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Abstract. Using an adaptation of state-of-the-art algorithms for black-
box automata learning, as implemented in the LearnLib tool, we suc-
ceeded to learn a model of the Engine Status Manager (ESM), a soft-
ware component that is used in printers and copiers of Océ. The main
challenge that we encountered was that LearnLib, although effective in
constructing hypothesis models, was unable to find counterexamples for
some hypotheses. In fact, none of the existing FSM-based conformance
testing methods that we tried worked for this case study. We therefore
implemented an extension of the algorithm of Lee & Yannakakis for
computing an adaptive distinguishing sequence. Even when an adaptive
distinguishing sequence does not exist, Lee & Yannakakis’ algorithm pro-
duces an adaptive sequence that ‘almost’ identifies states. In combination
with a standard algorithm for computing separating sequences for pairs
of states, we managed to verify states with on average 3 test queries.
Altogether, we needed around 60 million queries to learn a model of
the ESM with 77 inputs and 3.410 states. We also constructed a model
directly from the ESM software and established equivalence with the
learned model. To the best of our knowledge, this is the first paper in
which active automata learning has been applied to industrial control
software.

1 Introduction

Once they have high-level models of the behavior of software components, soft-
ware engineers can construct better software in less time. A key problem in prac-
tice, however, is the construction of models for existing software components, for
which no or only limited documentation is available.

The construction of models from observations of component behavior can be
performed using regular inference (aka automata learning) techniques [4, 19, 37].
The most efficient such techniques use the setup of active learning, illustrated
in Figure 1, in which a “learner” has the task to learn a model of a system by
actively asking questions to a “teacher”. The core of the teacher is a System
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Fig. 1. Active learning of reactive systems

Under Test (SUT), a reactive system to which one can apply inputs and whose
outputs one may observe. The learner interacts with the SUT to infer a model by
sending inputs and observing the resulting outputs (“membership queries”). In
order to find out whether an inferred model is correct, the learner may pose an
“equivalence query”. The teacher uses a model-based testing (MBT) tool to try
and answer such queries: Given a hypothesized model, an MBT tool generates
a long test sequence using some conformance testing method. If the SUT passes
this test, then the teacher informs the learner that the model is deemed correct. If
the outputs of the SUT and the model differ, this constitutes a counterexample,
which is returned to the learner. Based on such a counterexample, the learner
may then construct an improved hypothesis. It is important to note that it may
occur that an SUT passes the test for an hypothesis, even though this hypothesis
is not valid.

Triggered by various theoretical and practical results, see e. g. [7, 26, 33, 1, 8,
28, 20], there is a fast-growing interest in automata learning technology. In recent
years, automata learning has been applied successfully, e. g., to regression test-
ing of telecommunication systems [22], checking conformance of communication
protocols to a reference implementation [3], finding bugs in Windows and Linux
implementations of TCP [13], analysis of botnet command and control protocols
[9], and integration testing [27, 17].

In this paper, we explore whether LearnLib [33], a state-of-the-art automata
learning tool, is able to learn a model of the Engine Status Manager (ESM), a
piece of control software that is used in many printers and copiers of Océ. Soft-
ware components like the ESM can be found in many embedded systems in one
form or another. Being able to retrieve models of such components automatically
is potentially very useful. For instance, if the software is fixed or enriched with
new functionality, one may use a learned model for regression testing. Also, if
the source code of software is hard to read and poorly documented, one may
use a model of the software for model-based testing of a new implementation, or
even for generating an implementation on a new platform automatically. Using
a model checker one may also study the interaction of the software with other
components for which models are available.

The ESM software is actually well documented, and an extensive test suite
exists. The ESM, which has been implemented using Rational Rose Real-Time



(RRRT), is stable and has been in use for 10 years. Due to these characteristics,
the ESM is an excellent benchmark for assessing the performance of automata
learning tools in this area. The ESM has also been studied in other research
projects: Ploeger [31] modeled the ESM and other related managers and verified
properties based on the official specifications of the ESM, and Graaf and Van
Deursen [16] have checked the consistency of the behavioral specifications defined
in the ESM against the RRRT definitions.

