),cnst(p)), ZERO);

Fig. 4. a) PTPO for the running example; b) part of its Java DSEIR specification.

and minimal durations. The example PTPO has no time constraints (all minimal
delays zero); we do not impose any delays at the application level, but expect
them at the resource level. Fig. 4b shows how the PTPO is specified in DSEIR.

Specifying a platform: A platform in DSEIR is a set of generic resources.
Each resource has a name and a capacity (an integer at least zero), and can sup-
port preemption or not. No distinction is made between computational, storage
and communications resources, nor is any connection between resources explic-
itly specified. Fig. 5a shows the specification of the CPU and the two memories.
Both memories have a capacity of 200 units; the CPU has capacity 1, modeling
that it is either free or busy. The preemption flag is true only for the CPU.

a) Resource cpu = dseir.getPlatform().addResource("cpu", 1, true);
Resource mem1 = dseir.getPlatform().addResource("mem1", 200, false);
Resource mem2 = dseir.getPlatform().addResource("mem2", 200, false);

b) dseir.getMapping().addDuration(A, iF(lt(cnst(size_p),cnst(2)),cnst(1), iF(
lt(cnst(size_p),cnst(7)),cnst(3),cnst(10))));

dseir.getMapping().addUtilizationBound(A, cpu, ONE, ONE);
dseir.getMapping().addUtilizationBound(A, mem1, iF(lt(cnst(size_p),cnst(2)),cnst(12), iF(

lt(cnst(size_p),cnst(7)),cnst(16),cnst(30))), iF(lt(cnst(size_p),cnst(2)),cnst(12),
iF(lt(cnst(size_p),cnst(7)),cnst(16),cnst(30))));

c) dseir.getMapping().addHandover(BC, mem2, cnst(10));
dseir.getMapping().addHandover(BF, mem2, iF(lt(cnst(size_p),cnst(7)),cnst(0),cnst(10)));

d) dseir.getScheduler().addPriority(A, sub(cnst(1), mult(cnst(10), cnst(p))));
dseir.getScheduler().addPriority(B, sub(cnst(2), mult(cnst(10), cnst(p))));

...
dseir.getScheduler().setPreemptive(A, cpu, TRUE);

Fig. 5. The running example in DSEIR a) resources; b) duration function; c) handover; d) scheduling.

Mappings: The mapping part of the Y-chart is captured in DSEIR through
the concepts of a duration function and a resource handover function.

A duration function specifies the duration of a task for any possible resource
configuration. If the duration is zero, a task execution is instantaneous once it
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gets its resources; if the duration is infinite, a task makes no progress with the
given resources. The specification of a duration function is split into the spec-
ification of the minimum-required resource configuration (the unique minimal
configuration yielding finite duration), the maximum-required resource configu-
ration (the unique minimal configuration yielding the shortest possible duration)
and the actual duration for configurations in between. This can be seen as speci-
fying interval-based resource claims for every task, quantifying resource sharing.

Computational-resource claims that allow sharing are usually specified with
the minimum-required configuration of 1 (at least one resource unit is needed),
maximum-required configuration of 100 (with less than 100 resource units the
task does not run at full pace) and a linear function mapping assigning duration
for every capacity in the interval [1, 100]. If a task needs exclusive access to a
certain amount of resource, as the tasks in our example, then both the mini-
mum-required configuration and the maximum-required one should be equal to
the required amount. Storage resources are typically claimed in this way.

Fig. 5b shows the duration function for task A. The first line defines how
the duration depends on the parameter of A. The expression has no resource
information as A only claims fixed resource amounts. The next lines specify that
A needs the CPU exclusively, and that it claims 12, 16 or 30 units of Memory 1
(including the 10 units for output), depending on the current object’s size.

Often, a task reads, and subsequently deletes, data that some previous task
produced. It is, moreover, sometimes desired to have a task reserve some resource
for an upcoming task. DSEIR captures these situations by means of handover
functions. A handover function for a task specifies the amount of resources that
are kept upon its completion for some other task. Handovers are typically as-
signed to CE edges. Fig. 5c specifies the memory sharing between task B and
tasks C and F . The two lines describe that B leaves 10 units of Memory 2 to
both C and F , but the latter only when F is to be executed for the same object.