Learning a model of the ESM turned out to be more complicated than ex-
pected. The top level UML/RRRT statechart from which the software is gener-
ated only has 16 states. However, each of these states contains nested states, and
in total there are 70 states that do not have further nested states. Moreover, the
C++ code contained in the actions of the transitions also creates some complex-
ity, and this explains why the minimal Mealy machine that models the ESM has
3.410 states. LearnLib has been used to learn models with tens of thousands of
states [32], and therefore we expected that it would be easy to learn a model for
the ESM. However, finding counterexamples for incorrect hypotheses turned out
to be challenging due to the large number of 77 inputs. The test algorithms im-
plemented in LearnLib, such as random testing, the W-method [10, 38] and the
Wp-method [14], failed to deliver counterexamples within an acceptable time.
Automata learning techniques have been successfully applied to case studies in
which the total number of input symbols is much larger, but in these cases it
was possible to reduce the number of inputs to a small number (< 10) using
abstraction techniques [2, 21]. In the case of ESM, use of abstraction techniques
only allowed us to reduce the original 156 concrete actions to 77 abstract actions.

We therefore implemented and extension of the algorithm of Lee & Yan-
nakakis [25] for computing an adaptive distinguishing sequence. Even when an
adaptive distinguishing sequence does not exist, Lee & Yannakakis’ algorithm
produces an adaptive sequence that ‘almost’ identifies states. In combination
with a standard algorithm for computing separating sequences for pairs of states,
we managed to verify states with on average 3 test queries and to learn a model
of the ESM with 77 inputs and 3.410 states. We also constructed a model directly
from the ESM software and established equivalence with the learned model. To
the best of our knowledge, this is the first paper in which active automata learn-
ing has been applied to industrial control software. Preliminary evidence sug-
gests that our adaptation of Lee & Yannakakis’ algorithm outperforms existing
FSM-based conformance algorithms.

During recent years most researchers working on active automata learning
focused their efforts on efficient algorithms and tools for the construction of hy-
pothesis models. Following [7], our work shows that the context of automata
learning provides both new challenges and new opportunities for the applica-
tion of testing algorithms. All the models for the ESM case study together
with the learning/test statistics are available at http://www.mbsd.cs.ru.nl/

publications/papers/fvaan/ESM/, as a benchmark for both the automata
learning and testing communities.



2 Engine Status Manager

The focus of this article is the Engine Status Manager (ESM), a software compo-
nent that is used to manage the status of the engine of Océ printers and copiers.
In this section, the overall structure and context of the ESM will be explained.

2.1 ESRA

The requirements and behavior of the ESM are defined in a software architecture
called Embedded Software Reference Architecture (ESRA). The components
defined in this architecture are reused in many of the products developed by Océ
and form an important part of these products. This architecture is developed
for cut-sheet printers or copiers. The term cut-sheet refers to the use of separate
sheets of paper as opposed to a continuous feed of paper.

An engine refers to the printing or scanning part of a printer or copier. Other
products can be connected to an engine that pre- or postprocess the paper, for
example a cutter, folder, stacker or stapler. Figure 2 gives an overview of the

Fig. 2. Global overview of the engine software

software in a printer or copier. The controller communicates the required actions
to the engine software. This includes transport of digital images, status control,
print or scan actions and error handling. The controller is responsible for queuing,
processing the actions received from the network and operators and delegating
the appropriate actions to the engine software. The managers communicate with
the controller using the external interface adapters. These adapters translate
the external protocols to internal protocols. The managers manage the different
functions of the engine. They are divided by the different functionalities such as
status control, print or scan actions or error handling they implement. In order
to do this a manager may communicate with other managers and functions. A
function is responsible for a specific set of hardware components. It translates
commands from the managers to the function hardware and reports the status
and other information of the function hardware to the managers. This hardware
can for example be the printing hardware or hardware that is not part of the
engine hardware such as a stapler. Other functionalities such as logging and
debugging are orthogonal to the functions and managers.



2.2 ESM and connected components

The ESM is responsible for the transition from one status of the printer or copier
to another. It coordinates the functions to bring them in the correct status.
Moreover, it informs all its connected clients (managers or the controller) of
status changes. Finally, it handles status transitions when an error occurs.

Fig. 3. Overview of the managers and clients connected to the ESM

Figure 3 shows the different components to which the ESM is connected. The
Error Handling Manager (EHM), Action Control Manager (ACM) and other
clients request engine statuses. The ESM decides whether a request can be hon-
ored immediately, has to be postponed or ignored. If the requested action is
processed the ESM requests the functions to go to the appropriate status. The
EHM has the highest priority and its requests are processed first. The EHM can
request the engine to go into the defect status. The ACM has the next highest
priority. The ACM requests the engine to switch between running and standby
status. The other clients request transitions between the other statuses, such
as idle, sleep, standby and low power. All the other clients have the same low-
est priority. The Top Capsule instantiates the ESM and communicates with it
during the initialization of the ESM. The Information Manager provides some
parameters during the initialization.

There are more managers connected to the ESM but they are of less impor-
tance and are thus not mentioned here.

2.3 Rational Rose RealTime

The ESM has been implemented using Rational Rose RealTime (RRRT). In this
tool so-called capsules can be created. Each of these capsules defines a hierarchi-
cal statechart diagram. Capsules can be connected with each other using struc-
ture diagrams. Each capsule contains a number of ports that can be connected
to ports of other capsules by adding connections in the associated structure dia-
gram. Each of these ports specifies which protocol should be used. This protocol



defines which messages may be sent to and from the port. Transitions in the
statechart diagram of the capsule can be triggered by arriving messages on a
port of the capsule. Messages can be sent to these ports using the action code of
the transition. The transitions between the states, actions and guards are defined
in C++ code. From the state diagram, C++ source files are generated.

The RRRT language and semantics is based on UML [30] and ROOM [34].
One important concept used in RRRT is the run-to-completion execution model
[12]. This means that when a received message is processed, the execution cannot
be interrupted by other arriving messages. These messages are placed in a queue
to be processed later.

2.4 The ESM state diagram

Figure 4 shows the top states of the ESM statechart. The statuses that can
be requested by the clients and managers correspond to gray states. The other
states are so called transitory states. In transitory states the ESM is waiting for
the functions to report that they have moved to the corresponding status. Once
all functions have reported, the ESM moves to the corresponding status.

Fig. 4. Top states and transitions of the ESM

The idle status indicates that the engine has started up but that it is still
cold (uncontrolled temperature). The standby status indicates that the engine is
warm and ready for printing or scanning. The running status indicates that the
engine is printing or scanning. The transitions from the overarching state to the
goingToSleep and goingToDefect states indicate that it is possible to move to
the sleep or defect status from any state. In some cases it is possible to awake
from sleep status, in other cases the main power is turned off. The medium status
is designed for diagnostics. In this status the functions can each be in a different
status. For example one function is in standby status while another function is
in idle status.



The statechart diagram in Figure 4 may seem simple, but it hides many
details. Each of the states has up to 5 nested states. In total there are 70 states
that do not have further nested states. The C++ code contained in the actions
of the transitions is in some cases non-trivial. The possibility to transition from
any state to the sleep or defect state also complicates the learning.

3 Learning the ESM

In order to learn a model of the ESM, we connected it to LearnLib [29], a
state-of-the-art tool for learning Mealy machines developed at the University
of Dortmund. A Mealy machine is a tuple M = 〈I,O,Q, q0, δ, λ〉, where I is a
finite set of input symbols, O is a finite set of output symbols, Q is a finite set
of states, q0 ∈ Q is an initial state, δ : Q × I → Q is a transition function,
and λ : Q × I → O is an output function. The behavior of a Mealy machine is
deterministic, in the sense that the outputs are fully determined by the inputs.
Functions δ and λ are extended to accept sequences in the standard way. We say
that Mealy machines M = 〈I,O,Q, q0, δ, λ〉 and M ′ = 〈I ′, O′, Q′, q′0, δ′, λ′〉 are
equivalent if they generate an identical sequence of outputs for every sequence of
inputs, that is, if I = I ′ and, for all w ∈ I∗, λ(q0, w) = λ′(q′0, w). If the behavior
of an SUT is described by a Mealy machine M then the task of LearnLib is to
learn a Mealy machine M ′ that is equivalent to M .