Scheduling: Schedulers are part of the platform in the Y-chart; concrete
policies for specific resources and applications are part of the mapping. Never-
theless, DSEIR treats scheduling separately. We predefined a preemptive, event-
driven, priority-based scheduler that is activated each time a task is enabled or
finishes. The user can specify priorities and the tasks that allow their resources to
be taken away at run time (for resources that allow preemption). Fig. 5d shows
an example priority assignment for tasks A and B that gives a task processing
a lower-numbered object priority over a task processing a higher-numbered one.
The code also specifies that task A may be preempted.

Extensions: The current version of DSEIR supports the three main ingre-
dients of the Y-chart approach. Future extensions will provide support for the
DSE process itself, allowing the user to specify experiments, properties and per-
formance metrics of interest, and verification and optimization objectives. We
also consider developing a language to support the compositional specification of
schedulers (e.g., in the style of [18, 20]). Complex multiprocessor platforms typ-
ically contain multiple interacting schedulers (including arbiters for e.g. buses
and memories). Structured language support for scheduling is an enabler for
formal analysis of such compositions of schedulers.
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6 Model Transformations

The current toolset has interfaces to CPN Tools and Uppaal. This section in-
troduces the model transformations implemented to translate DSEIR models to
Coloured Petri Nets (CPNs) and Timed Automata (TA). Based on the semantics
of CPN [14], Uppaal TA [27], and DSEIR [26], it can be shown that both transla-
tions preserve equivalence; the models generate observation equivalent [11] timed
transition systems when considering task enabling and completion events.

6.1 Transforming DSEIR Models to Coloured Petri Nets

CPNs [14] are a well-established graphical formalism, extending classical Petri
nets with data, time, and hierarchy. CPNs have been used in many domains
(manufacturing, workflow management, distributed computing, embedded sys-
tems) and are supported by CPN Tools [13], a powerful framework for modeling,
functional verification (several techniques) and performance analysis (stochastic
discrete-event simulation). This makes CPNs very suitable for Octopus.

CPN

template 

file

(basics)

CPN file

reader

CPN

Java

objects

Add PTPO and 

concrete 

resource info

using CPN API

CPN

Java

objects

CPN file
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CPN

 file

(DSEIR)

Fig. 6. Translating DSEIR specifications to CPN models

The interface between the DSEIR library and CPN Tools is realized in the
DSEIR2CPN module. Any DSEIR specification can be converted. Several special
cases are recognized to optimize the translated model in terms of simulation
time. For maintainability and extensibility, the conversion uses a CPN template
file containing the basic structure of the CPN model, high-level dynamics of the
resource handler and monitors for producing simulation output. The information
from DSEIR is added to this template, generating an executable CPN model.
To allow reading and writing CPN models in Octopus, we built a Java API for
a reasonably large class of CPN models. Fig. 6 shows the conversion process.

Fig. 7 shows the generated CPN model for our example, with a manually
improved graphical layout to improve presentation. We do not go into details
of the transformation, but rather briefly explain the generated model. The SYS
CPN page shows that, at the highest level, the system consists of a PTPO (page
TPO), a resource handler (page RH) and the interface between them (places
TPO to RH and RH to TPO). In the picture only the translations of tasks E and F
and their connections to B, D, and G are shown. Tasks are split into an enabling
and completion event, modeled as transitions with a place in between (E e,
E c, and p EC E for task E); these transitions are connected to the appropriate
interface places to RH and from RH. Parameter-scope restrictions are modeled as
guards (only task F has a guard – predicate Size). Precedences are captured by
a place between the two corresponding transitions of these tasks (place p D c E e
for the CE precedence between D and E). A special init transition (not in the
picture) is always the first transition to fire in a model. Its main purpose is to
take a sample for any stochastic property in the PTPO (the workload in our
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Fig. 7. CPN model obtained from the DSEIR specification of the running example

example). The TPO page is the only part of the CPN model that has to be
completely generated from DSEIR. The RH page is to a large extent generic for
every DSEIR model, with many parts predefined in the template. Most of the
scheduling dynamics is hidden in the CPN ML functions on the left.