3.1 Experimental set-up

A clear interface to the ESM has been defined in RRRT. The ESM defines
ports from which it receives a predefined set of inputs and to which it can send a
predefined set of outputs. However, this interface can only be used within RRRT.
In order to communicate with the LearnLib software a TCP connection was set
up. An extra capsule was created in RRRT which connects to the ports defined
by the ESM. This capsule opened a TCP connection to LearnLib. Inputs and
outputs are translated to and from a string format and sent over the connection.
Before each membership query, the learner needs to bring the SUT back to its
initial state. This means that LearnLib needs a way to reset the SUT.

Some inputs and outputs sent to and from the ESM carry parameters. These
parameters are enumerations of statuses, or integers bounded by the number of
functions connected to the ESM. Currently LearnLib cannot handle inputs with
parameters; therefore, we introduced a separate input action for every parameter
value. Based on domain knowledge and discussions with the Océ engineers, we
could group some of these inputs together and reduce the total number of inputs.
When learning the ESM using one function, 83 concrete inputs are grouped into
four abstract inputs. When using two functions, 126 concrete inputs can be
grouped. When an abstract input needs to be sent to the ESM, one concrete
input of the represented group is randomly selected, as in the approach of [2].
This is a valid abstraction because all the inputs in the group have exactly
the same behavior in any state of the ESM. No other abstractions were found



during the research. After the inputs are grouped a total of 77 inputs remain
when learning the ESM using 1 function, and 105 inputs remain when using 2
functions.

It was not immediately obvious how to model the ESM by a Mealy machine,
since some inputs trigger no output, whereas other inputs trigger several outputs.
In order to resolve this, we benefitted from the run-to-completion execution
model used in RRRT. Whenever an input is sent all the outputs are collected
until quiescence is detected. Next all the outputs are concatenated and are sent
to LearnLib as a single aggregated output. In model-based testing, quiescence is
usually detected by waiting for a fixed timeout period. However, this causes the
system to be mostly idle while waiting for the timeout, which is inefficient. In
order to detect quiescence faster, we exploited the run-to-completion execution
model used by RRRT: we modified the ESM to respond to a new low-priority
test input with a (single) special output. This test input is sent after each normal
input. Only after the normal input is processed and all the generated outputs
have been sent, the test input is processed and the special output is generated;
upon its reception, quiescence can be detected immediately and reliably.

3.2 Test selection strategies

In the ESM case study the most challenging problem was finding counterexam-
ples for the hypotheses constructed during learning.

LearnLib implements several algorithms for conformance testing, one of which
is a random walk algorithm. The random walk algorithm works by first selecting
the length of the test query according to a geometric distribution, cut off at a
fixed upper bound. Each of the input symbols in the test query is then randomly
selected from the input alphabet I from a uniform distribution. In order to find
counterexamples, a specific sequence of input symbols is needed to arrive at the
state in the SUT that differentiates it from the hypothesis. The upper bound
for the size of this search space is |I|n where |I| is the size of the input alphabet
used, and n the length of the counterexample that needs to be found. If this
sequence is long the chance of finding it is small. Because the ESM has many
different input symbols to choose from, finding the correct one is hard. When
learning the ESM with 1 function there are 77 possible input symbols. If for
example the length of the counterexample needs to be at least 6 inputs to iden-
tify a certain state, then the upper bound on the number of test queries would
be around 2× 1011. An average test query takes around 1 ms, so it would take
about 7 years to execute these test queries.

Augmented DS-method. In order to reduce the number of tests, Chow [10]
and Vasilevskii [38] pioneered the so called W-method. In their framework a test
query consists of a prefix p bringing the SUT to a specific state, a (random)
middle part m and a suffix s assuring that the SUT is in the appropriate state.
This results in a test suite of the form PI≤kW , where P is a set of (shortest)
access sequences, I≤k the set of all sequences of length at most k, and W is



a characterization set. Classically, this characterization set is constructed by
taking the set of all (pairwise) separating sequences. For k = 1 this test suite
is complete in the sense that if the SUT passes all tests, then either the SUT
is equivalent to the specification or the SUT has strictly more states than the
specification. By increasing k we can check additional states.