6.2 Transforming DSEIR Models to Timed Automata

Timed Automata (TA) are a suitable formalism to capture at least a subset of the
systems that DSEIR can express. Powerful tools, the model checker Uppaal [2]
being one of them, are available for the analysis of TA. Uppaal’s powerful analysis
engine and relatively mature modeling support (ease of use, extensiveness of the
modeling language) make it very suitable for integration in Octopus.

The DSEIR2Uppaal module implements the translation of DSEIR to Up-
paal’s input language. It unfolds the PTPO to a concrete task partial order
without parameters, which is possible for finite parameter ranges. Each task
instance is modeled by a separate TA. The TA broadcast their start and end
events via channels. Each TA has a number of waiting locations, and the enabled,
active and done locations. Location enabled indicates that a task is schedulable
for execution. Fig. 8 shows the TA for the first instance of task G of our example.
It has two waiting locations, as G must wait for tasks E and F . When G is en-
abled, it can actually start if it can take all required resources, which is modeled
by the guard canClaim(). If it starts, it broadcasts its start over the started0
channel, takes the resources via the claim() function, and resets its x cpu clock.
The transition from active to done then happens after exactly time() time units.
The TA broadcasts that it is finished, and releases the resources.

A resource that is not shared is modeled by an integer variable that represents
the remaining capacity and one or more clocks. These resources are claimed by
decreasing the variable (function claim() in Fig. 8), and released by increasing
the variable (function release()). If a task TA has claimed a resource, then it
can use the clock of that resource for its timing. The TA in Fig. 8 uses one of
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release()

canClaim()

claim(),
x_cpu[cpu_i(id)]=0

finished0!
started0!

waiting_1 active

x_cpu[cpu_i(id)]==time()
&& canFinish()

waiting_0 enabled done
x_cpu[cpu_i(id)] <= time()

finished1?finished1?

finished4? finished4?

Fig. 8. The Uppaal timed automaton specification for the first instance of task G.

the x cpu clocks. Shared resources are modeled by a set of TA that implement
preemption and redistribution of the resource amounts when a task starts or
stops using the resource. Preemption cannot be modeled exactly with Uppaal,
but it can be approximated with arbitrary precision [12]. Unfortunately, this
technique fragments the symbolic representation of time that Uppaal uses and
will generally have a negative effect on the performance of the analysis.

As in the CPN case, special cases of the transformation may be recognized.
If no two instances of the same task can run concurrently, it is not necessary to
unfold the PTPO. All instances of one task can then be captured in a single, it-
erative TA. This limits the number of automata in the model, thereby improving
performance and reducing the size (in terms of bytes of memory) of a state.

7 Case Studies

Our first experimental evaluations with the Octopus toolset involve the running
example used throughout this paper and two printer data path designs.

7.1 The Running Example

We use the combined strengths of CPN Tools and Uppaal, i.e., (stochastic)
simulation and schedule optimization, to solve the DSE problem of Section 3.

Problem refinement: From the expected CPU workload of 5.7 per data
object and the task E execution time of 6 time units, we conclude that 1/6
objects/time unit is an upper bound for throughput. The B-G subsystem al-
lows this throughput if memory M2 is sufficiently large. Due to incidental peak
workloads on the CPU, this bound however can never be reached. It can be ap-
proached arbitrarily close though with a sufficiently large M1 memory. We decide
to aim for memory sizes that allow a throughput within 2% of the upper bound.
We also want a simple scheduling policy that provides this throughput. Because
of the stochastic nature of the system, we are satisfied if repeated simulations
show that the desired throughput is achieved with a 99% confidence.

Initial evaluation: The DSEIR model used throughout Section 5 (without
task priorities, because the specification does not give priorities) is our initial
model. Memories M1 and M2 are both set to the sufficiently large value of 200.
Input streams, sampled from the distribution in Fig. 2, have 2000 objects.

Initial CPN Tools simulations show deadlocks. These are caused by the mem-
ory allocation strategy, and occur both on M1 and on M2. Both the A-B and
the B-G subsystems are pipelines. If the heads of those pipelines work ahead too
far and claim all the memory, tasks further down the pipeline are blocked.