We tried using the W-method as implemented by LearnLib to find coun-
terexamples. The generated test suite, however, was still too big in our learning
context. Fujiwara et al [14] observed that it is possible to let the set W depend
on the state the SUT is supposed to be. This allows us to only take a subset
of W which is relevant for a specific state. This slightly reduces the test suite
without losing the power of the full test suite. This method is known as the Wp-
method. More importantly, this observation allows for generalizations where we
can carefully pick the suffixes.

In the presence of an (adaptive) distinguishing sequence one can take W
to be a single suffix, greatly reducing the test suite. Lee and Yannakakis [25]
describe an algorithm (which we will refer to as the LY algorithm) to efficiently
construct this sequence, if it exists. In our case, unfortunately, most hypotheses
did not enjoy existence of an adaptive distinguishing sequence. In these cases
the incomplete result from the LY algorithm still contained a lot of information
which we augmented by pairwise separating sequences.
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I10 I11 I10 I10
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Fig. 5. A small part of an incomplete distinguishing sequence as produced by the
LY algorithm. Leaves contain a set of possible initial states, inner nodes have input
sequences and edges correspond to different output symbols (of which we only drew
some), where Q stands for quiescence.

As an example we show an incomplete adaptive distinguishing sequence for
one of the hypothesis in Figure 5. When we apply the input sequence I46 I6.0
I10 I19 I31.0 I37.3 I9.2 and observe outputs O9 O3.3 Q . . . O28.0, we know
for sure that the SUT was in state 788. Unfortunately not all paths lead to a
singleton set. When for instance we apply the sequence I46 I6.0 I10 and observe



the outputs O9 O3.14 Q, we know for sure that the SUT was in one of the states
18, 133, 1287 or 1295. In these cases we have to perform more experiments and
we resort to pairwise separating sequences.

We note that this augmented DS-method is in the worst case not any better
than the classical Wp-method. In our case, however, it greatly reduced the test
suites.

Once we have our set of suffixes, which we call Z now, our test algorithm
works as follows. The algorithm first exhausts the set PI≤1Z. If this does not
provide a counterexample, we will randomly pick test queries from PI2I∗Z,
where the algorithm samples uniformly from P , I2 and Z (if Z contains more
that 1 sequence for the supposed state) and with a geometric distribution on I∗.

Subalphabet selection. Using the above method the algorithm still failed to
learn the ESM. By looking at the RRRT-based model we were able to see why
the algorithm failed to learn. In the initialization phase, the controller gives
exceptional behavior when providing a certain input eight times consecutively.
Of course such a sequence is hard to find in the above testing method. With this
knowledge we could construct a single counterexample by hand by which means
the algorithm was able to learn the ESM.

In order to automate this process, we defined a subalphabet of actions that
are important during the initialization phase of the controller. This subalphabet
will be used a bit more often than the full alphabet. We do this as follows.
We start testing with the alphabet which provided a counterexample for the
previous hypothesis (for the first hypothesis we take the subalphabet). If no
counterexample can be found within a specified query bound, then we repeat
with the next alphabet. If both alphabets do not produce a counterexample
within the bound, the bound is increased by some factor and we repeat all. This
method only marginally increases the number of tests. But it did find the right
counterexample we first had to construct by hand.

3.3 Results

Using the learning set-up discussed in Section 3.1 and the test selection strategies
discussed in Section 3.2, a model of the ESM using 1 function could be learned.
After an additional eight hours of testing no counterexample was found and the
experiment was stopped. The following list gives the most important statistics
gathered during the learning:

– The learned model has 3.410 states.
– Altogether, 114 hypotheses were generated.
– The time needed for learning the final hypothesis was 8 hours, 26 minutes,

and 19 seconds.
– 29.933.643 membership queries were required, with on average 35,77 inputs

per query.
– 30.629.711 test queries were required, with on average 29,06 inputs per query.



4 Verification

To verify the correctness of the model that was learned using LearnLib, we
checked its equivalence with a model that was generated directly from the code.

4.1 Approach

As mentioned already, the ESM has been implemented using Rational Rose
RealTime (RRRT). Thus a statechart representation of the ESM is available.
However, we have not been able to find a tool that translates RRRT models to
Mealy machines, allowing us to compare the RRRT-based model of the ESM
with the learned model. We considered several formalisms and tools that were
proposed in the literature to flatten statecharts to state machines. The first one
was a tool for hierarchical timed automata (HTA) [11]. However, we found it
hard to translate the output of this tool, a network of Uppaal timed automata,
to a Mealy machine that could be compared to the learned model. The second
tool that we considered has been developed by Hansen et al. [18]. This tool
misses some essential features, for example the ability to assign new values to
state variables on transitions. Finally, we considered a formalism called object-
oriented action systems (OOAS) [23], but no tools to use this could be found.

In the end we decided to implement the required model transformations our-
selves. Figure 6 displays the different formats for representing models that we
used and the transformations between those formats. We used the bisimula-

.aut

EFSM

RRRT

UML

statechart .xml

PapyrusUML Uppaal

CADPLearnLib

Mealy
Machine

           .dot

LTS

HEFSM

Fig. 6. Formats for representing models and transformations between formats

tion checker of CADP [15] to check the equivalence of labeled transition system
models in .aut format. The Mealy machine models learned by LearnLib are rep-
resented as .dot files. A small script converts these Mealy machines to labeled
transition systems in .aut format. We used the Uppaal [6] tool as an editor
for defining extended finite state machines (EFSM), represented as .xml files.
A script developed in the ITALIA project (http://www.italia.cs.ru.nl/)
converts these EFSM models to LOTOS, and then CADP takes care of the
conversion from LOTOS to the .aut format.

The Uppaal syntax is not sufficiently expressive to directly encode the RRRT
definition of the ESM, since this definition makes heavy use of UML [30] concepts
such as state hierarchy and transitions from composite states, concepts which are



Fig. 7. Example of empty transition trans-
formation. On the left the original version.
On the right the transformed version

Fig. 8. Example of supertransition
transformation. On the left the original
version. On the right the transformed
version

not present in Uppaal. Using Uppaal would force us to duplicate many transitions
and states.

We decided to manually create an intermediate hierarchical EFSM (HEFSM)
model using the UML drawing tool PapyrusUML [24]. The HEFSM model closely
resembles the RRRT UML model, but many elements used in UML state ma-
chines are left out because they are not needed for modeling the ESM and
complicate the transformation process.

4.2 Model transformations

We explain the transformation from the HEFSM model to the EFSM model
using examples. The transformation is divided into five steps, which are executed
in order: (1) combine transitions without input or output signal, (2) transform
supertransitions, (3) transform internal transitions, (4) add input signals that
do not generate an output, and (5) replace invocations of the next function.

1. Empty transitions. In order to make the model more readable and to make it
easy to model if and switch statements in the C++ code the HEFSM model
allows for transitions without a signal. These transitions are called empty transi-
tions. An empty transition can still contain a guard and an assignment. However
these kinds of transitions are only allowed on states that only contain empty out-
going transitions. This was done to make the transformation easy and the model
easy to read.

In order to transform a state with empty transitions all the incoming and
outgoing transitions are collected. For each combination of incoming transition
a and outgoing transition b a new transition c is created with the source of a as
source and the target of b as target. The guard for transition c evaluates to true
if and only if the guard of a and b both evaluate to true. The assignment of c is
the concatenation of the assignment of a and b. The signal of c will be the signal
of a because b cannot have a signal. Once all the new transitions are created all
the states with empty transitions are removed together with all their incoming
and outgoing transitions.



Figure 7 shows an example model with empty transitions and its transformed
version. Each of the incoming transitions from the state B is combined with
each of the outgoing transitions. This results into two new transitions. The old
transitions and state B are removed.

2. Supertransitions. The RRRT model of the ESM contains many transitions
originating from a composite state. Informally, these supertransitions can be
taken in in each of the substates of the composite state if the guard evaluates to
true. In order to model the ESM as closely as possible, supertransitions are also
supported in the HEFSM model.

In RRRT transitions are evaluated from bottom to top. This means that first
the transitions from the leaf state are considered, then transitions from its parent
state and then from its parent’s parent state, etc. Once a transition for which
the guard evaluates to true and the correct signal has been found it is taken.
When flattening the statechart, we modified the guards of supertransitions to
ensure the correct priorities.