The deadlocks occur independent of the memory sizes. We therefore change
the memory allocation, switching from task-based allocation to object-based al-
location. In this strategy, the first task needing a memory resource (A for M1, B
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for M2) claims the maximum amount needed in the pipeline and upon termina-
tion hands over to its successor the maximum amount needed in the remaining
pipeline, releasing the rest (if any). This handover and release strategy is adopted
by all tasks in the pipeline. This strategy is deadlock-free by construction.

M2 optimization: The next steps further investigate the B-G subsystem,
to optimize M2. At the end, we then plan to reduce M1 as far as possible. We
start with a binary search using CPN Tools simulations to determine an initial
M2 bound with the object-based memory allocation. We further prioritize the
execution of tasks further down the pipeline over tasks earlier in the pipeline.
This is not necessary but it is expected to give better performance. It turns out
that an M2 size of 120 is needed for the desired throughput.

We then want to use Uppaal to investigate whether it is possible to opti-
mize the B-G subsystem and further reduce the M2 size by smart scheduling.
For a sufficiently large M1, we may assume that B always has data to execute.
Removing task A and memory M1 and conservatively (from the resource us-
age perspective) assuming that F is always executed then removes all stochastic
behavior in the model, allowing the use of Uppaal. To maximize scheduling free-
dom, we remove task priorities and revert back to task-based memory allocation
(which is more efficient than object-based allocation). We use an observer TA
to monitor throughput. A binary search for M2 with the upper bound from the
simulations shows that a size of 110 is needed to allow an execution with the
optimal throughput (which is 1/6 objects/time unit for this subsystem).

Given that a throughput-optimal execution exists for an M2 size smaller
than the earlier bound of 120, we want to find simple scheduling rules that
provide an optimal throughput within this 110 bound. Not all executions are
throughput-optimal. Some, for example, still lead to deadlock; as before, tasks
early in the pipeline work too far ahead of tasks later in the pipeline. We decide
to investigate scheduling rules XY (k) that constrain the difference between the
execution counts of tasks Y and X by integer k. For example, GB(3) states that
B(p+3) should not become enabled before G(p) has completed. These rules can
be integrated into the PTPO via CE precedences. We investigate rules BG(k),
which limit how far tasks early in the pipeline can work ahead. We further
investigate rule DF (0), which guarantees that F becomes only enabled after
completion of D on the same object. This disallows the simultaneous execution
of memory-expensive tasks D and F , exploiting the fact that F is not in the
time-critical path of the application. Inspection of optimal schedules obtained
with Uppaal suggests that rule GF (2) would be a possible alternative for DF (0).
GF (2) has a similar effect but is less restrictive.

We combine the scheduling rules with greedy scheduling, without priorities,
that non-deterministically resolves conflicting memory claims. It turns out that
GB(3) with GF (2) is the best combination. With an M2 size of 110, it guar-
antees an optimal throughput for all executions. GB(4) and GB(5), both with
GF (2), provide good alternatives, guaranteeing an optimal throughput when M2

is 120 and 130, respectively. When using the task priorities introduced earlier for
simulations both combinations give optimal throughput also with an M2 size of
110. These alternatives are of interest because they are less sensitive to intermit-
tent stalls of task B, which may occur in the full system due to peak workloads
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for task A. GF (2), which we would not have considered without analyzing the
Uppaal results, outperforms DF (0).

Final optimization: For the final optimization step, we take the full system
with object-based memory allocation for the A-B subsystem and task-based
memory allocation for the B-G subsystem. We investigate the three mentioned
combinations of scheduling rules, with greedy, priority-based scheduling (with
the mentioned priority scheme). The full system should achieve a throughput of
at most 2% below the bound of 1/6 objects/time unit. CPN Tools simulations
indicate that the GB(5)-GF (2) combination performs best. An M1 size of 110
suffices, and due to the slightly relaxed throughput constraint and the fact that
F is not always executed, the size of M2 can be further reduced to 100. Thus,
the final result of the DSE is that M1 and M2 sizes need to be 110 and 100.

Concluding remarks: The unique selling point of a model checker is its
ability to exhaustively explore the state space of a model and check whether
desired properties hold. In this case study, Uppaal has been used to prove that
any greedy scheduler in combination with various scheduling rules and memory
sizes guarantees the required throughput. Such results are hard if not impossible
to obtain with simulators. On the other hand, Uppaal cannot handle stochastic
behavior, and it does not scale to very large models. With limited input streams
for the Uppaal analyses, all simulation and analysis experiments performed for
this DSE take at most a few minutes on normal laptops. The example DSE illus-
trates that CPN Tools and Uppaal may complement each other. The automatic
translations to CPN Tools and Uppaal from common DSEIR specifications made
experimenting very easy.

7.2 Modeling Printer Data Paths

To evaluate the expressive power of DSEIR, we did two case studies involving
digital printer data paths of Océ Technologies, based in Venlo, the Netherlands.

Fig. 9. The platforms in the printer case studies.

The left picture in Fig. 9 is an abstracted version of an FPGA-based platform.
It is used in a printer that supports use cases such as printing, copying, scan-
ning, scan-to-email, and print-from-store. The machine can be accessed locally,
through the scanner and the controller, and remotely, through the controller. The
use cases all use different components in the platform. Various tasks can execute
in parallel. Resources like the memory and the associated memory bus, as well
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as the USB are shared among tasks and among print and scan jobs running in
parallel. The available USB bandwidth moreover dynamically fluctuates depend-
ing on whether it is used in one or in two directions simultaneously. Finding the
fastest schedule for a sequence of jobs on the sketched platform is non-trivial. In
[12], we modeled and analyzed this system with Uppaal. A novelty introduced in
[12] was the already mentioned discrete approximation of the dynamic USB be-
havior. For the current paper, we modeled the system in DSEIR, automatically
generated Uppaal models, and compared the results with the results obtained
from the handcrafted models used for [12]. We achieved the same results, with
similar analysis times (typically in the order of a few minutes).

The right picture in Fig. 9 shows a heterogeneous multiprocessor platform
that combines one or more CPUs (running windows) with a GPU, one or more
Harddisks (HDDs), and an FPGA. Because of heterogeneity and the use of
general CPUs, the platform is more challenging than the platform of the first case
study. We modeled the print use case for this platform in CPN Tools, to analyse
the achieved throughput in images per second under dynamically fluctuating
workloads, and to find out the appropriate buffer sizes between components. We
later modeled the print use case on this platform in DSEIR and automatically
derived a CPN model. Also in this case, we obtained matching results.

Together, the two case studies show that DSEIR is sufficiently expressive to
capture a variety of realistic systems.

8 Conclusions

We have presented our ideas about model-driven design-space exploration (DSE)
for embedded systems, and a first version of the Octopus DSE toolset based on
these ideas. This toolset is organized around an intermediate representation,
DSEIR, that is specifically designed to support DSE. It allows the independent
specification of applications, platforms, and mappings in a compact and precise
way. The notion of a Parameterized Timed Partial Order for capturing applica-
tions is a novel element of DSEIR. The toolset is open and extensible. It aims
to integrate existing formal analysis and simulation tools in the DSE process, to
leverage their combined strengths. Our case studies show that combining tools is
meaningful and useful. The toolset, DSEIR in particular, provides model consis-
tency between analyses with different tools and easy experimentation. It allows
easy reuse of tools among application domains by providing an intermediate
between domain-specific modeling abstractions and formal analysis tools.

In future work, we plan to evaluate the toolset in other application domains.
The current work mostly focuses on connecting tools, and on modeling and an-
alyzing design alternatives. Future work will also focus on capturing experiment
design and on automating (parts of) the DSE process itself, among others sched-
ule optimization. We plan to develop a structured DSE method in which tools
complement each other. New analysis tools will be added when the need or op-
portunity arises. Other relevant additions are a model repository with support
for model versioning, and decision support. An interesting extension beyond the
core DSE process is code generation support. The latest information about the
Octopus toolset is available through dse.esi.nl.
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