Figure 8 shows an example model with supertransitions and its transformed
version. The supertransition from state A can be taken at each of A’s leaf states
B and C. The transformation removes the original supertransition and creates a
new transition at states B and C using the same target state. For leaf state C

this is easy because it does not contain a transition with the input signal IP. In
state B the transition to state C would be taken if a signal IP was processed and
the state variable a equals 1. The supertransition can only be taken if the other
transition cannot be taken. This is why the negation of other the guard is added
to the new transition. If the original supertransition is an internal transition the
model needs further transformation after this transformation. This is described
in the next paragraph. If the original supertransition is not an internal transition
the new transitions will have the initial state of A as target.

3. Internal transitions. The ESM model also makes use of internal transitions
in RRRT. Using such a transition the current state does not change. If such a
transition is defined on a composite state it can be taken from all of the substates
and return to the same leaf state it originated from. If defined on a composite
state it is thus also a supertransition. This is also possible in the HEFSM model.
In order to transform an internal transition it is first seen as a supertransition and
the above transformation is applied. Then the target of the transition is simply
set to the leaf state it originates from. An example can be seen in Figure 8. If
the supertransition from state A is also defined to be an internal transition the
transformed version on the right would need another transformation. The new
transitions that now have the target state A would be transformed to have the
same target state as their current source state.

4. Quiescent transitions. In order to reduce the number of transitions in the
HEFSM model quiescent transitions are added automatically. For every state all
the transitions for each signal are collected in a set T . A new self transition a is
added for each signal. The guard for transition a evaluates to true if and only



if none of the guards of the transactions in T evaluates to true. This makes the
HEFSM input enabled without having to specify all the transitions.

5. The next function. In RRRT it is possible to write the guard and assignment
in C++ code. It is thus possible that the value of a variable changes while an
input signal is processed. In the HEFSM however all the assignments only take
effect after the input signal is processed. In order to simulate this behavior the
next function is used. This function takes a variable name and evaluates to the
value of this variable after the transition.

4.3 Results

Figure 9 shows a visualization of the learned model that was generated using
Gephi [5]. The large number of states (3.410) and transitions (262.570) makes it
hard to visualize this model. Nevertheless, the visualization does provide insight
in the behavior of the ESM. The three protrusions at the bottom of Figure 9
correspond to deadlocks in the model. These deadlocks are “error” states that
are present in the ESM by design. According to the Océ engineers, the sequences
of inputs that are needed to drive the ESM into these deadlock states will always
be followed by a system power reset. The protrusion at the top right of the figure
corresponds to the initialization phase of the ESM. This phase is performed only
once and thus only transitions from the initialization cluster to the main body
of states are present.

During the construction of the RRRT-based model, the ESM code was thor-
oughly inspected. This resulted in the discovery of missing behavior in one tran-
sition of the ESM code. An Océ software engineer confirmed that this behavior
is a (minor) bug, which will be fixed. We have verified the equivalence of the
learned model and the RRRT-based model by using CADP [15].

5 Conclusions and Future Work

Using an extension of the Lee & Yannakakis algorithm for adaptive distinguish-
ing sequences [25], we succeeded to learn a Mealy machine model of a piece of
widely used industrial control software. Our extension of Lee & Yannakakis’ al-
gorithm is rather obvious, but nevertheless it appears to be new. Preliminary
evidence suggests that it outperforms existing conformance testing algorithms.
We are currently performing experiments in which we compare the new algo-
rithm with other test algorithms on a number of realistic benchmarks.

There are several possibilities for extending the ESM case study. To begin
with, one could try to learn a model of the ESM with more than one function.
Another interesting possibility would be to learn models of the EHM, ACM and
other managers connected to the ESM. Using these models some of the properties
discussed by Ploeger [31] could be verified at a more detailed level. We expect
that the combination of LearnLib with the extended Lee & Yannakakis algorithm
can be applied to learn models of many other software components.



Fig. 9. Final model of the ESM.

In the specific case study described in this article, we know that our learning
algorithm has succeeded to learn the correct model, since we established equiva-
lence with a reference model that was constructed independently from the RRRT
model of the ESM software. In the absence of a reference model, we can never
guarantee that the actual system behavior conforms to a learned model. In or-
der to deal with this problem, it is important to define metrics that quantify the
difference (or distance) between a hypothesis and a correct model of the SUT,
and to develop test generation algorithms that guarantee an upper bound on
this difference. Preliminary work in this area is reported in [36].
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